

Developing RESTful Services
with JAX-RS 2.0, WebSockets,
and JSON

A complete and practical guide to building RESTful
Web Services with the latest Java EE7 API

Masoud Kalali

Bhakti Mehta

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

Developing RESTful Services with JAX-RS 2.0,
WebSockets, and JSON

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1081013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-812-5

www.packtpub.com

Cover Image by Masoud Kalali (kalali@gmail.com)

Credits

Authors
Masoud Kalali

Bhakti Mehta

Reviewers
Anthony Dahanne

Jitendra Kotamraju

Arvind Maheshwari

Acquisition Editors
Antony Lowe

Erol Staveley

Lead Technical Editor
Sharvari Tawde

Technical Editors
Vrinda Nitesh Bhosale

Amit Shetty

Project Coordinator
Amey Sawant

Proofreader
Stephen Copestake

Indexer
Tejal R.Soni

Graphics
Ronak Dhruv

Yuvraj Mannari

Production Coordinators
Prachali Bhiwandkar

Kyle Albuquerque

Cover Work
Prachali Bhiwandkar

About the Authors

Masoud Kalali has been working on software development projects since 1998,
which gives him a broad perspective on software development in general and
changes in the software development landscape in the past 1.5 decades. Masoud
has experience with a variety of technologies (.NET, J2EE, CORBA, and COM+)
on diverse platforms (Solaris, Linux, and Windows). He has a masters degree in
Information Systems with a bachelor degree in Software Engineering.

Masoud has authored a fair number of articles and other types of material,
including several articles at Java.net and Dzone. He is the author of multiple
refcardz, published by Dzone, including but not limited to Using XML in Java
(http://refcardz.dzone.com/refcardz/using-xml-java) and Security
and GlassFish v3 (http://refcardz.dzone.com/refcardz/getting-started-
glassfish) refcardz. Masoud is one of the founding members of NetBeans Dream
Team (http://wiki.netbeans.org/NetBeansDreamTeam) and a GlassFish
community spotlighted developer (https://glassfish.java.net/public/
developers.html). Masoud is the author of GlassFish Security (http://www.
packtpub.com/glassfish-security/book) that was published in 2010,
covering GlassFish v3 security and Java EE 6 security.

Masoud's main area of research and interest includes service-oriented architecture
and large-scale systems development and deployment. In his spare time he enjoys
photography, mountaineering, and climbing.

Masoud's Twitter handle is @MasoudKalali if you want to know what he is up to.

I should acknowledge my family's support and encouragement as
well as Bhakti's patience with me during the course of developing this
book. Reviewers, including Anthony Dahanne, Jitendra Kotamraju,
and Arvind Maheshwari, played a vital role in developing this book
and deserve special thanks. At the end I should acknowledge the role
that the Packt Publishing team, including but not limited to Amey
Sawant, Sharvari Tawde, and Parita Khedekar, played in concluding
this project.

Bhakti Mehta is a Senior Technology Professional with over 12 years of experience
in architecting, designing, and implementing Software Solutions on top of Java EE
and other related technologies. On the platform level, she is well experienced in
different areas of GlassFish Application Server and Java EE specifications.

Bhakti is experienced in developing open source software and working with open
source communities and customers. She is a member of the GlassFish team at Oracle.
Bhakti's primary areas of interest are server-side technologies, XML, Web Services,
Java EE, and Cloud. She has a bachelors degree in Computer Engineering and a
masters degree in Computer Science.

Bhakti is a regular speaker in various conferences along with having articles and
enterprise tech tips at different portals. Her tweets can be followed at @bhakti_mehta.

I would like to use this opportunity to extend a special
acknowledgment to my husband, Parikshat, my in-laws, and
my dear friend Mansi, for their support and encouragement
during the course of this book's development. I thank my two
little kids for being my constant source of inspiration to work
hard and never give up.

I am extending my gratitude toward my parents and my
brother, Pranav, for the role they played in helping me choose
this profession. I would like to acknowledge my friend and
colleague, Masoud, whose invaluable insights and collaboration
helped with realization of this book's idea.

I thank the reviewers Anthony Dahanne, Jitendra Kotamraju, and
Arvind Maheshwari for their feedback. I should acknowledge the
role that Packt Publishing team, including but not limited to Amey
Sawant, Sharvari Tawde, and Parita Khedekar, played in concluding
this project.

About the Reviewers

Anthony Dahanne has been a Java software developer since 2005. His favorite
topics are Android, building tools, Continuous Integration, Web Services, and,
of course, core Java development. In his spare time, he's hacking on some open
source Android app (G2Android, ReGalAndroid, and so on); he also contributes
from time to time to build/IDE plugins usually involving Maven and Eclipse.

You can meet him at one of the many Java-related user group gathering in Montréal
(Android Montréal, Montréal JUG, and Big Data Montréal). Working at Terracotta,
he's currently implementing the REST management interface for Ehcache.

I would like to thank Guilhem De Miollis for his time spent
reviewing the book and even suggesting some topics, my colleagues
at the Interfaces team at Terracotta for always taking the time to
share their deep Java knowledge with me, and finally my beloved
wife Isabelle for her patience and help to make this book happen.

Jitendra Kotamraju, a principal member of the technical staff at Oracle, is the
JSON Processing specification lead and one of the key engineers behind GlassFish.
Before leading the JSON Processing project, he was in charge of both the specification
and implementation of JAX-WS 2.2. Currently, he is also implementing various web
technologies such as Server-sent Events (SSE) and WebSocket in GlassFish.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

Table of Contents
Preface	 1
Chapter 1: Building RESTful Web Services Using JAX-RS	 7

Understanding REST	 8
RESTful Web Services	 8
Verbs in REST	 8

Safety and idempotence	 9
Introduction to JAX-RS	 10

Converting POJOs to RESTful resources	 10
Defining a root resource as identified by a URI	 11
Defining the methods for the resource	 11
Defining the MIME types	 11
Defining the Application subclass	 12
Defining the subresources	 13

More on JAX-RS annotations	 14
The Client API for JAX-RS	 16
Entities in JAX-RS	 16
Custom entity providers in JAX-RS	 17

MessageBodyReader	 17
MessageBodyWriter	 20

Using the Bean Validation API with JAX-RS	 22
Enabling validation in the application	 23
Reading validation errors from the response	 24

Summary	 24
Chapter 2: WebSockets and Server-sent Events	 25

The programming models	 25
Polling	 26
Long polling	 28

Chunked transfer encoding	 30

Table of Contents

[ii]

Emerging standards	 31
Server-sent Events	 31

The SSE anatomy	 32
Associating an ID with an event	 33

Connection loss and reconnecting retries	 33
Associating event names with events	 34
Server-sent Events and JavaScript	 34

WebSockets	 37
WebSocket handshake	 37
Browser and JavaScript support for WebSockets	 38

Java EE and the emerging standards	 40
Java EE and Server-sent Events	 40
Java EE and WebSockets	 42

Comparison and use cases of different programming models
and standards	 43
Summary	 45

Chapter 3: Understanding WebSockets and Server-sent
Events in Detail	 47

Encoders and decoders in Java API for WebSockets	 48
The Java WebSocket Client API	 52
Sending different kinds of message data: blob/binary	 52
Security and WebSockets	 53
Best practices for WebSockets-based applications	 56

Throttling the rate of sending data	 56
Controlling the maximum size of the message	 57
Working with proxy servers and WebSockets	 57

Server-sent Events	 58
Developing a Server-sent Event client using Jersey API	 58

Best practices for applications based on Server-sent Events	 59
Checking if the event source's origin is as expected	 59
Working with proxy servers and Server-sent Events	 59
Handling fault tolerance for Server-sent Events	 60

Summary	 60
Chapter 4: JSON and Asynchronous Processing	 61

Producing and parsing JSON documents	 61
An overview of JSON API	 62
Manipulating JSON documents using the event-based API	 62
Producing JSON documents	 63
Parsing JSON documents	 64
Manipulating JSON documents using the JSON object model	 65

Generating JSON documents	 65

Table of Contents

[iii]

Parsing JSON documents	 66
When to use the streaming versus the object API	 67

Introducing Servlet 3.1	 67
NIO API and Servlet 3.1	 67
Introducing ReadListener and WriteListener	 67
Changes in the Servlet API interfaces	 68

More changes in Servlet 3.1	 71
New features in JAX-RS 2.0	 72

Asynchronous request and response processing	 72
Filters and interceptors	 74

Asynchronous processing in EJB 3.1 and 3.2	 75
Developing an asynchronous session bean	 76
Developing a client servlet for the async session bean	 76

Summary	 78
Chapter 5: RESTful Web Services by Example	 79

Event notification application	 79
The project's layout	 80
The event notification GUI	 80
A detailed look at the event notification application	 82

The web.xml	 82
The implementation of the Application class	 83
The JAX-RS resource used by the application	 83
The Asynchronous Servlet client used by the application	 84
The EJB that interacts with the Twitter Search API	 88

The library application	 92
How the application is deployed	 92
The project's layout	 92
The library application GUI	 92
Application interaction monitoring	 94
A detailed look at the library application	 94

The web.xml	 95
The Application subclass	 95
JAX-RS Entity Provider: BookCollectionWriter	 96
The HTML page	 97
Browsing the collection of books	 99
Searching for a book	 100
Checking out a book	 100
Returning a book	 101
Placing a hold on a book	 102
The Singleton EJB BookService	 104

Summary	 105
Index	 107

Preface
Over the years, we have seen several revolutions, and shifts in paradigms spanning
from mainframes to x86 farms, from heavyweight methodologies to lightweight agile
methods, and from desktop and thick clients to thin, rich, and highly available web
applications and ubiquitous computing.

With the advancements and changes in the technology landscape going towards
smaller, more portable, and lightweight devices and the devices being used widely
for day-to-day activities, the need to push the computation from the client machines
to the backend grows to an even more prominent one. This also brings forth
opportunities and challenges involved in developing applications with near
real-time or real-time event and data propagation between servers and clients;
that is where HTML 5 provides developers with the standards, API, and flexibility
required to achieve the same result in web applications that is achievable in thick
desktop applications.

The communication between clients and the servers has turned to the most
fundamental subject both in terms of quantity, content, interoperability,
and scalability of these interactions. The XML era, long waiting requests,
single browser, and single device compatibility is over; instead the era of
devices, multiple clients, and browsers, from very small devices capable
of only processing text over HTTP to mammoth scale machines processing
almost any kind of content has begun. With this said, producing the content
and accepting the content along with the ability to switch between older
and newer protocols has turned into an obvious must.

Java EE 7 comes with more emphasis on these emerging (and dominating)
requirements; support for HTML5, more asynchronous communication/
invocation-capable components, and support for JSON as one of the data
formats have arrived to help developers with resolving the technical requirements
and giving the developers ample time to work on the business requirements'
implementation of their systems.

Preface

[2]

This book is an attempt to provide the avid technologists with an overview of
what Java EE is in general and Java EE 7 in particular, as a technology platform,
provides for developing lightweight, interactive applications based on HTML5
deployable in any Java EE compatible container.

What this book covers
Chapter 1, Building RESTful Web Services Using JAX-RS, starts with the basic concepts
of building RESTful Web Services and covers JAX-RS 2.0 API, detailing the different
annotations, Providers, MessageBodyReader, MessageBodyWriter, Client API,
and Bean Validation support in JAX-RS 2.0.

Chapter 2, WebSockets and Server-sent Events, discusses the different programming
models for sending near real-time updates to clients. It also covers WebSockets and
Server-sent Events, the JavaScript and Java API for WebSockets and Server-sent
Events. This chapter compares and contrasts WebSockets and Server-sent Events
and shows the advantages of WebSockets to reduce unnecessary network traffic
and improve the performance.

Chapter 3, Understanding WebSockets and Server-sent Events in Detail, covers the Java EE
7 API for WebSockets, Encoders and Decoders, the Client API, how to send different
kinds of messages with WebSockets using blobs, and ArrayBuffers. It teaches how to
secure a WebSockets-based application. It outlines the best practices for WebSockets
and Server-sent Events-based applications.

Chapter 4, JSON and Asynchronous Processing, covers the Java EE 7 JSON-P API
for parsing and manipulating JSON data. It also discusses the new NIO API
introduced in Servlet 3.1 specification. It teaches how to use the JAX-RS 2.0 API
for asynchronous request processing to improve scalability.

Chapter 5, RESTful Web Services by Example, covers two real-life examples of RESTful
Web Services. It covers an event notification sample based on the Twitter Search
API, how the server can push the data to clients as and when events occur. A library
application ties the different technologies covered in the above chapters together.

What you need for this book
To be able to build and run samples provided with this book you will need:

1.	 Apache Maven 3.0 and higher. Maven is used to build the samples. You can
download Apache Maven from http://maven.apache.org/download.cgi

Preface

[3]

2.	 GlassFish Server Open Source Edition v4.0 is the free, community-supported
Application Server providing implementation for Java EE 7 specifications.
You can download the GlassFish Server from http://dlc.sun.com.
edgesuite.net/glassfish/4.0/promoted/

Who this book is for
This book is a perfect reading source for application developers who are familiar
with Java EE and are keen to understand the new HTML5-related functionality
introduced in Java EE 7 to improve productivity. To take full advantage of this book,
you need to be familiar with Java EE and have some basic understanding of using
GlassFish application server.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The request, which is sent to the JAX-RS resource, is a POST request with app/
library/book/ as the target URI."

A block of code is set as follows:

@GET
@Path("browse")
public List<Book> browseCollection() {
 return bookService.getBooks(); }

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

@GET
@Path("browse")
public List<Book> browseCollection() {
 return bookService.getBooks(); }

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "When a
user clicks on the Hold button on the HTML page".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Building RESTful Web
Services Using JAX-RS

There are various ways to implement communication between heterogeneous
applications. There are standards focusing on web services based on SOAP, WSDL,
and WS* specifications; alongside these standards there is an emerging lightweight
solution based on plain HTTP referred to as Representational State Transfer (REST).

REST is identified by the principles of addressable resources, constrained interfaces
using HTTP verbs, representation, and statelessness.

The key principles of REST are:

•	 Associating IDs to resources
•	 Using standard HTTP methods
•	 Multiple formats of data sent by a resource
•	 Statelessness

This chapter starts with the basic concept of building RESTful Web Services using
the JAX-RS 2.0 API and covers the following sections:

•	 Getting started with JAX-RS 2.0
•	 Converting POJOs to RESTful endpoints using JAX-RS 2.0 annotations
•	 @Produces, @Consumes annotations
•	 Client API for JAX-RS 2.0
•	 Sample showing all verbs
•	 Custom entity providers for serializing and deserializing user defined

classes using JAX-RS
•	 Utilizing the Bean Validation API for validation with JAX-RS 2.0

Building RESTful Web Services Using JAX-RS

[8]

Understanding REST
The REST architectural style is based on request and response messages transferred
between clients and servers without any of the participating node keeping track of
the state of previous sessions..

REST uses nouns and verbs for readability. Resources are identified in requests.
The representation of the resource that is sent to the client depends on the request
and how the server sends the data.

RESTful Web Services
A RESTful Web Service is a service whose interface and accessing mechanism are
aligned with the REST principles . The URIs identify the resources. For example,
a RESTful resource for a book can be identified as http://foo.org/book.

A resource for a book identified by ISBN could be http://foo.org/book/
isbn/1234459. This shows a human-readable URI that is easy to understand
and identify.

A client has enough metadata of a resource to modify or delete it as long as it is
authorized to do so. To get a resource the client would send a HTTP GET request.
To update the resource the client would send a PUT request. To delete a resource
the client would send a DELETE request. To create a new resource, and for arbitrary
processing, the client sends a HTTP POST request. The next section covers these
verbs in more detail.

Verbs in REST
Some of the requests used in REST are as follows:

•	 GET: The GET request retrieves a representation of a resource from server
to client

•	 POST: The POST request is used to create a resource on the server based on
the representation that the client sends

•	 PUT: The PUT request is used to update or create a reference to a resource
on server

•	 DELETE: The DELETE request can delete a resource on server
•	 HEAD: The HEAD requests checks for a resource without retrieving it

The next section will introduce the notion of safety and idempotence, two important
terms associated with REST.

Chapter 1

[9]

Safety and idempotence
When it comes to REST, a safe method, by definition, is a HTTP method that does
not modify the state of the resource on the server. For example, invoking a GET or a
HEAD method on the resource URL should never change the resource on the server.
PUT is considered not safe since it usually creates a resource on the server. DELETE
is also considered not safe since it will delete the resource on the server. POST is not
safe since it will change the resource on the server.

Idempotent method is a method that can be called multiple times yet the outcome
will not change.

GET and HEAD are idempotent, which means that even though the same operation
is done multiple times the result does not vary. PUT is idempotent; calling the PUT
method multiple times will not change the result and the resource state is exactly
the same.

DELETE is idempotent because once the resource is deleted it is gone, and calling
the same operation multiple times will not change the outcome.

In contrast, POST is not idempotent and calling POST multiple times can have
different outcomes.

The idempotence and safety of the HTTP verbs are a convention,
meaning that when someone is using your API they will assume that
GET/PUT/POST/DELETE have the same idempotency characteristics
that are previously described; and the implementation of the business
logic behind each verb should support these characteristics.

The response sent by the server could be in XML, JSON, or any other MIME type as
long as the server supports the requested format. In case the server cannot support
the requested MIME type, it can return with a status code of 406 (not acceptable).

When we are developing with RESTful principles in mind, each message should
have enough information to let the server understand the purpose of the message
and how to process that message, to produce the response the message is meant for,
and finally to ensure visibility and statelessness.

Summarizing, these are the components of RESTful Web Services:

•	 Base URI: The base URI for the Web Service http://foo.com/bar
•	 Media type: The media type supported by the Web Service
•	 Methods: The HTTP methods such as GET, PUT, POST, and DELETE

Building RESTful Web Services Using JAX-RS

[10]

Introduction to JAX-RS
The Java API for Representational State Transfer (JAX-RS) specification defines
a set of Java APIs for building web services conforming to the REST style.

This specification defines how to expose POJOs as web resources, using HTTP
as the network protocol. Applications using these APIs can be deployed to an
application server in a portable manner.

Some of the key features that are introduced in the JAX-RS 2.0 specification
are as follows:

•	 Client API
•	 Server side asynchronous support
•	 Bean Validation support

In the subsequent sections we will cover the following topics in relation
to JAX-RS 2.0:

•	 Converting POJOs to RESTful resources
•	 More on JAX-RS annotations
•	 Client API for JAX-RS
•	 Entities in JAX-RS
•	 Custom entity providers in JAX-RS
•	 Using the Bean Validation API with JAX-RS

Converting POJOs to RESTful resources
A resource class is a POJO that uses the JAX-RS annotations. A resource class
needs to have at least one method annotated with @Path or a request method.
Resources are our so-called web services and incoming requests target
these resources.

Steps to convert POJOs to RESTful endpoints:

1.	 Define a root resource as identified by a URI
2.	 Define the methods for the resource
3.	 Define the MIME types
4.	 Define the Application subclass
5.	 Define the subresources

Chapter 1

[11]

Defining a root resource as identified by a URI
JAX-RS provides very rich client and server APIs that work on any Java EE application
server. Using JAX-RS API, any POJO can be annotated to build the RESTful resources.
Begin with a simple POJO BookResource and annotate it with the JAX-RS APIs.

@Path("books")
public class BooksResource {
}

This is a root resource class, which is annotated with @Path annotation. The value
"books" will indicate that the resource will be available at a location similar to the
following URI http://host:port/appname/books.

Later on we add the methods to this resource so that, when a request with GET, PUT,
and so on hits this resource, a particular method in the class is invoked to produce
the response.

Defining the methods for the resource
To add a method to this resource, we annotate the method with @GET, @PUT, @DELETE,
or @HEAD. In the following example, we chose to annotate using a @GET annotation:

@GET
public String getGreeting() {
 return "Hello from Book resource"
}

The @GET annotation specifies that the getGreeting() method handles the
HTTP GET requests.

Defining the MIME types
To specify the MIME type that can be handled by the resource, we should annotate
the resource method with @Produces and @Consumes:

@Produces("text/plain")
@GET
public String getGreeting() {
 return "Hello from Book resource"
}

Building RESTful Web Services Using JAX-RS

[12]

The @Produces specifies that the media type this method will produce is "text/
plain". Support for other media types, and how to map from Java to a specific
format and vice versa, is covered in detail in the entity provider's section. Thus,
this is the initial introduction to having a first JAX-RS resource ready. The next
section covers the details of the Application subclass.

Defining the Application subclass
The Application class is a portable way to configure application-level details
such as specifying the name, and registering various components of a JAX-RS
application. This includes the different JAX-RS resources and the JAX-RS
providers in the application.

Similarly, application-wide properties can be set using a subclass of Application.
The Application subclass should to be placed in either in WEB-INF/classes or
WEB-INF/lib in a WAR file. Application class has the following methods that can
be overridden:

public Set<Class<?>> getClasses() ;
public Map<String, Object> getProperties();
public Set<Object> getSingletons();

Here is an example of a subclass of Application for our case:

@ApplicationPath("/library/")
public class HelloWorldApplication extends Application {
@Override
 public Set<Class<?>> getClasses() {
 Set<Class<?>> classes = new HashSet<Class<?>>();
 classes.add(BooksResource.class);
 return classes;
 }
}

In this code we create a HelloWorldApplication, which is a subclass of javax.
ws.rs.core.Application. With Servlet 3.0 there is no need of a web.xml file and
the servlet container uses the value specified in the @ApplicationPath as the servlet
mapping. The getClasses() method of the Application class is overridden to add
BooksResource.class.

A basic JAX-RS resource is now ready to use. When the sample is deployed to an
application server such as GlassFish, you can use curl to send a request.

Here is an example on how to send a curl -X GET request:

curl -X GET http://localhost:8080/helloworld/books

Chapter 1

[13]

The output in the terminal window should be:

Hello from book resource

Chapter 5, RESTful Web Services by Example, will show how to use the Application
class in a web.xml file.

Defining the subresources
Resource classes can partially process some part of the request and provide another
subresource to process the remaining part of the request.

For example, here is a snippet of a root resource Library and another resource Book.

@Path("/")
public class Library {

 @Path("/books/{isbn}")
 public Book getBook(@PathParam("isbn") String isbn){
 //return book
 }
}

public class Book {
 @Path("/author")
 public String getAuthor(){
 }
}

Subresource locators are resource methods that have @Path annotation but no
HTTP methods.

In the preceding example, Library is a root resource as it is annotated with @Path.
The method getBook() is a subresource locator whose job is to provide an object
that can process the request.

The @PathParam is an annotation that allows you to map URI path fragments in
the method call. In this example, the isbn URI parameter is passed to provide
information about the book.

If a client sends a request using the URI:

GET /books/123456789

The Library.getBook() method will be invoked.

Building RESTful Web Services Using JAX-RS

[14]

If a client sends a request using the URI:

GET /books/123456789/author

The Library.getBook() method will be invoked first. A Book object is returned and
then the getAuthor() method is invoked.

More on JAX-RS annotations
The @Produces annotation is used to define the type of output the method in the
resource produces. The @Consumes annotation is used to define the type of input,
the method in the resource consumes.

Here is a method in a resource for a POST request:

@POST
@Consumes(MediaType.APPLICATION_XML)
@Produces(MediaType.APPLICATION_XML)
public Response addBook(Book book) {
 BooksCollection.addBook(book);
 return Response.ok(book).
 type(MediaType.APPLICATION_XML_TYPE).build();
}

As shown in this snippet we have the @POST annotation that indicates this method
accepts POST request.

The @Produces(MediaType.APPLICATION_XML) indicates that the "application/
xml" media type is produced by the addBook() method of this resource.

The @Consumes(MediaType.APPLICATION_XML) indicates that the "application/
xml" media type is consumed by the addBook() method of this resource.

The Response.ok(book) method builds an ok response of the type MediaType.
APPLICATION_XML_TYPE

Other supported media types @Produces and @Consumes are "text/xml", "text/
html", "application/json", and so on.

If there is no media type specified in the @Produces or @Consumes annotations,
support for any media type is assumed by default.

Chapter 1

[15]

Here is a snippet of code that shows the @DELETE annotation.

@DELETE
@Path("/{isbn}")
public Book deleteBook(@PathParam("isbn")String isbn) {
 return BooksCollection.deleteBook(isbn);
}

The @PathParam annotation allows you to map the URI path fragments in the
method call. In this example, the isbn URI parameter is passed to provide
information about the book.

The ISBN uniquely identifies the Book resource so that it can be deleted.

The following table summarizes important JAX-RS 2.0 annotations included in
Java EE 7 and used throughout this book.

Annotation Description
@Path To annotate a POJO with the resource path it represents.

For example, @Path("books") or to annotate a subresource
that is a method in the annotated class.

@Produces To specify the output type that the resource produces, or in a
narrower scope the type of output that a method in a resource
produces. For example:
@Produces(MediaType.APPLICATION_JSON).

@Consumes To specify the type of input that the resource consumes,
or in a narrower scope the type of input that a method in
a resource consumes. For example:
@Consumes (MediaType.APPLICATION_JSON).

@GET, @POST, @DELETE,
and so on

To map the HTTP methods to methods in the resource
representing class. For example, @GET can be placed on
getBook method.

@PathParam To specify the mapping between query parameter names and
method. For example:
getBook(@PathParam("isbn") String isbn).

@ApplicationPath Identifies the application path that serves as the base URI
for all resource URIs provided by path. For example, @
ApplicationPath("library") for the library application.

@Context Can be used to inject contextual objects such as UriInfo,
which provides contextual request-specific information about
the request URI. For example:
getBook(@Context UriInfo uriInfo,

Building RESTful Web Services Using JAX-RS

[16]

Chapter 5, RESTful Web Services by Example, covers the different JAX-RS APIs
in detail and ties them together with other Java EE APIs to build a real-world
library application.

The Client API for JAX-RS
JAX-RS 2.0 provides a rich client API to access the web resources. Here is the code on
how to use the client API for the BooksResource we built earlier:

Client client = ClientBuilder.newClient();
WebTarget target = client.target(URI);

The default instance of the javax.ws.rs.client.Client object can be obtained
using the ClientBuilder.newClient() API. The BooksResource can be identified
by URI. The WebTarget object is used to build the URI.

String book = target.request().get(String.class);

The target.request().get(String.class) method builds an HTTP GET request
and gets an object of type String in the response. More samples of the client API
with other verbs are shown in the next section.

Entities in JAX-RS
The main part of an HTTP interaction consists of the request and response entities.
Entities are also referred to as the payload or message body in some contexts.

Entities are sent via a request, usually an HTTP POST and PUT method is used,
or they are returned in a response, this is relevant for all the HTTP methods.
The Content-Type HTTP header is used to indicate the type of entity being
sent. Common content types are "text/plain", "text/xml", "text/html",
and "application/json".

Media types are used in the Accept header to indicate what type of resource
representation the client wants to receive.

The following snippet shows how to use the client API to create a POST request.
This invocation takes an entity for a user-defined class Book and a MediaType.
APPLICATION_XML_TYPE parameter.

Here is the client code to invoke the POST method:

Response response = target.request()
post(Entity.entity(new Book("Getting Started with RESTful Web
 Services","111334444","Enterprise Applications"),
 MediaType.APPLICATION_XML_TYPE));

Chapter 1

[17]

In the preceding snippet, the WebTarget#request() method returns a
Response object.

Here is the client API code to invoke the delete method:

response = target.path("111334444")
request(MediaType.APPLICATION_XML_TYPE)
.delete();

The next section will show how the entity providers that implement the JAX-RS API
map to and from Java types request and response entities.

Custom entity providers in JAX-RS
JAX-RS enables developers to add custom entity providers to the application.
The custom entity providers can be used for dealing with user-defined classes
in the requests as well as responses.

Adding a custom entity provider provides a way to deserialize user-defined classes
from the message bodies and serialize any media type to your user specific class.

There are two types of entity providers:

•	 MessageBodyReader

•	 MessageBodyWriter

Using the @Provider annotation, application-specific provider classes can be
discovered. Entity providers provide mapping between the representation and
associated type. There is a sample included with the book that demonstrates
the use of entity providers.

MessageBodyReader
An application can provide an implementation of the MessageBodyReader interface
by implementing the isReadable() method and the readFrom() method to map the
entity to the desired Java type.

Building RESTful Web Services Using JAX-RS

[18]

The following figure shows how the MessageBodyReader reads an InputStream
object and converts it to a user-defined Java object.

InputStream MessageBodyReader Book

Application
Objects

The following code shows how to provide an implementation of MessageBodyReader
and uses Java Architecture for XML Binding (JAXB) with JAX-RS. JAXB provides a
fast and convenient way to bind XML schemas and Java representations, making it
easy for Java developers to incorporate the XML data and processing functions in Java
applications. As a part of this process, JAXB provides methods for unmarshalling
(reading) XML instance documents into Java content trees, and then marshalling
(writing) Java content trees back into XML instance documents.

Here is a JAXB root element called Book. Book has properties such as name and ISBN.

@XmlRootElement
public class Book {
 public String name;
 public String isbn;
 public String getName() {
 return name;
 }
 public String getIsbn() {
 return isbn;
 }
 public Book(String name, String isbn) {
 this.name=name;
 this.isbn=isbn;
 }
 //JAXB requires this
 public Book() {

 }
}

The MessageBodyReader implementation class can provide support to read from an
inputStream object and convert to the Book object. The following table shows the
methods that need to be implemented:

Chapter 1

[19]

Method of MessageBodyReader Description
isReadable() To check if the MessageBodyReader class can

support conversion from stream to Java type.
readFrom() To read a type from the InputStream.

Here is the code for SampleMessageBodyReader class that is the implementation of
the MessageBodyReader interface:

@Provider
public class SampleMessageBodyReader implements
MessageBodyReader<Book> {
}

The @Provider annotation indicates that this is a provider and the implementing
class can also use @Produces and @Consumes annotations to restrict the media types
they support.

Here is the implementation of isReadable() method:

public boolean isReadable(Class<?> aClass, Type type, Annotation[]
 annotations, MediaType mediaType) {
 return true;
}

The isReadable() method returns true to indicate that this
SampleMessageBodyReader class can process the mediaType parameter.

This is an implementation of the readFrom() method of the
SampleMessageBodyReader class. The mediaType parameter
can be checked here and different actions can be taken based
on the media type.

public Book readFrom(Class<Book> bookClass, Type type,
 Annotation[] annotations,
MediaType mediaType,
MultivaluedMap<String, String> stringStringMultivaluedMap,
InputStream inputStream) throws IOException,
 WebApplicationException {
 try {

 Book book = (Book)unmarshaller.unmarshal(inputStream) ;
 return book;
 } catch (JAXBException e) {
 e.printStackTrace();
 }

Building RESTful Web Services Using JAX-RS

[20]

 return null;
 }
}

The book object, which is the method's return value, is then unmarshalled using
JAXB Unmarshaller using the provided inputStream object as the parameter.

MessageBodyWriter
The MessageBodyWriter interface represents a contract for a provider that supports
the conversion from a Java type to a stream.

The following figure shows how MessageBodyWriter can take a user-defined class,
Book, and marshal it to an outputStream object.

OutputStreamMessageBodyWriterBook

Application
Objects

The following table shows the methods of MessageBodyWriter that must be
implemented along with a short description of each of its method.

Method of MessageBodyWriter Description
isWritable() To check if the MessageBodyWriter class can

support the conversion from the specified Java type.

getSize() To check the length of bytes if the size is known or -1.

writeTo() To write from a type to the stream.

Here are the methods of the MessageBodyWriter interface that need to
be implemented:

public boolean isWriteable(Class<?> aClass, Type type,
 Annotation[] annotations, MediaType mediaType) {
 return true;
}

Chapter 1

[21]

The isWritable()method of the MessageBodyWriter interface can be customized to
check if this implementation of MessageBodyWriter supports the type or not.

 public long getSize(Book book, Class<?> aClass, Type type,
Annotation[] annotations, MediaType mediaType) {
 return -1;
 }

The getSize() method is called before the writeTo() method to ascertain the
length of bytes in the response.

public void writeTo(Book book,
Class<?> aClass,
Type type, Annotation[] annotations,
MediaType mediaType,
MultivaluedMap<String, Object> map,
OutputStream outputStream) throws
IOException, WebApplicationException {
 try {

 Marshaller marshaller = jaxbContext.createMarshaller();
 marshaller.marshal(book, outputStream);
 } catch (Exception e) {
 e.printStackTrace();
 }
}

The writeTo() method marshals the Book to the Outputstream.

Tips for debugging errors with MessageBodyReader
and MessageBodyWriter:

•	 Look for the @Provider annotation. MessageBodyReader
implementation class and MessageBodyWriter implementation
class need the @Provider annotation.

•	 Confirm if the implementation classes of MessageBodyReader
and MessageBodyWriter interfaces are added in the
getClasses() method of the Application subclass.

•	 Check if the implementation of MessageBodyReader.
isReadable() method returns true.

•	 Check if the implementation of MessageBodyWriter.
isWritable() method returns true.

•	 Confirm the MessageBodyWriter.getSize() method is -1 if
the size of response is unknown or set it to the right value if the
size is known.

Building RESTful Web Services Using JAX-RS

[22]

This is how the client looks:

Client client = ClientBuilder.newClient();
client.register(MessageBodyReaderWriter.class).register
 (BooksResource.class);
Response response = target
.request()
.post(Entity.entity(new Book("Getting Started with RESTful Web
 Services","13332233"), MediaType.APPLICATION_XML_TYPE));

Book = response.readEntity(Book.class);

The client.register() method is used to register the MessageBodyReaderWriter.
class and BooksResource.class.

The application class, Book is extracted from the response using response.
readEntity(Book.class).

Using the Bean Validation API with JAX-RS
Validation is the process of verifying that the given inputs are complying with the
defined constraints. The Bean Validation specification defines the API to validate
JavaBeans. This section shows how to validate the JAX-RS 2.0 resources using the
Bean Validation API.

Validation can be used to ensure that fields in the JAX-RS resources follow certain
constraints. For example, to check that a field is not null or if the ISBN follows a
pattern. Using Bean Validation, a user can write custom validators and annotate the
JAX-RS resources and their components using the custom validators.

The sample included along with the book will show how to use Bean Validation with
JAX-RS 2.0 resources.

Here is a code snippet showing how to enforce validation along with defining a
constraint and adding a user-defined message to it:

@Path("books")
@ValidateOnExecution(ExecutableType.GETTER_METHODS)
public class BooksResource {

 @GET
 @Path("{isbn}")
 @Consumes(MediaType.APPLICATION_XML)
 @Produces(MediaType.APPLICATION_XML)
 @NotNull(message="Book does not exist for the

Chapter 1

[23]

 ISBN requested")
 public Book getBook(
 @PathParam("isbn")String isbn) {
 return BooksCollection.getBook(isbn);

 }
}

The @ValidateOnExecution annotation can be used to selectively enable and disable
the validation. In this snippet, the getBook() method gets validated because the @
ValidateOnExecution annotation enables the validation for the ExecutableType.
GETTER_METHODS value.

When the sample code is executed, if the book value is not null then, the book object
is returned. If the book value is null, there is a validation error with a message shown
on the screen as "Book does not exist for the ISBN requested". This is the
message that is provided with the @NotNull annotation shown previously.

Enabling validation in the application
Getting validation errors from the response is not enabled by default. The sample
included in the book will demonstrate how to get the validation errors from the
response. The user needs to set BV_SEND_ERROR_IN_RESPONSE property to Boolean
value true using Application class by overriding the getProperties() method.

Here is the getProperties() method of the Application subclass.

@override
public Map<String,Object> getProperties() {
 Map<String,Object> properties = new HashMap<String,Object>() ;
 properties.put(ServerProperties.BV_SEND_ERROR_IN_RESPONSE,
 true);
 return properties;
}

The getProperties() method returns the Map<String,Object> object with the
String property ServerProperties.BV_SEND_ERROR_IN_RESPONSE set to the
Boolean value true.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Building RESTful Web Services Using JAX-RS

[24]

Reading validation errors from the response
After the application class is configured to set the String property
ServerProperties.BV_SEND_ERROR_IN_RESPONSE to the Boolean value true,
the following code in the servlet class will read the validation errors from
the response.

This is how the code looks on the client side:

List<ValidationError> errors = response.readEntity(new
 GenericType<List<ValidationError>>() {});

The response.readEntity() method takes a list of GenericType<ValidationError>
parameters. From the List<ValidationError> errors, returned by the response.
readEntity() method, we can extract the validation error and get the validation
message. On running the sample, the following message will be shown:

"There was 1 error when validating the request

Book does not exist for the ISBN requested"

Summary
This chapter started with a brief introduction to REST and the key principles of
RESTful Web Services development, followed by converting a POJO to a JAX-RS
resource, a RESTful endpoint along with discussing different HTTP verbs and
their use.

After the introduction, the chapter dives deeper into the JAX-RS API by introducing
the client API to send requests to the resources developed using the JAX-RS APIs.
We also covered customizing the entity providers to produce different output
formats using MessageBodyReader and MessageBodyWriters. We learned how to
validate JAX-RS 2.0 resources using Bean Validation.

In the next chapter, we will cover the different polling techniques, compare and
contrast them with Server-sent events (SSE) and WebSockets, followed by a closer
look at how Java EE 7 provides support for SSE and WebSockets.

WebSockets and
Server-sent Events

With the advancements in web architecture and emerging platforms, which can
provide real-time or near real-time information, the necessity of having an effective
way of communicating these updates to clients caused the urge of introducing
new programming models and new standards that make use of this real-time
information easier for the consumer side of the system, also known as clients
(mostly web browsers).

In this chapter we will cover the following topics:

•	 The programming models and solutions that can be used to address
near real-time update transfer to clients

•	 Using Server-sent Events (SSE)
•	 Using WebSockets

Different snippets are included in this chapter but complete samples which
shows these snippet in actions are included as part of the book's source code
download bundle.

The programming models
In this section we will cover the different programming models that emerged to
address the near real-time updating of the client view based on the updates that
are produced by the server.

WebSockets and Server-sent Events

[26]

Polling
As mentioned before, HTTP, which is the foundation of communication over the
Internet, uses a simple request/response model in which a request either timeouts
or get a response back from the server. The response can be the actual response
the request was intended for or it can be an error message, underneath one of the
standard error status codes. The client always initiates the communication; the server
cannot initiate a communication channel without receiving a request from a client to
send back a response.

So, basically, to update the client it is required to check for the new updates on the
server and if an update is available the client can react to the update and, for example,
change a text to denote that a book that was not available is available for borrowing
now or a show a new image, or to perform any other action that maps to the response
received from the server.

Sending periodical requests to a server to check for updates is called polling. It does
not scale to hundreds of thousands of clients and thus it cannot be an effective
programming model to handle the massive client numbers of today's applications.
In the polling model the response does not necessarily includes updates generated in
the server but rather it may just be a 200 OK response without any particular updates
for the client to use. In this model, tens of requests may receive nothing but 200 OK
without any meaningful update for the client, which means these tens wasted the
resources in vain. Of course, this model is useful if the number of clients is limited and
if severe compatibility issues exist that prevent the clients to update to newer versions,
for example, very old browsers. The following diagram shows the polling model:

Continues Polling

Client

request (client_id)

response 200 ok : empty

request (client_id)

response 200 ok : some message body

repetition of request response

Server

......

The polling-based model is enriched with JavaScript in the client side; the browsers,
to update the view without changing the page and thus list available books in a
library application, can change without the user refreshing the page. The following
code snippet shows the server side of a polling pair written in Java:

public class PollingServlet extends HttpServlet {

 @Override

Chapter 2

[27]

 protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
 response.setContentType("text/plain");
 response.setCharacterEncoding("UTF-8");
 response.getWriter().write((new Date()).toString());
 }
}

The preceding sample does not use JSON for data format or any of the new Async
functionalities introduced in Java EE 7 and Servlet 3.1 which are discussed in Chapter
3, Understanding WebSockets and Server-sent Events in Detail and Chapter 4, JSON and
Asynchronous Processing, but rather shows how the basics work. The Servlet writes
the current date on the response for any GET request. The servlet is mapped to
PollingServlet path in the web.xml file.

The following code snippet shows how we can use JavaScript to perform a request in
the background, get the response, and update content of a div element of the HTML
page by manipulating the equivalent DOM tree element.

 <html>
 <head>
 <title>Ajax Continues Polling</title>
 <script>
 function startUpdating() {
 req = new XMLHttpRequest();
 req.onreadystatechange = function() {updateDiv();};
 req.open("GET", "/PollingServlet", true);
 req.send(null);
 results = req.responseText;
 }

 function updateDiv(){
 results = req.responseText;
 document.getElementById("dateDiv").innerHTML = results;
 setTimeout("startUpdating()", 5000);
 }
 </script>
 </head>
 <body onload="startUpdating()">
 <p>polling the time from server:</p>
 <div id="dateDiv"></div>
 </body>
</html>

WebSockets and Server-sent Events

[28]

The HTML page in the preceding snippet is the simplest possible form; it does not
check whether the response for each request is OK neither does it check whether the
code is being executed in IE or a non-IE browser for the sake of simplicity.

Now, the startUpdating function is invoked when the page is loaded, the function
sends a request to the Servlet shown before and invokes the updateDiv function to
update the GUI and then schedule another invocation of it after 5 seconds.

The limitations of the polling model can be summarized as follows:

•	 It is the client that performs polling and there is no service pushing involved
•	 It is resource-consuming as many requests will result in a response that does

not have any effective update for the client
•	 Long intervals between requests may yield an outdated client view while

short intervals overload the servers

Long polling
With the limitation of the polling model in mind, a new programming model
emerged in which a request either timeouts or carries back useful updates to the
client. In this model a request is sent to the server and the request is set to a timeout
after a very long time so that the cost of handshake and request initiation reduces
as much as possible by a reduction in the number of requests and responses in a
fixed period of time. A response is only sent back if there are some updates in the
server, which the client should receive. When such an update becomes available in
the server, the server sends back the response with the update and client initiates
another request after consuming the update it received. The benefit of this model
is fewer numbers of requests compared to polling, which reduces the resource
consumption and increases the scalability. The following diagram shows the
long polling model.

Long Pulling

Client Server
request (client_id)

............response
200 ok : with some body

request (client_id)
............response

200 ok : with some message body

Chapter 2

[29]

Long polling clients and XMLHttpRequest
The XMLHttpRequest object is available as part of the JavaScript in-browser API
to facilitate the interaction of the JavaScript part of a web page with the web server.
It can be used to send a request to the server and receive the response without
refreshing the page after the page is loaded; for example, to update the list of
available books after the available.html page is loaded.

The functionality of the XMLHttpRequest object is categorized in events, methods,
and properties. The important properties, events, and important methods are
discussed shortly.

The values of properties change when an event is fired and when methods are
invocated. Checking the property values makes it possible to evaluate the current
state of the XMLHttpRequest object or to handle the response.

•	 readyState: Stores the current state of the ongoing request. The table
after the list shows different values of the readyState attribute.

•	 responseText: Returns the response text.
•	 responseXML: Returns a DOM object representing the response data.

The assumption is that the response text is a valid XML document.
The XML document can be traversed using standard DOM
parser methods.

•	 status: Shows the status code of the request; for example, 200, 404,
and so on.

•	 statusText: Human readable text equivalent of request status code.
For example "OK", "Not Found", and so on.

The readyState value and
textual equivalent

Description

0 (UNINITIALIZED) The XMLHttpRequest object is created, but not opened.
1 (LOADING) The XMLHttpRequest object is created, the open

method is called but no request is sent.
2 (LOADED) The send method is called, no response yet.
3 (INTERACTIVE) The send method is called, some data was received but

the response is not concluded yet.
4 (COMPLETED) Response is concluded and the entire message

is received. Message content is available in the
responseBody and responseText properties.

WebSockets and Server-sent Events

[30]

Each event can have an associated method, which is invoked when the event is fired.
The sample code afterward shows how these events can be used.

•	 onreadystatechange: This event is fired when the state of a request
initiated by this XMLHttpRequest instance is changed. The state change
is communicated via the readyState property.

•	 ontimeout: This event is fired when a request initiated with this
XMLHttpRequest instance is timed out.

After invocation of each method the value of the relevant properties will change.

•	 abort: This aborts the current request of the XMLHttpRequest
instance. The readyState value is set to 0.

•	 open: This prepares a request by setting the method, URL and
security credentials.

•	 send: This sends the request that is prepared by the open method.

Chunked transfer encoding
Another possible way of using the long polling model is to use the message body
streaming to send chunks of data and update events, when those chunks are available
in the server and ready to be consumed by the developer. In the message body
streaming model the server does not close the response but rather keeps it open and
sends the update events to client as they are produced in the server. The message body
streaming involves using the chunked transfer encoding which is a HTTP/1.1 feature.

The chunked transfer encoding can be used to send many chunks of data as part of the
response body, which is opened as a stream. The chunks can be JavaScript tags which
are loaded in the hidden iframe and executed in the order of arrival. The execution
of arriving scripts can cause the view to update or to trigger any other action that is
required. The following diagram shows the long polling in action.

Long Pulling (chunked encoding)

Client Server
request (client_id)

200 ok : response closes.

chunk of response
(a JavaScript tag)

Chapter 2

[31]

In the preceding diagram the client sent a request along with the client_id value
to the server and the server started sending chunks of responses when some updates
are available to be sent to the client. The updates are sent as JavaScript tags which are
then executed in the client's browser to update the GUI.

The limitations of the long polling model can be summarized as follows:

•	 One-way communication
•	 No standard data format or message format when used in chunked

transfer encoding mode
•	 One response per request when no iframe technique is used
•	 Each connection initiation has an initiation cost
•	 No caching between the clients and server, which impacts server

performance instead of reading content from the cache

Emerging standards
With the emergence of requirements and solutions for those requirements,
standards emerged to ensure compatibility between different the layers,
applications, and components that form a solution; asynchronous communication,
and especially event propagation between clients and servers, is one.

Server-sent Events
Server-sent Events (SSE), or sometimes simply referred to as EventSource, is an
HTML5 browser API that makes event pushing between server and client available
to web application developers. The SSE component provides a structured mechanism
for having a capability similar to long polling without some of the long polling
drawbacks. As it is an HTML5 component, the browser should support HTML5 SSE
to be able to take advantage of this API.

The SSE kernel includes EventSource and Event.

EventSource is the API that provides the client with the means of subscribing to
an event source, which can be a Servlet or anything of that sort. After subscription,
which is nothing more than opening the connection to the URL, events are sent to
the client in the order that they are produced and in the client the event listener
can react to the events, for example by updating a chat window, changing a graph,
or updating the list of available books to borrow or list people that are interested in
the subject that the event URL is meant for.

WebSockets and Server-sent Events

[32]

The SSE anatomy
Before we go deep into the API and see how the API works, it is good to look more
closely at the characteristics of SSE and how SSE works. The following diagram shows
SSE in action, which closely resembles the chunked encoding diagram shown in the
preceding section. The question may a rise: what makes SSE better than long polling if
both of them work similarly when it comes to request, response, and message content?

Client Server
request (id)

Structured response messages

With SSE the events are plain text messages sent from the server to the clients after
the client opens the initial request meaning that it does not require to be a collection
of JavaScript tags that need to be executed in the client side to update something but
rather it can be data that can be consumed in the client side by the event listener and
event listener can interpret and react to the received event.

The second difference is the message format; SSE defines a message format for the
events that are sent from the server to the clients. The message format is composed of
a plain text line-separated stream of characters. Lines that carry the message body or
data start with data: and lines that carry some Quality of Service (QoS) directives
start with the QoS attribute name followed by a colon and then the QoS attribute's
value, directive: value. The standard format makes it possible to develop generic
libraries around SSE to make software development easier. The following snippet
shows a sample message that can indicate a new dot in a graph. When the client
receives the message it can draw the new dot on the graph to show a change in
the data the graph is being constructed from. The following sample data shows a
multiline message in which each line is separated from the next using \n and end
of message is marked with \n\n.

data: Position: 75,55\n\n
data: Label: Large increase\n\n
data: Color: red\n\n

Chapter 2

[33]

It is possible to develop the server component of a SSE solution using a servlet and
the client side can be developed using either JavaScript or Java API. The Java API
to consume SSE events is part of the Java EE 7 provided by means of JAX-RS 2.0.
The next two sections go into details of the client side API and also the server side
component of the solution, which is a servlet.

As mentioned earlier, in addition to the actual message or message body each SSE
message can carry some directive, which instructs the browser or SSE-compatible
client on some of the QoS attributes of the interaction. Some of these QoS directives
are discussed next.

The reference implementation of JAX-RS 2.0 is done under the Jersey 2.0
project. The Jersey project is located at http://jersey.java.net/
with extensive documentation.

Associating an ID with an event
Each SSE message can have a message identifier, which can be used for a variety of
purposes; one use of the message ID standard usage is to keep track of the messages
that the client has received. When a message ID is used in SSE, the client can supply
the last message ID as one of the connection parameters to instruct the server to
resume form and specific message onward. Of course the server should implement
proper the procedure for resuming a communication from where a client requests it.

An example message format with message ID can be as shown in the following
code snippet:

id: 123 \n
data: single line data \n\n

Connection loss and reconnecting retries
Browsers that support SSE, which are listed early in this section, can try reconnecting
to the server in case the connection between browser and server is severed. The default
retry interval is 3000 milliseconds but it can be adjusted by including the retry
directive in the messages that the server sends to the client. For example, to increase
the retry interval to 5000 milliseconds the SSE message that the server sends can be
similar to the following code snippet:

retry: 5000\n
data: This is a single line data\n\n

WebSockets and Server-sent Events

[34]

Associating event names with events
Another SSE directive is the event name. Each event source can generate more than
one type of event and the client can decide how to consume each event type based
on what event type it subscribes to. The following snippet shows how event name
directives incorporate into the message:

event: bookavailable\n
data: {"name" : "Developing RESTful Services with JAX-RS 2.0,
WebSockets and JSON"}\n\n
event: newbookadded\n
data: {"name" :"Netbeans IDE7 Cookbook"}\n\n

Server-sent Events and JavaScript
The major SSE API that is considered the foundation of SSE in the client side for
JavaScript developers is the EventSource interface. The EventSource interface
contains a fair number of functions and attributes but the most important ones
are listed as follows:

•	 The addEventListener function: To add an event listener to handle
the incoming events based on event type.

•	 The removeEventListener event function: To remove an already
registered listener.

•	 The onmessage event function: It is invoked on message arrival. There is
no custom event handling available when using the onmessage method.
Listeners manage the custom event handling.

•	 The onerror event function: It is invoked when something goes wrong
with the connection.

•	 The onopen event function: It is invoked when a connection is opened.
•	 The close function: It is invoked when a connection is closed.

The following snippet shows how to subscribe for different event types omitted by
one source. The snippet assumes that the incoming messages are JSON-formatted
messages. The 'bookavailable' listener uses a simple JSON parser to parse the
incoming JSON and then will use that to update the GUI while the 'newbookadded'
listener uses the reviver function to filter out and selectively process the JSON pairs.

var source = new EventSource('books');
source.addEventListener('bookavailable', function(e) {
 var data = JSON.parse(e.data);
 // use data to update some GUI element...
}, false);

Chapter 2

[35]

source.addEventListener('newbookadded', function(e) {
 var data = JSON.parse(e.data, function (key, value) {
 var type;
 if (value && typeof value === 'string') {
return "String value is: "+value;
 }
 return value;
});
}, false);

Before we move to WebSockets as another emerging technology let's take a look at
the following paired server and client, which are written as a Java EE Servlet and
JavaScript to see how SSE works:

Servlet's processRequest function look like the following snippet:

 protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/event-stream");
 response.setCharacterEncoding("utf-8");

 PrintWriter out = response.getWriter();
 while(true){
 Date serverDate = new Date();
 out.write("event:server-time\n");
 out.write("data:Current Server Time is:" +
serverDate.toString() +"\n\n");
 out.flush();
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

WebSockets and Server-sent Events

[36]

The preceding Servlet writes out the current date every one second and, if the
browser hits the Servlet's URL, the output should be similar to the following figure.

And the JSP page in the same web application look like the following:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
 <head>
 <title>JSP Page With SSE EventSource</title>
 <script type="text/JavaScript">
 function startSSEConnection(){
 var source = new EventSource('SimpleDateServlet');
 source.addEventListener("server-time", function(event){
 document.getElementById("server-time").innerHTML=event.data;
 },false);
 }

 </script>

 </script>
 </head>
 <body onload="startSSEConnection();">
 <div id="server-time">[Server-Time]</div>
 </body>
</html>

Chapter 2

[37]

Checking the JSP page's URL will show an output similar to the following
screenshot. As you can see, the Servlet's output messages are shown with
formatting as it is specified in the JavaScript code in the JSP page:

More complete and advanced examples are included in Chapter 3, Understanding
WebSockets and Server-sent Events in Detail and Chapter 5, RESTful Web Services by
Example. The complete code for the preceding example is included in the book's
code bundle.

WebSockets
The WebSockets component of HTML5 adds a brand new method for interaction
between clients and servers to address the scalability and flexibility required
for modern web-scale applications by introducing a full duplex event-based
communication channel between clients and servers. After being initiated by the
client, the server can send binary and textual data concerning the client over the
channel and the client can, without reinitiating a connection, send messages to the
server. The event source and event subscription model discussed in the Server-sent
Events section is available in WebSockets as well.

WebSocket handshake
There is an optional handshake request-response devised to let the applications
switch to WebSockets when required. In a sample scenario shown below, the client
requests the protocol upgrade to WebSockets by sending the upgrade request header
to the server. If the server supports the upgrade the response will include the
protocol upgrade as shown afterward.

WebSockets and Server-sent Events

[38]

The client request to upgrade to WebSockets looks as shown in the following
code snippet:

GET /demo HTTP/1.1
Host: mybookstoresample.com
Connection: Upgrade
Upgrade: WebSocket
Origin: http://mybookstoresample.com

And the server response handshake can look as shown in the following snippet:

 HTTP/1.1 101 WebSocket Protocol Handshake
 Upgrade: WebSocket
 Connection: Upgrade

After the handshake is completed the communication between the client and server
occurs over a bidirectional socket. The WebSockets wire level communication protocol
is different than HTTP wire protocol and because of that it is possible that intermediate
servers like proxy servers or cache servers are not capable or intercepting and
processing the WebSockets messages as they do with HTTP messages.

In Chapter 3, Understanding WebSockets and Server-sent Events in Detail in
the WebSockets section you can learn more details on the WebSockets
client and server implementation along with details on protocol
upgrade. Chapter 5, RESTful Web Services by Example, includes complete
sample applications that further dive into using WebSockets.

Browser and JavaScript support for WebSockets
New versions of major web browsers support WebSockets and using WebSockets in
the client side just involves creating a WebSockets object and then setting different
listeners and event handlers for different events. The following list shows the
important functions and attributes of the WebSocket class:

•	 The constructor: To initialize the WebSocket object, the resource URL is
enough to be passed to the WebSocket constructor

•	 The send function: The send function can be used to send a message to the
server's specified URL during the object construction.

•	 The onopen event function: This function is invoked when the connection is
created. The onopen handles the open event type.

•	 The onclose event function: The function is invoked when the connection is
being closed. The onclose handles the close event type.

Chapter 2

[39]

•	 The onmessage event function: When a new message arrives, the onmessage
function is invoked to handle the message event.

•	 The onerror event function: The function is invoked to handle the error
event when an error in the communication channel occurs.

•	 The close function: To close the communication socket and end the
interaction between the client and the server.

A very basic example of using the JavaScript WebSocket API is shown below:

//Constructionof the WebSocket object
var websocket = new WebSocket("books");
//Setting the message event Function
websocket.onmessage = function(evt) { onMessageFunc(evt) };
//onMessageFunc which when a message arrives is invoked.
function onMessageFunc (evt) {
//Perform some GUI update depending the message content
}
//Sending a message to the server
websocket.send("books.selected.id=1020");
//Setting an event listener for the event type "open".
addEventListener('open', function(e){
 onOpenFunc(evt)});

//Close the connection.
websocket.close();

An example server-side component, a WebSockets endpoint, is shown in the
following code snippet:

@ServerEndpoint(
decoders = BookDecoder.class,
encoders = BookEncoder.class,
path = "/books/")
public class BooksWebSocketsEndpoint {
@OnOpen
public void onOpen(Session session) {
 }

@OnMessage
public void bookReturned(Library.Book book, Session session) {

 }

@OnClose
public void onClose(Session session){
sessionToId.remove(session);
}
}

WebSockets and Server-sent Events

[40]

Details of how the implementation of a WebSockets endpoint looks is included in
Chapter 3, Understanding WebSockets and Server-sent Events in Detail and Chapter 5,
RESTful Web Services by Example.

Java EE and the emerging standards
Java EE has always been an adopter of emerging standards and features and
capabilities, which were required by the Java EE community. Starting from Java EE 6,
Java EE spec leads focused their attention on the emerging standards and in Java EE
7 full support for HTML5, SSE and WebSockets is included in the spec; thus any Java
EE application server can host a WebSockets, SSE, and HTML5-oriented application
without any compatibility issue at the server side.

Java EE and Server-sent Events
For the SSE, which is an HTML5 browser API component, the server side can be a
Servlet that produces SSE messages according to the SSE message format or it can be a
SSE resource which is POJO annotated with @Path. In the client side, JavaScript can be
used as the standard in-browser API to consume the SSE events or it can be developed
using the SSE client side API introduced in Jersey 2.0 if a Java-based client is required.

The following table shows the important classes and interfaces that are entry points
to SSE APIs included in Jersey 2.0:

Class Description
Broadcaster Used for broadcasting SSE to multiple EventChannel instances.
OutboundEvent This is the outgoing event class to send the Server-sent Events.

An OutboundEvent can have id, name, date, and comment
associated with it.

EventChannel This is the outgoing event message channel. When returned from
resource method, the underlying connection is kept open and
the application is able to send events. One instance of this class
corresponds with exactly one HTTP connection.

EventSource This is the client for reading and processing Server-sent
InboundEvents

InboundEvent This represents an incoming event.
ClientFactory This is the main entry point to the client API used to bootstrap

client instances. For example:
Client client = ClientFactory.newClient();
WebTarget webTarget= client.target(new
URI(TARGET_URI)) ;

Chapter 2

[41]

Class Description
Client Client is the main entry point to the fluent API used to build and

execute client requests in order to consume responses returned.
Client client = ClientFactory.newClient();
WebTarget webTarget= client.target(new
URI(TARGET_URI)) ;

ResourceConfig This encapsulates the configuration for configuring a
web application.

The following table shows important annotations included in Java EE 7 and used
throughout this book for developing SSE applications:

Annotation Description
@Path To annotate a POJO with the resource path it represent.

For example @Path("books") or to annotate a sub-resource
which is a method in the annotated class. For example getBook
with related parameters for that method along with validation
expression for the method parameters. For example:
@Path("{id: ^\d{9}[\d|X]$}")

getBook(@PathParam("id") String isbn10)

@Produces To specify the type of output that the resource produces or
in a narrower scope the type of output that a method in a
resource produces. For example: @Produces(MediaType.
APPLICATION_JSON)

@Consumes To specify the type of input that the resource consumes or
in a narrower scope the type of input that a method in a
resource consumes. For example: @Consumes (MediaType.
APPLICATION_JSON)

@GET
@POST
@DELETE

To map the HTTP methods to methods in the resource
representing class. For example @GET can be placed on the
getBook method

@PathParam To specify the mapping between the query parameter's name
and method. For example: getBook(@PathParam("id")
String isbn10)

@ApplicationPath Identifies the application path that serves as the base URI
for all resource URIs provided by @Path. For example,
@ApplicationPath("library") for the library application.

@Context This can be used to inject contextual objects such as UriInfo,
which provides contextual request-specific information about
the request URI. For example:
getBook(@Context UriInfo uriInfo)

WebSockets and Server-sent Events

[42]

Chapter 3, Understanding WebSockets and Server-sent Events in Detail, is dedicated to
annotations; it explains how to use these annotations and more advanced features of
Server-sent Events and Chapter 5, RESTful Web Services by Example, includes complete
examples of how Server-sent Events and WebSockets work in real use cases.

Java EE and WebSockets
In Java EE 7, there is a new JSR to support WebSockets in Java EE container. JSR-356
defines the requirements and the API that a Java EE application server provides to
develop WebSockets-based applications. The important annotations provided for
WebSockets development are included in the following table:

Annotation Description
@ClientEndpoint A class-level annotation that is used to denote that a POJO is

a WebSocket client for instructing the server to deploy it as a
managed component of that type.

@OnClose A method-level annotation to decorate a Java method that
requires to be called when a WebSocket session is closing.

@OnError A method-level annotation to decorate a Java method that
requires to be called in order to handle connection errors.

@OnMessage A method-level annotation to mark a Java method as
WebSocket message receiver.

@OnOpen A method level annotation to decorate a Java method that
should be called when a new WebSocket session is open.

@PathParam To specify the mapping between the query parameter's name
and method. For example:
getBook(@PathParam("id") String isbn10)

@ServerEndpoint A class-level annotation that declares the class it decorates is a
WebSocket endpoint that will be deployed and made available
in the URI-space of a WebSocket server. For example:
@ServerEndpoint("/books "); public class
Books {…}

Chapter 2

[43]

The following table shows the important classes and interfaces that are used
throughout the book when WebSockets is discussed:

Class Description
Encode(and
subintefaces and
subclasses)

Defines how to map a WebSocket message to a Java object.

Decoder(and
subintefaces and
subclasses)

Defines how to map a Java object to a WebSocket message.

Session A WebSocket session represents a conversation between two
WebSocket endpoints. As soon as the WebSocket handshake
completes successfully, the WebSocket implementation
provides the endpoint with an open WebSocket session.

Comparison and use cases of different
programming models and standards
The following table shows a comparison and conclusion of how the three major
techniques and standards described in this chapter compare to each other:

Subject SSE WebSockets Long polling
Error handling Build-in support

for error handling
Build-in support for
error handling

Almost no error
handling in
case of chunked
transfer

Performance Usually results
are better than
long polling
and inferior to
WebSockets

Best performance
result compared
to the other two
solutions

Small CPU
resource but
idle process/
thread per client
connection,
limits scalability
and extensive
memory usage

Browser support1,2 Firefox, Chrome,
Safari, Opera

For RFC 6455: IE 10,
Firefox 11, Chrome
16, Safari 6, Opera
12.10

All current
browsers support
this

WebSockets and Server-sent Events

[44]

Subject SSE WebSockets Long polling
Browser
performance

Built-in support
in browser,
small amount
of resources

Built-in support
in browser,
small amount
of resources

Complicated
to get the
performance right
specially with lots
of JavaScripts and
possible memory
leaks

Communication
channel

HTTP
unidirectional

WebSockets
bidirectional

HTTP
unidirectional

Implementation
complexity

Easy Requires server with
WebSockets support

Easiest

For more details visit http://en.wikipedia.org/wiki/WebSocket#Browser_
support and http://en.wikipedia.org/wiki/Server-sent_events#Web_
browsers.

Reading the Memory leak patterns in JavaScript article available at
http://www.ibm.com/developerworks/web/library/wa-
memleak/ is recommended to avoid JavaScript memory leaks pitfalls.

The following list shows which types of use case match with one of the programming
models and standards:

•	 Long polling: When compatibility is an issue and browsers are not up-to-date
(usually for enterprise users who stick with approved versions of software
for many years)

•	 SSE: When the communication is one way and server requires sending
events to browser so browser can update some GUI elements. It provides
error handling and structured message format advantage over long polling.
Sample use cases include:

°° A chart that updates in real-time
°° A newsreader that shows the latest headlines
°° Stock tickers reader

•	 WebSockets: When full duplex, bi-directional communication is required
between the client and the server. Some sample applications are as follows:

°° A chat application
°° A real-time interactive multiuser charting and drawing application
°° Multiuser browser-based games

Chapter 2

[45]

•	 WebSockets provide all benefits and advantages of SSE with some
disadvantages that are listed as follows:

°° The wire protocol is different so some intermediate servers,
such as proxy servers, may not be able to intercept and interpret
the messages.

°° If a browser does not support WebSockets there is no way to make
the browser handle the communication while in the case of SSE the
browser can use JavaScript libraries to handle SSE communication,
polyfilling the browser. For example, Remy Polyfill.

°° Lack of support for event ID.

A good write-up to further understand the Polifill can be found at
http://remysharp.com/2010/10/08/what-is-a-polyfill/.

Summary
This chapter was the opening door to the whole world of asynchronous Web by
introducing the fundamental concepts involving in web architecture and going
forward with the evolution of the basic request response model to polling, long
polling, Server-sent Event, and WebSockets.

In the next chapter WebSockets and Server-sent Events are covered in details.
Chapter 5, RESTful Web Services by Example, has complete sample application
developed using WebSockets and Server-sent Events.

Understanding WebSockets
and Server-sent Events

in Detail
WebSocket is one of the most promising features that HTML5 has to offer. As covered
in Chapter 2, WebSockets and Server-sent Events, the traditional request-response model
incurred an overhead due to the HTTP headers. With WebSockets, once the initial
handshake is done the client and server or peers can communicate directly without
the use of headers. This reduces the network latency and gives a reduction in HTTP
header traffic.

Chapter 2, WebSockets and Server-sent Events, also introduced Server-sent Events and
provides a comparison between SSE and WebSockets.

Server-sent Events define an API where the server communicates and pushes
events to the clients as they occur. It is a one-directional communication from the
server to the client and has more benefits as compared to traditional polling and
long polling techniques.

This chapter covers advanced concepts of WebSockets and Server-sent Events and
covers the following sections:

•	 Encoders and decoders in Java API for WebSockets
•	 Java WebSockets Client API
•	 Sending different types of data such as Blob and Binary using Java API

for WebSockets
•	 Security and WebSockets
•	 Best practices for WebSockets-based applications
•	 Developing Server-sent Events clients using Jersey API
•	 Best practices for Server-sent Events

Understanding WebSockets and Server-sent Events in Detail

[48]

Encoders and decoders in Java API
for WebSockets
As seen in the previous chapter, the class-level annotation @ServerEndpoint
indicates that a Java class is a WebSocket endpoint at runtime. The value attribute
is used to specify a URI mapping for the endpoint. Additionally the user can add
encoder and decoder attributes to encode application objects into WebSocket
messages and WebSocket messages into application objects.

The following table summarizes the @ServerEndpoint annotation and its attributes:

Annotation Attribute Description
@ServerEndpoint This class-level annotation signifies that the

Java class is a WebSockets server endpoint.

value The value is the URI with a leading '/.'

encoders Contains a list of Java classes that act as
encoders for the endpoint. The classes must
implement the Encoder interface.

decoders Contains a list of Java classes that act as
decoders for the endpoint. The classes must
implement the Decoder interface.

configurator The configurator attribute allows the
developer to plug in their implementation of
ServerEndpoint.Configurator that is
used when configuring the server endpoint.

subprotocols The sub protocols attribute contains a list of
sub protocols that the endpoint can support.

In this section we shall look at providing encoder and decoder implementations for
our WebSockets endpoint.

Application
Objects

Book Encoder
WebSocket
Message

WebSocket
Message Decoder Book

Application
Objects

Chapter 3

[49]

The preceding diagram shows how encoders will take an application object and
convert it to a WebSockets message. Decoders will take a WebSockets message
and convert to an application object. Here is a simple example where a client sends
a WebSockets message to a WebSockets java endpoint that is annotated with @
ServerEndpoint and decorated with encoder and decoder class. The decoder will
decode the WebSockets message and send back the same message to the client.
The encoder will convert the message to a WebSockets message. This sample is
also included in the code bundle for the book.

Here is the code to define ServerEndpoint with value for encoders and decoders:

@ServerEndpoint(value="/book", encoders={MyEncoder.class}, decoders =
{MyDecoder.class})
public class BookCollection {
 @OnMessage
 public void onMessage(Book book,Session session) {

 try {
session.getBasicRemote().sendObject(book);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 @OnOpen
 public void onOpen(Session session) {
 System.out.println("Opening socket" +session.
getBasicRemote());
 }

 @OnClose
 public void onClose(Session session) {
 System.out.println("Closing socket" + session.
getBasicRemote());
 }
}

In the preceding code snippet, you can see the class BookCollection is annotated
with @ServerEndpoint. The value=/book attribute provides URI mapping for
the endpoint. The @ServerEndpoint also takes the encoders and decoders to be
used during the WebSocket transmission. Once a WebSocket connection has been
established, a session is created and the method annotated with @OnOpen will be
called. When the WebSocket endpoint receives a message, the method annotated
with @OnMessage will be called. In our sample the method simply sends the book
object using the Session.getBasicRemote() which will get a reference to the
RemoteEndpoint and send the message synchronously.

Understanding WebSockets and Server-sent Events in Detail

[50]

Encoders can be used to convert a custom user-defined object in a text message,
TextStream, BinaryStream, or BinaryMessage format.

An implementation of an encoder class for text messages is as follows:

public class MyEncoder implements Encoder.Text<Book> {
 @Override

 public String encode(Book book) throws EncodeException {

 return book.getJson().toString();
 }
}

As shown in the preceding code, the encoder class implements Encoder.Text<Book>.
There is an encode method that is overridden and which converts a book and sends it
as a JSON string. (More on JSON APIs is covered in detail in the next chapter)

Decoders can be used to decode WebSockets messages in custom user-defined
objects. They can decode in text, TextStream, and binary or BinaryStream format.

Here is a code for a decoder class:

public class MyDecoder implements Decoder.Text<Book> {
 @Override

 public Book decode(String string) throws DecodeException {

 javax.json.JsonObject jsonObject = javax.json.Json.
createReader(new StringReader(string)).readObject();
 return new Book(jsonObject);
 }
 @Override
 public boolean willDecode(String string) {
 try {
 javax.json.Json.createReader(new StringReader(string)).
readObject();
 return true;
 } catch (Exception ex) { }
 return false;
 }

In the preceding code snippet, the Decoder.Text needs two methods to be
overridden. The willDecode() method checks if it can handle this object and
decode it. The decode() method decodes the string into an object of type Book
by using the JSON-P API javax.json.Json.createReader().

Chapter 3

[51]

The following code snippet shows the user-defined class Book:

public class Book {
 public Book() {}
 JsonObject jsonObject;
 public Book(JsonObject json) {
 this.jsonObject = json;
 }
 public JsonObject getJson() {
 return jsonObject;
 }
 public void setJson(JsonObject json) {
 this.jsonObject = json;
 }

 public Book(String message) {
 jsonObject = Json.createReader(new StringReader(message)).
readObject();
 }
 public String toString () {
 StringWriter writer = new StringWriter();
 Json.createWriter(writer).write(jsonObject);
 return writer.toString();
 }
}

The Book class is a user-defined class that takes the JSON object sent by the client.
Here is an example of how the JSON details are sent to the WebSockets endpoints
from JavaScript.

var json = JSON.stringify({
 "name": "Java 7 JAX-WS Web Services",
 "author":"Deepak Vohra",
 "isbn": "123456789"
 });
function addBook() {
 websocket.send(json);
 }

The client sends the message using websocket.send() which will cause the
onMessage() of the BookCollection.java to be invoked. The BookCollection.
java will return the same book to the client. In the process, the decoder will decode
the WebSockets message when it is received. To send back the same Book object,
first the encoder will encode the Book object to a WebSockets message and send it
to the client.

Understanding WebSockets and Server-sent Events in Detail

[52]

The Java WebSocket Client API
Chapter 2, WebSockets and Server-sent Events, covered the Java WebSockets client
API. Any POJO can be transformed into a WebSockets client by annotating it
with @ClientEndpoint.

Additionally the user can add encoders and decoders attributes to the
@ClientEndpoint annotation to encode application objects into WebSockets
messages and WebSockets messages into application objects.

The following table shows the @ClientEndpoint annotation and its attributes:

Annotation Attribute Description
@ClientEndpoint This class-level annotation signifies that the

Java class is a WebSockets client that will
connect to a WebSockets server endpoint.

value The value is the URI with a leading /.
encoders Contains a list of Java classes that act as

encoders for the endpoint. The classes must
implement the encoder interface.

decoders Contains a list of Java classes that act as
decoders for the endpoint. The classes must
implement the decoder interface.

configurator The configurator attribute allows the
developer to plug in their implementation of
ClientEndpoint.Configurator, which is
used when configuring the client endpoint.

subprotocols The sub protocols attribute contains a list of sub
protocols that the endpoint can support.

Sending different kinds of message
data: blob/binary
Using JavaScript we can traditionally send JSON or XML as strings.
However, HTML5 allows applications to work with binary data to
improve performance. WebSockets supports two kinds of binary data

•	 Binary Large Objects (blob)
•	 arraybuffer

A WebSocket can work with only one of the formats at any given time.

Chapter 3

[53]

Using the binaryType property of a WebSocket, you can switch between using
blob or arraybuffer:

websocket.binaryType = "blob";
// receive some blob data

websocket.binaryType = "arraybuffer";
// now receive ArrayBuffer data

The following code snippet shows how to display images sent by a server
using WebSockets.

Here is a code snippet for how to send binary data with WebSockets:

websocket.binaryType = 'arraybuffer';

The preceding code snippet sets the binaryType property of websocket
to arraybuffer.

websocket.onmessage = function(msg) {
 var arrayBuffer = msg.data;
 var bytes = new Uint8Array(arrayBuffer);

 var image = document.getElementById('image');
 image.src = 'data:image/png;base64,'+encode(bytes);
 }

When the onmessage is called the arrayBuffer is initialized to the message.data.
The Uint8Array type represents an array of 8-bit unsigned integers. The image.src
value is in line using the data URI scheme.

Security and WebSockets
WebSockets are secured using the web container security model. A WebSockets
developer can declare whether the access to the WebSocket server endpoint needs
to be authenticated, who can access it, or if it needs an encrypted connection.

A WebSockets endpoint which is mapped to a ws:// URI is protected under the
deployment descriptor with http:// URI with the same hostname,port path since
the initial handshake is from the HTTP connection. So, WebSockets developers can
assign an authentication scheme, user roles, and a transport guarantee to any
WebSockets endpoints.

We will take the same sample as we saw in Chapter 2, WebSockets and Server-sent
Events, and make it a secure WebSockets application.

Understanding WebSockets and Server-sent Events in Detail

[54]

Here is the web.xml for a secure WebSocket endpoint:

<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://
java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>BookCollection</web-resource-name>
 <url-pattern>/index.jsp</url-pattern>
 <http-method>PUT</http-method>
 <http-method>POST</http-method>
 <http-method>DELETE</http-method>
 <http-method>GET</http-method>
 </web-resource-collection>
 <user-data-constraint>
 <description>SSL</description>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
</web-app>

As you can see in the preceding snippet, we used <transport-
guarantee>CONFIDENTIAL</transport-guarantee>.

The Java EE specification followed by application servers provides different levels of
transport guarantee on the communication between clients and application server.
The three levels are:

•	 Data Confidentiality (CONFIDENTIAL): We use this level to guarantee that
all communication between client and server goes through the SSL layer and
connections won't be accepted over a non-secure channel.

•	 Data Integrity (INTEGRAL): We can use this level when a full encryption is
not required but we want our data to be transmitted to and from a client in
such a way that, if anyone changed the data, we could detect the change.

•	 Any type of connection (NONE): We can use this level to force the container
to accept connections on HTTP and HTTPs.

The following steps should be followed for setting up SSL and running our sample to
show a secure WebSockets application deployed in Glassfish.

1.	 Generate the server certificate:
keytool -genkey -alias server-alias -keyalg RSA -keypass changeit
--storepass changeit -keystore keystore.jks

Chapter 3

[55]

2.	 Export the generated server certificate in keystore.jks into the file
server.cer:
keytool -export -alias server-alias -storepass changeit -file
server.cer -keystore keystore.jks

3.	 Create the trust-store file cacerts.jks and add the server certificate to the
trust store:
keytool -import -v -trustcacerts -alias server-alias -file server.
cer -keystore cacerts.jks -keypass changeit -storepass changeit

4.	 Change the following JVM options so that they point to the location and
name of the new keystore. Add this in domain.xml under java-config:
<jvm-options>-Djavax.net.ssl.keyStore=${com.sun.aas.instanceRoot}/
config/keystore.jks</jvm-options>
 <jvm-options>-Djavax.net.ssl.trustStore=${com.sun.aas.
instanceRoot}/config/cacerts.jks</jvm-options>

5.	 Restart GlassFish. If you go to https://localhost:8181/helloworld-ws/,
you can see the secure WebSocket application.

6.	 Here is how the the headers look under Chrome Developer Tools:

7.	 Open Chrome Browser and click on View and then on Developer Tools.
8.	 Click on Network.
9.	 Select book under element name and click on Frames.

As you can see in the preceding screenshot, since the application is secured using SSL
the WebSockets URI, it also contains wss://, which means WebSockets over SSL.

Understanding WebSockets and Server-sent Events in Detail

[56]

So far we have seen the encoders and decoders for WebSockets messages. We also
covered how to send binary data using WebSockets. Additionally we have
demonstrated a sample on how to secure WebSockets based application. We shall
now cover the best practices for WebSocket based-applications.

Best practices for WebSockets based
applications
This section will cover best practices for WebSockets based applications. The
following topics will be covered:

•	 Throttling the rate of sending data
•	 Controlling the maximum size of the message
•	 Working with proxy servers and WebSockets

Throttling the rate of sending data
After the WebSocket connection is opened, messages can be sent using the
send function.

WebSockets have a bufferedAmount attribute that can be used to control the rate
of sending data. Using the bufferedAmount attribute you can check the number of
bytes that have been queued but not yet sent to the server.

Here is a snippet to test for the bufferedAmount attribute of WebSocket.

// This snippet checks for amount of data buffered but not sent yet
// in case it is less than a predefined THRESHOLD the webSocket
// can send the data

if (webSocket.bufferedAmount < THRESHOLD)
 webSocket.send(someData);
};

This can be done periodically using the setInterval function. As you can see,
the developer can periodically check for the bufferedAmount attribute to see if the
number of bytes in the queue to be sent to the server exceeds some threshold. In that
case it should delay sending messages. Once the buffered amount is less than the
threshold it should send more messages.

This is a good practice to check for the bufferedAmount and then send data.

Chapter 3

[57]

Controlling the maximum size of the message
The maxMessageSize attribute on the @OnMessage annotation in Java class annotated
with @ServerEndpoint or @ClientEndpoint allows the developer to specify the
maximum size of message in bytes that can be handled by the ClientEndpoint
or ServerEndpoint.

If the incoming message exceeds the maximum size then the connection is closed.
This is a good practice to control the maximum size of a message so that the client
does not deplete its resources while trying to handle a message, which it can't process.

Working with proxy servers and WebSockets
Chapter 2, WebSockets and Server-sent Event, covered how the WebSocket upgrade
handshake looks. Not all proxy servers may support WebSockets; thus, proxy servers
may not allow unencrypted WebSocket traffic to flow through. The clients use a
CONNECT call which would never be allowed. The correct approach would be to send
the request over https on the standard port 443. Here is an example of the HTTP
Connect sent by the browser client to foo.com on port 443.

CONNECT: foo.com:443
Host: foo.com

Since the traffic is encrypted there is a greater chance to pass through the proxy
server. Then the CONNECT statements will work and there will be an end-to-end
encrypted tunnel for WebSockets.

The following diagram shows how clients can send HTTPS requests which get past
the proxy server and firewall; the WebSocket secure scheme will work:

Client 1

Client 2

Client 3

https://foo.com

wss://foo.com/web
socket

proxy server firewall application

It is a good practice to use WebSocket-based applications with SSL so that the Proxy
server does not impede WebSocket communication.

Understanding WebSockets and Server-sent Events in Detail

[58]

Server-sent Events
We covered Server-sent Events in Chapter 2, WebSockets and Server-sent Events,
and compared and contrasted client/server polling alternatives as well as
WebSockets. In this chapter we will cover more advanced topics such as
developing a Server-sent Events client using Jersey API and best practices
for Server-sent Events.

Developing a Server-sent Event client using
Jersey API
Chapter 2, WebSockets and Server-sent Events, gave a brief introduction to the
Server-sent Events and JavaScript API. In this chapter we will cover the Java
Client API for Server-sent Events, which is provided by Jersey. Jersey is an
implementation of JAX-RS 2.0. In addition to the features of the JAX-RS 2.0
specification, Jersey has provided support for Server-sent Events.

EventSource is the class for reading InboundEvents:

The following snippet shows how to use the EventSource API:

 WebTarget webTarget = client.target(new URI(TARGET_URI));
EventSource eventSource = new EventSource(webTarget) {
@Override
public void onEvent(InboundEvent inboundEvent) {
 System.out.println("Data " + inboundEvent.getData(String.class);

}

The EventSource object is created with WebTarget. We covered WebTarget in
Chapter 1, Building RESTful Web Services using JAX-RS.

When a Server-sent Event is received by the client the onEvent() method of the
EventSource is invoked. The InboundEvent has the getData() method that takes
the String.class that is the type of the message data. You can add any custom
defined class here. The JAX-RS MessagebodyReader will be used to read the type of
the message. Thus you can see the similarity in the code between using JavaScript
API and the Jersey Client API. Chapter 5, Restful Web Services by Example, will show a
complete example using the Server Sent Event Jersey Client API.

Chapter 3

[59]

Best practices for applications based on
Server-sent Events
The following chapter covers the best practices for applications based on Server-sent
Events. The following topics will be covered:

•	 Checking if the event source's origin is as expected
•	 Working with proxy servers and Server-sent Events
•	 Handling fault tolerance for Server-sent Events

Checking if the event source's origin is
as expected
The following snippet shows how to check for the origin of the event source so that it
matches the application's origin.

if (e.origin != 'http://foo.com') {
alert('Origin was not http://foo.com');
return;

An event stream from an origin distinct from the origin of the content consuming
the event stream can result in information leakage. When the events are obtained
from the server, it is good practice to check for the events originator to see if it is
as expected.

Working with proxy servers and Server-sent
Events
Proxy servers can drop HTTP connections after a short timeout. To avoid such
dropped connections it may be a good idea to send a comment periodically.

This is how a comment is sent using Server-sent Events.

: this is a comment

OutboundEvent event = new OutboundEvent.Builder().comment("this is a
comment").build();

The Outboundevent.Builder API will send a comment to the client.

The comment will fire nothing yet will make sure that connections do not get
dropped between client and server.

Understanding WebSockets and Server-sent Events in Detail

[60]

Handling fault tolerance for Server-sent
Events
Chapter 2, WebSockets and Server-sent Events, covered how you can associate IDs with
events. The server can send event ids with events by using the following snippet:

 id: 123\n
 data : This is an event stream \n\n

The client keeps the connection alive and tries to reconnect if the connection is
dropped. Setting an ID lets the browser keep track of the last event fired so when
the connection between the client and server is dropped, on reconnect by the client
to the server the Last-Event-ID will be sent back to the server. This ensures the client
does not miss any messages. The server can then send events that occur after
the Last-Event-ID.

The server may need a message queue to keep track of the different clients connected,
check for reconnections, and send messages based on the Last-Event-ID.

Summary
In this chapter we looked at advanced topics for WebSockets and Server-sent Events.
We demonstrated with code snippets how to use encoders and decoders and how
to receive different kinds of data using WebSockets. We also demonstrated a sample
that showed how WebSockets will work with SSL so that when working with proxy
servers, the communication is encrypted.

We also discussed best practices for implementing Server-sent Events and WebSockets.
We learned how to ensure messages are not lost in Server-sent Events by associating
IDs with events. We covered the Jersey Client API for Server-sent Events.

In the next chapter, we will cover more advanced topics such as JSON API in Java EE
and the aspects of asynchronous programming to improve scalability with respect to
various Java EE specifications such as JAX-RS 2.0, EJB and Servlets.

JSON and Asynchronous
Processing

This chapter covers a brand new JSR, The JSR 353: Java API for JSON Processing
http://jcp.org/en/jsr/detail?id=353, and related APIs along with some
updates in different services and components in Java EE that provide better support
for asynchronous interaction between different components of a system. The following
list shows an itemized list of topics that are covered in this chapter:

•	 Producing, parsing and manipulating JSON data using Java
•	 Introducing NIO API in Servlet 3.1
•	 New features in JAX-RS 2.0

Producing and parsing JSON documents
JSON format was introduced as a replacement for the XML format when the
extensibility and verbosity of XML were not required and thus to lift the resource
consumption of complex XML processing to let smaller devices consume streams of
data or data packets produced by different services they needed to interact with.

Before the Java EE 7 specification there was no standard API to process JSON
documents in Java but rather there were some open source projects such as
google-gson, https://code.google.com/p/google-gson and Jackson, http://
jackson.codehaus.org to manipulate JSON documents. With Java EE 7 and the
addition of JSON-P to the arsenal, a standard API is added to Java EE to let the
developers manipulate JSON documents in a standard fashion similar to XML
processing of APIs.

The JSON-P API provides two parsing methods to parse JSON documents, the same
two models that are available for parsing XML documents. The streaming event-based
parsing and the object model tree parsing which are explained in the next two sections.

JSON and Asynchronous Processing

[62]

An overview of JSON API
The following table shows the important API segments of JSON-P along with a brief
description of each class. The JSON API-related classes are placed under the javax.
json package. The follow-up sections cover how each one of these can be used.

Class Description and use
JsonParser A Pull parser to parse JSON objects using

event model.
JsonGenerator A JSON stream writer to write JSON objects to

an output source such as OutputStream and
Writer in a streaming manner.

JsonBuilder Builds JsonObject and JsonArray
Programmatically

JsonReader Reads JsonObject and JsonArray from
input source

JsonWriter Writes JsonObject and JsonArray to
output source

JsonObject and JsonArray To store JSONObject and array structure
JsonString and JsonNumber To store string and numerical values

The JSONObject is the entry point to the entire JSON API arsenal. For each one of the
following objects JSON API provides a factory method as well as a creator to create
them. For example, Json.createParser and Json.createParserFactory can be
used to create a JSON parser. The factory can be configured to produce customized
parsers or, when more than one parser is required, to reduce the performance
overhead of creating the parsers while the createParser overloads can be used to
create a JSON parser with a default configuration.

Manipulating JSON documents using the
event-based API
The event-based API is best used when a one way, going forward, parsing or
producing of JSON documents is required. The event-based API works similar to
StAX parsing of XML documents but in a much simpler (due to the JSON format
being much simpler) fashion.

Chapter 4

[63]

Producing JSON documents
Producing JSON documents using the event-based API is most suitable when a
stream of events is arriving and they require transforming to JSON format for
another processor that consumes JSON format.

The following sample code shows how to generate JSON output
using JsonGenerator:

public static void main(String[] args) {
 Map<String, Object>configs = new HashMap<String, Object>(1);
configs.put(JsonGenerator.PRETTY_PRINTING, true);
JsonGeneratorFactory factory = Json.createGeneratorFactory(configs);
JsonGeneratorgenerator = factory.createGenerator(System.out);

generator.writeStartObject()
 .write("title", "Getting Started with RESTful Web
Services")
 .write("type", "paperback")
 .write("author", "Bhakti Mehta, Masoud Kalali")
 .write("publisher", "Packt")
 .write("publication year", "2013")
 .write("edition", "1")
 .writeEnd()
 .close();
 }

Executing the preceding code produces the following content in the standard output:

{
 "title":" Getting Started with RESTful Web Services",
 "type":" paperback",
 "author":" Bhakti Mehta, Masoud Kalali",
 "publisher":"Packt",
 "edition":"1"
}

In the beginning of the code, the properties object that is created can be used to
add directives on what behaviors are expected from the JsonGenerator object.
The directives that can be specified differ from implementation to implementation
but here the JsonGenerator.PRETTY_PRINTING is used to ensure that the resulting
JSON document is formatted and human-readable.

JSON and Asynchronous Processing

[64]

The JsonParser, JsonGenerator, JsonReader, JsonWriter can be
used in Automatic Resource Management blocks, for example:

try (JsonGenerator generator = factory.
createGenerator(System.out);)
 {

 }

Parsing JSON documents
Assuming that the result of the previous sample is saved to a file named output.json,
the following snippet can be used to parse the output.json using stream parser.

FileInputStreambooksInputfile = new FileInputStream("output.json");
JsonParser parser = Json.createParser(booksInputfile);
 Event event = null;
 while(parser.hasNext()) {
 event = parser.next();
 if(event == Event.KEY_NAME&&"details".equals(parser.
getString())) {
 event = parser.next();
 break;
 }
 }
 while(event != Event.END_OBJECT) {
 switch(event) {
 case KEY_NAME: {
 System.out.print(parser.getString());
 System.out.print(" = ");
 break;
 }
 case VALUE_NUMBER: {
 if(parser.isIntegralNumber()) {
 System.out.println(parser.getInt());
 } else {
 System.out.println(parser.getBigDecimal());
 }
 break;
 }
 case VALUE_STRING: {
 System.out.println(parser.getString());
 break;
 }

Chapter 4

[65]

 default: {
 }
 }
 event = parser.next();
 }

The event types that should be processed when parsing a JSON document are
listed as follows:

•	 START_ARRAY: Indicating start of an array in the JSON document
•	 START_OBJECT: Indicating start of an object
•	 KEY_NAME: Name of the key
•	 VALUE_STRING: When the key's value is string
•	 VALUE_NUMBER: When the value is number
•	 VALUE_NULL: If the value is null
•	 VALUE_FALSE: If value is Boolean false
•	 VALUE_TRUE: If value is Boolean true
•	 END_OBJECT: End of an object is reached
•	 END_ARRAY: End of an array is reached

Manipulating JSON documents using the
JSON object model
The document object model for parsing JSON provides the same flexibilities and
limitation that XML DOM parsing provides. The list of flexibilities includes but not
limited to, forward and backward traversing and manipulating the DOM tree; the
disadvantages or the tradeoff are on the parser speed and memory requirement.

Generating JSON documents
The following sample code shows how to generate JSON documents using the
builder API and later on writing the produced object to standard output:

Map<String, Object>configs = new HashMap<String, Object>();
JsonBuilderFactory factory = Json.createBuilderFactory(configs);
JsonObject book= factory.createObjectBuilder()
.add("title", "Getting Started with RESTful Web Services")
.add("type", "paperback")
.add("author", "Bhakti Mehta, Masoud Kalali")

JSON and Asynchronous Processing

[66]

.add("publisher", "Packt")

.add("publication year", "2013")

.add("edition", "1")

.build();
configs.put(JsonGenerator.PRETTY_PRINTING, true);
JsonWriter writer = Json.createWriterFactory(configs).
createWriter(System.out);
writer.writeObject(book);

Note the use of configuration properties passed when the JsonBuilderFactory is
created. Depending on the JSON API implementation, different configuration
parameters can be passed to the factory to produce customized JsonBuilder objects.

The resulting JSON output looks like:

{
 "title":" Getting Started with RESTful Web Services",
 "type":" paperback",
 "author":" Bhakti Mehta, Masoud Kalali",
 " publisher ":" Packt",
 " edition":"1"
}

Parsing JSON documents
Parsing a JSONObject using the object model is straightforward and starts with
creating a reader object and reading the input file/document into a JSONObject.
After having access to the JSONObject, it is possible to traverse over the primitive
and array attributes of the JSONObject.

Map<String, Object>configs =
new HashMap<String, Object>(1);
JsonReader reader =
Json.createReader(new FileInputStream("book.json"));
JsonObject book=reader.readObject();
 String title = book.getString("title");
int edition = book.getString("edition");

As the sample code shows, reading each attribute of the JSONObjectis performed
through typed getters; for example getString, getInt, getNull, getBoolean,
and so on.

Chapter 4

[67]

When to use the streaming versus the
object API
The streaming event based API is useful when you are manipulating large JSON
documents, which you do not want to store in memory. The object model API is useful
in the case when you have navigated between different nodes of the JSON document.

Introducing Servlet 3.1
The Java EE 7 specification brings along an updated specification for Servlet API,
which addresses some of the community-requested and industry-required changes
including but not limited to the following list of changes:

•	 Addition of the NIO API to servlet specification
•	 Adding new protocol upgrading support for WebSockets, and so on

The next two sections cover the details of these changes and how they can be used.

NIO API and Servlet 3.1
Servlet 3 introduced async processing of incoming requests in which a request could
be placed in a processing queue without a thread being bound to the request until
the request processing is finished. In Servlet 3.1, another forward step made forward
in which receiving the request data writing back the response can be done in a non-
blocking, callback-oriented manner.

Introducing ReadListener and WriteListener
The two listeners are introduced to allow developers to basically receive notification
when there is incoming data available to read rather than blocking until the data
arrives and to be receiving notification when it is possible to write output without
being blocked.

The ReadListener interface, which provides callback notification on availability
of data in request's InputStream code, is shown in the following listing, a simple
interface with three methods, which are described after the code snippet.

public interface ReadListener extends EventListener {
 public void onDataAvailable(ServletRequest request);
 public void onAllDataRead(ServletRequest request);
 public void onError(Throwable t);
}

JSON and Asynchronous Processing

[68]

•	 onDataAvailable: Invoked when all data for the current request has
been read.

•	 onAllDataRead: Invoked by the container the first time it is possible
to read data.

•	 The onError: Invoked when an error occurs processing the request.

The WriteListener, which provides callback notification when it is possible to write
data in the Servlet's OutputStream, is a simple two methods interface that is shown
in the following snippet and described afterward.

public interface WriteListener extends EventListener {
public void onWritePossible(ServletResponse response);
public void onError(Throwable t);
}

The container invokes the onWritePossible method when it is possible to write
in the Servlet's OutputStream.

The onError is invoked when writing in the Servlet's OutputStream encounters
an exception.

The sample code on how these two listeners can be used is included at the end of
Servlet 3.1 introduction section.

Changes in the Servlet API interfaces
There are some changes in the Servlet API to make it possible to use the newly
introduced interfaces. These changes are as follow:

•	 In the ServletOutputStream interface:
°° isReady: This method can be used to determine if data can be written

without blocking
°° setWriteListener: Instructs the ServletOutputStream to invoke

the provided WriteListener when it is possible to write

•	 In the ServletInputStream interface

°° isFinished: Returns true when all the data from the stream has been
read else it returns false

°° isReady: Returns true if data can be read without blocking else
returns false

°° setReadListener: Instructs the ServletInputStream to invoke the
provided ReadListener when it is possible to read

Chapter 4

[69]

Now it is time to see how the non-blocking Servlet 3.1 API works. The following
snippet shows an Async Servlet, which uses the non-blocking APIs:

@WebServlet(urlPatterns="/book-servlet", asyncSupported=true)
public class BookServlet extends HttpServlet {
 protected void doPost(HttpServletRequestreq, HttpServletResponse
res)
 throws IOException, ServletException {
AsyncContext ac = req.startAsync();
ac.addListener(new AsyncListener() {
 public void onComplete(AsyncEvent event) throws
IOException {
event.getSuppliedResponse().getOutputStream().print("Async Operation
Completed");
 }
 public void onError(AsyncEvent event) {
System.out.println(event.getThrowable());
 }
 public void onStartAsync(AsyncEvent event) {
System.out.println("Async Operation Started");
 }
 public void onTimeout(AsyncEvent event) {
System.out.println("Async Operation Timedout");
 }
 });
ServletInputStream input = req.getInputStream();
ReadListenerreadListener = new ReservationRequestReadListener(input,
res, ac);
input.setReadListener(readListener);
 }
}

The code starts with declaring the Servlet and enabling asynchronous support by
specifying the asyncSupported=truein the @WebServlet annotation.

The next step is to set the AsyncListener to handle the AsyncEvents. Invoking one of
the AsyncContext sets the AsyncListener for AsyncContext#addListner overloads.
The listener will receive the AsyncEvents when an asynchronous invocation of the
Servlet is completed successfully or ended with timeout or error. Multiple listeners
can be registered and listeners receive the events in the same order they are registered.

JSON and Asynchronous Processing

[70]

The last part of the code sets the readListener for the servlet to a ReadListener
implementation included below. When the ReadListeneris set, reading the
incoming requests is delegated to the ReservationRequestReadListener.

class ReservationRequestReadListener implements ReadListener {
 private ServletInputStream input = null;
 private HttpServletResponse response = null;
 private AsyncContext context = null;
 private Queue queue = new LinkedBlockingQueue();

ReservationRequestReadListener(ServletInputStream in,
HttpServletResponse r, AsyncContext c) {
this.input = in;
this.response = r;
this.context = c;
 }

 public void onDataAvailable() throws IOException {
StringBuildersb = new StringBuilder();
int read;
byte b[] = new byte[1024];
while (input.isReady() && (read = input.read(b)) != -1) {
String data = new String(b, 0, read);
sb.append(data);
 }
queue.add(sb.toString());
 }

public void onAllDataRead() throws IOException {
performBusinessOperation();
ServletOutputStream output = response.getOutputStream();
WriteListenerwriteListener = new ResponseWriteListener(output, queue,
context);
output.setWriteListener(writeListener);
 }

public void onError(Throwable t) {
context.complete();
 }
}

Chapter 4

[71]

The ReservationRequestReadListener.onDataAvailable is invoked by the
container when there is data to read and when reading the data is finished the
onAllDataRead is invoked. The onAllDataRead performs the business operation
on the available data and the set the ResponseWriteListener, which writes the
data, is stored in the queue back to the client. The ResponseWriteListener is
shown in the following listing:

class ResponseWriteListener implements WriteListener {
 private ServletOutputStream output = null;
 private Queue queue = null;
 private AsyncContext context = null;

ResponseWriteListener(ServletOutputStreamsos, Queue q, AsyncContext c)
{
this.output = sos;
this.queue = q;
this.context = c;
 }

 public void onWritePossible() throws IOException {
 while (queue.peek() != null &&output.isReady()) {
 String data = (String) queue.poll();
 output.print(data);
 }
 if (queue.peek() == null) {
 context.complete();
 }
 }

 public void onError(final Throwable t) {
 context.complete();
 t.printStackTrace();
 }
}

When the writing operation is finished either normally or fatally, the context needs
to be closed for this operation using the context.complete() method.

More changes in Servlet 3.1
In addition to non-blocking IO inclusion, Servlet 3.1 brings in support for protocol
upgrade in order to support the new WebSockets API. The addition of the upgrade
method to HttpServletRequest allows developers to upgrade the communication
protocol to other protocols, if supported by the container.

JSON and Asynchronous Processing

[72]

When an upgrade request is sent, the application decides to perform the upgrader,
the HttpServletRequest#upgrade(ProtocolHandler) is invoked, and application
prepares and sends an appropriate response to the client as usual. At this point the
web container unwinds all the servlet filters and marks the connection to be handled
by the protocol handler.

New features in JAX-RS 2.0
JAX-RS 2.0 brings in several new features aligned with other lightweight and
async processing features provided in other components. The new features
include the following:

•	 Client API
•	 Common configuration
•	 Asynchronous processing
•	 Filters/interceptors
•	 Hypermedia support
•	 Server-side content negotiation

From this list of features, this section covers asynchronous processing and also the
relevance of asynchronous processing to filters/interceptors.

Asynchronous request and response
processing
Asynchronous processing is included in both client and server side APIs of
JAX-RS 2.0 to facilitate asynchronous interaction between client and server
components. The following list shows the new interfaces and classes added
to support this feature:

•	 Server side:
°° AsyncResponse: An injectable JAX-RS asynchronous response that

provides the means for asynchronous server side response processing.
°° @Suspended: @Suspended instructs the container that the HTTP

request processing should happen in a secondary thread.
°° CompletionCallback: A request processing callback that receives

request processing completion events.
°° ConnectionCallback: Asynchronous request processing lifecycle

callback that receives connection-related asynchronous response
lifecycle events.

Chapter 4

[73]

•	 Client side:

°° InvocationCallback: Callback that can be implemented to receive
the asynchronous processing events from the invocation processing

°° Future: Allows the client to poll for completion of the asynchronous
operation or to block and wait for it

The Future interface introduced in Java SE 5 provides two different
mechanism to get the result of an asynchronous operation: first by
invoking the Future.get(…) variants, which block until the result
is available or a timeout occurs; the second way is to check for the
completion by invoking the isDone() and isCancelled(), which
are Boolean methods returning the current status of the Future.

The following sample code shows how an asynchronous resource can be developed
using JAX-RS 2 API:

@Path("/books/borrow")
@Stateless
public class BookResource {
 @Context private ExecutionContextctx;
 @GET @Produce("application/json")
 @Asynchronous
 public void borrow() {
 Executors.newSingleThreadExecutor().submit(new Runnable() {
 public void run() {
 Thread.sleep(10000);
 ctx.resume("Hello async world!");
 } });
 ctx.suspend();		
 return;
 }
}

BookResource is a stateless session bean which has a method borrow(). This method
is annotated with @Asynchronous annotation, which will work in the fire-and-forget
manner. When the resource is requested through the borrow() method's resource
path, a new thread is spawned to work on preparing the request's response. The thread
is submitted to the executor for execution and the thread processing the client request
is released (via ctx.suspend) to process other incoming requests. When the worker
thread, created to prepare the response, is done with preparing the response, it invokes
thectx.resume, which lets the container know the response is ready to be sent back to
the client. If thectx.resume is invoked before the ctx.suspend (the worker thread has
prepared the result before the execution reaching the ctx.suspend) the suspension is
ignored and the result will be sent to the client.

JSON and Asynchronous Processing

[74]

Same functionality can be achieved using the @Suspended annotation that is shown
in the following snippet:

@Path("/books/borrow")
@Stateless
public class BookResource {
 @GET @Produce("application/json")
 @Asynchronous
 public void borrow(@Suspended AsyncResponsear) {
 final String result = prepareResponse();
 ar.resume(result) }
}

Using @Suspended is cleaner as it does not involve use of ExecutionContext method
to instruct container to suspend and then resume the communication thread when the
worker thread, aka the prepareResponse() method in this case, is finished. The client
code to consume the asynchronous resource can use the callback mechanism or polling
at the code level. The following code shows how to use polling via Future interface:

Future<Book> future = client.target("("books/borrow/borrow")
 .request()
 .async()
 .get(Book.class);
try {
 Book book = future.get(30, TimeUnit.SECONDS);
} catch (TimeoutException ex) {
 System.err.println("Timeout occurred");
}

The code begins with forming the request to the book resource and then
the Future.get(…) blocks until the response is back from the server or
the 30 seconds timeout reaches.

Another API for the asynchronous client is to use the InvocationCallback.

Filters and interceptors
The filters and interceptors are two new concepts added to JAX-RS 2.0 that allow
developers to intercept incoming and outgoing requests and responses as well as
operating at stream level on the incoming and outgoing payloads.

Chapter 4

[75]

The filters work the same way as Servlet filters work and provide access to inbound
and outbound messages for tasks such as authentication/logging, auditing, etc.
while interceptors can be used to perform dumb operations on payload such as
compressing/decompressing the outgoing responses and incoming requests.

Filters and interceptors are asynchronous-aware, meaning that they can handle both
synchronous and asynchronous communications.

Asynchronous processing in EJB 3.1
and 3.2
Before Java EE 6 the only asynchronous processing facility in Java EE was JMS
(Java Message Service) and MDBs (Message Driven Beans) in which a session
bean method could send a JMS message to describe a request and then let an MDB
process the request in an asynchronous manner. Using the JMS and MDBs the
session bean method could return immediately and the client could check for the
request completion using the reference returned by the method for the long running
operation being handled by some MDBs.

The above solution works well, as it has worked for a decade now, but it is not
easy to use and that was the reason for Java EE 6 to introduce the @Asynchronous
annotation to annotate a method in a session bean or the whole session bean class
as asynchronous. The @Asynchronous can be placed on a class to mark all the
methods in that class as asynchronous or on a method to mark that particular
method as asynchronous.

There are two types of asynchronous EJB invocation which are explained as follows:

•	 In the first model the method returns void and there is no container-provided
standard mechanism to check the result of the method invocation. This is
referred to as a fire-and-forget mechanism.

•	 In the second model, the container provides a mechanism to check back the
result of the invocation using a Future<?> object returned from the method
invocation. This mechanism is referred to as invoke-and-check-later. Note that
Future is part of the Java SE concurrency package. Having the Future object
returned from the method, the client can check the result of invocation by
using different Future methods such as isDone() and get(…).

Before we dive down into sample codes or use the @Asynchronous it is worth
mentioning that, in Java EE 6, the @Asynchronous was only available in full profile
while in Java EE 7 the annotation is added to the web profile as well.

JSON and Asynchronous Processing

[76]

Developing an asynchronous session bean
The following listing shows how to use the invoke-and-check-later asynchronous
EJB methods:

@Stateless
@LocalBean
public class FTSSearch {

 @Asynchronous
 public Future<List<String>> search(String text, intdummyWait) {
 List<String> books = null;
 try {
 books= performSearch(text,dummyWait);
 } catch (InterruptedException e) {
 //handling exception
 }
 return new AsyncResult<List<String>>(books);
 }
 private List<String>performSearch(String content, intdummyWait)
throws InterruptedException{
Thread.sleep(dummyWait);
return Arrays.asList(content);
 }
}

@Stateless and @LocalBean are self-explanatory; they mark this class as a stateless
session bean with a local interface.

The search method is annotated with @Asynchronous and this tells the container
that the method invocation should happen in a separate detached thread; when the
result is available the returned Future object's isDone() returns true.

The search itself invokes a presumably long running method, performSearch,
to get the result of the long running search operation the client has requested.

Developing a client servlet for the async
session bean
Now that the stateless session bean is developed it is time to develop a client that
accesses the session bean's business method. In this case the client is a Servlet,
which is included in the following code without some of the boilerplate codes:

@WebServlet(name = "FTSServlet", urlPatterns = {"/FTSServlet"})
public class FTSServlet extends HttpServlet {

Chapter 4

[77]

 @EJB
FTSSearchftsSearch;

 @Override
 protected void doGet(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException {
 Future<List<String>>wsResult = ftsSearch.search("WebSockets",
5000);
 Future<List<String>>sseResult = ftsSearch.search("SSE", 1000);

 while (!sseResult.isDone()) {
 try {
Thread.sleep(500);
 //perform other tasks... e.g. show progress status
 } catch (InterruptedException ex) {
Logger.getLogger(FTSServlet.class.getName()).log(Level.SEVERE, null,
ex);
 }
 }

response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
 try {
 /* TODO output your page here. You may use following
sample code. */
out.println("<!DOCTYPE html>");
out.println("<html>");
out.println("<head>");
out.println("<title>Servlet d</title>");
out.println("</head>");
out.println("<body>");
out.println("<h1>SSE Search result: " + sseResult.get().get(0) + "</
h1>");
 while (!wsResult.isDone()) {
 try {
Thread.sleep(500);
 } catch (InterruptedException ex) {
Logger.getLogger(FTSServlet.class.getName()).log(Level.SEVERE, null,
ex);
 }
 }
out.println("<h1>WS Search result: " + wsResult.get().get(0) + "</
h1>");
out.println("</body>");

JSON and Asynchronous Processing

[78]

out.println("</html>");
 } catch (InterruptedException ex) {
Logger.getLogger(FTSServlet.class.getName()).log(Level.SEVERE, null,
ex);
 } catch (ExecutionException ex) {
Logger.getLogger(FTSServlet.class.getName()).log(Level.SEVERE, null,
ex);
 } finally {
out.close();
 }
 }

}

Starting from the top, we have the servlet declaration annotations, injection of the
stateless EJB, and the get method's implementation.

The get in the get method's implementation invokes the EJB's search method while
passing two different dummyTime to simulate the wait. Between invocations of the
search method till the Future object's isDone returns true, the client code can perform
other required operations.

Now that the invoke-and-check-later model is described we can discuss the other
Asynchronous EJB invocation model in which the EJB business methods return void
and there is no container-provided way to check the result. We usually use these
methods to trigger a long-running task that the current thread does not need to wait
for it to be finished.

An example of this case is when a new e-book is added to the library and the full
text search index needs to be updated to include the new book. In such a case the
procedure that adds the book can invoke a @Asynchronous EJB method to index the
book during the book's registration and after it is uploaded to the server's repository.
In this way the registration process does not need to wait for the FTS indexing to
complete while the FTS indexing starts right after the book is added to the library.

Summary
This chapter, the final chapter before showing you some real-world examples,
discusses JSON processing, Asynchronous JAX-RS resources, which can produce
or consume JSON data along with discussing the new NIO support in the Servlet
3.1. As @Asynchronous EJB is now included in Java EE 7's Web profile we discussed
that feature along with other new features that are introduced in Java EE7. The next
chapter shows real-world examples on how these technologies and APIs can be
used together to form a solution.

RESTful Web Services
by Example

The APIs and technologies introduced and discussed in the previous chapters are
suitable for different types of projects and use cases. This chapter covers how these
APIs and technologies can fit into solutions and case-oriented software systems.

After a brief introduction of what the application is supposed to do, we will break it
down and focus on every component and technology used. So bring on the extra cup
of mocha and join the fun.

This chapter will cover the following two samples:

•	 Event notification application showing Server-sent Events, Async Servlet,
JSON-P API, and JAX-RS based on the Twitter Search API

•	 Library application showing JAX-RS API, WebSockets, JSON-P API, and
asynchronous JAX-RS resources to form an end-to-end solution

Event notification application
The Twitter-based application is the first sample application that will demonstrate a
HTML5-based application developed on top of Server-sent Events, JAX-RS 2.0 API,
Asynchronous Servlet, and the Twitter Search API together, to dynamically update a
page with more search results periodically.

RESTful Web Services by Example

[80]

The build system used for the sample application is Maven and the sample can be
deployed in any Java EE 7-compatible application server notably GlassFish v4.0,
an open source reference implementation of the Java EE 7 specification.

Apache Maven is a build management tool. More information
about Maven can be found at http://maven.apache.
org and more information about GlassFish can be found at
https://glassfish.java.net/

The project's layout
The project's directory layout follows the standard Maven structure, which is briefly
explained in the following table:

Source code Description
src/main/java This directory contains all the sources required by the

library application.
src/main/webapp This directory contains the JavaScript files, html files,

and WEB-INF/web.xml file.

The event notification GUI
The event notification application consists of one screen, which serves as the vehicle
for showing dynamic updates based on the Twitter feeds. The screen is shown in the
following screenshot:

Chapter 5

[81]

The application is a basic sample showing updates as the events carrying the updates
happen and are received. This could be a newer tweet coming in, or Facebook friends'
updates, or any other type of events consumable by any of the Java EE-managed
components. The key point is, once the channel of communication is established with
the server, it is up to the server to keep sending updates as they occur. The client does
not poll for updates.

In this sample, when the servlet is loaded there is an EJB timer, which is run every 10
seconds and activates a CDI bean that uses the Twitter Search API to get new tweets.
The Twitter Search API returns the tweets in JSON format. This tweet information is
then sent to the client using Server-sent Events support with JAX-RS. On the client
side the JSON data is parsed to display certain information on the screen.

RESTful Web Services by Example

[82]

A detailed look at the event notification
application
After an initial introduction to what the application is supposed to do, let's dissect it
further and study each individual component that builds this application.

This is the order in which the details of the application will be covered:

•	 The web.xml
•	 The implementation of the Application class
•	 The JAX-RS resource used in the application
•	 The Asynchronous Servlet client used by the application
•	 The EJB that interacts with the Twitter Search API

The web.xml
To set up the application, configure the servlet deployment descriptor web.xml
as follows:

<display-name>jersey-sse-twitter-sample</display-name>

<servlet>
 <servlet-name>Jersey application</servlet-name>
 <servlet-class>org.glassfish.jersey.servlet.ServletContainer
 </servlet-class>
 <init-param>
 <param-name>javax.ws.rs.Application</param-name>
 <param-value>org.glassfish.jersey.sample.sse.MyApplication
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 <async-supported>true</async-supported>
</servlet>
<servlet-mapping>
 <servlet-name>Jersey application</servlet-name>
 <url-pattern>/*</url-pattern>
</servlet-mapping>

MyApplication is a subclass of javax.ws.rs.Application. It is used to register the
JAX-RS resource so that it is known the JAX-RS API.

The async-supported element is set to true to indicate that the servlet supports
asynchronous processing.

Chapter 5

[83]

The implementation of the Application class
Here is the implementation of the Application subclass:

public class MyApplication extends Application {

 Set<Class<?>> classes = new HashSet<Class<?>>() {
 { add(ServerSentEventsResource.class);
 add(SseFeature.class);
 }
 };

 @Override
 public Set<Class<?>> getClasses() {
 return classes;
 }
}

The getClasses() method is overridden to return the:

•	 ServerSentEventsResource.class

•	 SseFeature.class

The ServerSentEventsResource class is a simple JAX-RS that sends the JSON
data from the Twitter Search API as Server-sent Events. We shall look at the
ServerSentEventsResource in more detail in the next section.

The SseFeature.class is an implementation provided by Jersey to support
the ServerSentEvents feature. It will ensure the data is of the media type
"text/event-stream".

To enable Server-sent Events feature, add SseFeatures.class
to the list of classes returned by the getClasses() method in the
implementation of the javax.ws.rs.Application.

The JAX-RS resource used by the application
Here is the source code of the ServerSentEventsResource.java. This is a simple
POJO, annotated with @Path to identify the URI of the resource.

@Path("twittersse")
public class ServerSentEventsResource {

 static EventOutput eventOutput = new EventOutput();

RESTful Web Services by Example

[84]

 @GET
 @Produces(SseFeature.SERVER_SENT_EVENTS)
 public EventOutput getMessage() {
 return eventOutput;
 }

 @POST
 @Consumes(MediaType.TEXT_PLAIN)
 public void sendMessage(String message) throws IOException {
 eventOutput.write(new OutboundEvent.Builder().name(
 "custom-message").data(String.class, message).build());
 }
}

The EventOutput class is a channel that provides the outbound Server-sent Events.
When we return the EventOutput object from the getMessage() method, the Jersey
implementation keeps the connection open so that the Server-sent Events can be sent.
One instance of this class corresponds with exactly one HTTP connection.

The sendMessage() method writes the message using the eventOutput.write()
method. To write Server-sent Events, we use the OutboundEvent.Builder()
method. A name "custom-message" is passed to this OutboundEvent.Builder()
method and then we pass the message object to the build() method. The message
object contains the tweets-related information for our sample.

Additionally, OutboundEvent.Builder().id(id) can be used to associate an ID
with a Server-sent Event which is not covered previously.

The Asynchronous Servlet client used by
the application
In normal request response scenarios, a thread is kept running for each request
till the response becomes available. This turns into a bottleneck in cases when the
backend is taking a long time to process the requests, and the thread processing the
request waits for the backend to finish preparing the required response and thus
cannot take on any new incoming request.

One way to solve this would be to save the request in a centralized queue and
send the request as the threads are available to process the request. Calling the
startAsync() method stores the request/response pair in a queue, the doGet()
method returns, and the calling thread can be recycled.

Chapter 5

[85]

The following section discusses these concepts of asynchronous request processing
with servlets.

Here is the code of the Servlet client for the application:

@WebServlet(name = "TestClient", urlPatterns = {"/TestClient"},
asyncSupported = true)
public class TestClient extends HttpServlet {

 private final static String TARGET_URI =
 "http://localhost:8080/jersey-sse-twitter-sample/twittersse";

This is a Servlet with urlPatterns={"/TestClient"} and the async-supported
attribute set to true. The async-supported attribute instructs the container that this
servlet process the incoming requests asynchronously and thus the container should
make the necessary modification in request allocation of the processing threads.

The next snippet shows the implementation of the service() method that can
handle the GET and POST requests:

/**
* Processes requests for both HTTP
* <code>GET</code> and
* <code>POST</code> methods.
*
* @param request servlet request
* @param response servlet response
* @throws ServletException if a servlet-specific error occurs
* @throws IOException if an I/O error occurs
*/
@Override
protected void service(final HttpServletRequest request, final
 HttpServletResponse response)
throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");

 try {

 final AsyncContext asyncContext = request.startAsync();
 asyncContext.setTimeout(600000);
 asyncContext.addListener(new AsyncListener() {

 @Override
 public void onComplete(AsyncEvent event) throws IOException
 {

RESTful Web Services by Example

[86]

 }

 @Override
 public void onTimeout(AsyncEvent event) throws IOException {
 System.out.println("Timeout" + event.toString());
 }

 @Override
 public void onError(AsyncEvent event) throws IOException {
 System.out.println("Error" + event.toString());
 }

 @Override
 public void onStartAsync(AsyncEvent event) throws
 IOException {
 }
 });

 Thread t = new Thread(new AsyncRequestProcessor(asyncContext));
 t.start();

 } catch (Exception e) {
 e.printStackTrace();
 }

}

In the preceding snippet, an instance of the AsyncContext object is obtained by
invoking the request.startAsync() method.

The asyncContext.setTimeout(60000) method indicates a timeout in milliseconds
for the asynchronous operations of the servlet.

An implementation of an AsyncListener interface is added to the asynchronous
context using the asyncContext.addListener() method.

After the startAsync() method is called on the request, an AsyncEvent object is sent
to the implementation of the AsyncListener interface as the operation completes,
there is an error, or the operation times out. As shown previously, we have an
implementation of the AsyncListener interface that can implement the following
methods onComplete(), onError(), onTimeOut(), or onStartAsync().

Chapter 5

[87]

The AsyncRequestProcessor class shown in the following code is the Runnable
instance of the thread, which does the actual work. The AsyncRequestProcessor
class registers the EventSource object to listen for the Server-sent Events, which are
sent by the JAX-RS ServerSentEventsResource.java, covered earlier. As events
occur the onEvent() callback is triggered and JSONP is used to parse the events.

class AsyncRequestProcessor implements Runnable {

 private final AsyncContext context;

 public AsyncRequestProcessor(AsyncContext context) {
 this.context = context;
 }

 @Override
 public void run() {
 Client client = ClientBuilder.newClient();
 context.getResponse().setContentType("text/html");
 final javax.ws.rs.client.WebTarget webTarget;
 try {
 final PrintWriter out = context.getResponse().getWriter();
 webTarget = client.target(new URI(TARGET_URI));
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Glassfish SSE TestClient</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>");
 out.println("Glassfish tweets");
 out.println("</h1>");
 // EventSource eventSource = new EventSource(webTarget,
 executorService) {
 EventSource eventSource = new EventSource(webTarget) {
 @Override
 public void onEvent(InboundEvent inboundEvent) {
 try {
 //get the JSON data and parse it
 JSONObject jsonObject = JSONObject.fromObject
 (inboundEvent.getData(String.class,
 MediaType.APPLICATION_JSON_TYPE));
 //get the JSON data and parse it
 JsonReader jsonReader = Json.createReader (new
 ByteArrayInputStream(inboundEvent.getData
 (String.class,

RESTful Web Services by Example

[88]

 MediaType.APPLICATION_JSON_TYPE).getBytes()));
 JsonArray jsonArray = jsonReader.readArray();
 for (int i = 0; i <jsonArray.size(); i++) {
 JsonObject o = ((JsonObject)
 jsonArray.getJsonObject(i)) ;
 out.println(o.get("text"));
 out.println("
");
 out.println("Created at " +
 o.get("created_at"));
 out.println("
");

 }
 out.println("</p>");
 out.flush();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 };
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
}

As seen in the preceding code, we use the JSR 353 Java API for JSON Processing
to create a JSonReader object from the inboundEvent#getData() method.
The JSONArray object is returned by the jsonReader.readArray() method.
The JsnObject objects are read from the array and the tweet information
is displayed.

The EJB that interacts with the Twitter Search API
Here is the code for the EJB that will invoke the Twitter Search API. This EJB has a
timer that will periodically call the Twitter Search API to get tweets for GlassFish
and get the results in the JSON format.

@Stateless
@Named
public class TwitterBean {
}

The @Stateless annotation indicates this is a stateless session bean.

Chapter 5

[89]

Twitter v1.1 API uses OAuth to provide authorized access to its API. Twitter offers
applications the ability to issue authenticated requests on behalf of the application
itself (as opposed to on behalf of a specific user). For more on OAuth please check
https://dev.twitter.com/docs/api/1.1/overview.

To run this demo, you will need to have a Twitter account and create an application
based on information specified in this following link: https://dev.twitter.com/
docs/auth/oauth. Please see the Readme.txt with the sample for instructions on
how to run the sample.

The following code uses the twitter4j API from http://twitter4j.org/en/index.
html to integrate Java and the Twitter API.

Here is the code that will connect to SEARCH_URL and get the tweets

/**
* Since twitter uses the v1.1 API we use twitter4j to get
* the search results using OAuth
* @return a JsonArray containing tweets
* @throws TwitterException
* @throws IOException
*/
public JsonArray getFeedData() throws TwitterException, IOException {

 Properties prop = new Properties();

 //load a properties file
 prop.load(this.getClass().getResourceAsStream
 ("twitter4j.properties"));

 //get the property value and print it out
 String consumerKey = prop.getProperty("oauth.consumerKey");
 String consumerSecret=
 prop.getProperty("oauth.consumerSecret");
 String accessToken = prop.getProperty("oauth.accessToken");
 String accessTokenSecret =
 prop.getProperty("oauth.accessTokenSecret");
 ConfigurationBuilder cb = new ConfigurationBuilder();
 cb.setDebugEnabled(true)
 .setOAuthConsumerKey(consumerKey)
 .setOAuthConsumerSecret(consumerSecret)
 .setOAuthAccessToken(accessToken)
 .setOAuthAccessTokenSecret(accessTokenSecret);

RESTful Web Services by Example

[90]

 TwitterFactory tf = new TwitterFactory(cb.build());
 Twitter twitter = tf.getInstance();
 Query query = new Query("glassfish");
 QueryResult result = twitter.search(query);
 JsonArrayBuilder jsonArrayBuilder =
 Json.createArrayBuilder();
 for (Status status : result.getTweets()) {
 jsonArrayBuilder
 .add(Json.createObjectBuilder().
 add("text", status.getText())
 .add("created_at", status.getCreatedAt().toString()));
 }
 return jsonArrayBuilder.build() ;
}

The preceding code reads the twitter4j.properties and creates a
ConfigurationBuilder object with the consumerKey, consumerSecret,
accessToken, and accessTokenSecret keys. Using the TwitterFactory
API an instance of Twitter object is created. A Query object to send the search
request to Twitter with the keyword "glassfish" is created. The twitter.search
returns tweets that match a specified query. This method calls http://search.
twitter.com/search.json.

Once the QueryResult object is obtained, the JsonArrayBuilder object is used to
build the JSON object containing the results. For more information on twitter4j API
please check http://twitter4j.org/oldjavadocs/3.0.0/index.html.

The EJB bean has an additional method that will invoke the EJB timer. Here is the EJB
Timer code that will send these tweets, which are obtained from the Twitter Search
API, to the REST Endpoint ServerSentEventsResource using the POST method.

private final static String TARGET_URI =
 "http://localhost:8080/jersey-sse-twitter-sample";

@Schedule(hour = "*", minute = "*", second = "*/10")
public void sendTweets() {

 Client client = ClientBuilder.newClient();
 try {
 WebTarget webTarget= client.target(new URI(TARGET_URI)) ;
 JsonArray statuses = null;

 statuses = getFeedData();

Chapter 5

[91]

 webTarget.path("twittersse").request().
 post(Entity.json(statuses));
 }(catch Exception e) {
 e.printStackTrace();
 }
}

The @Schedule annotation is used to schedule fetching tweets every 10 seconds.
The EJB specification has more details on usages of @Schedule. The JsonArray
object statuses get the feeds from the getFeedData() method that was covered
in the earlier section.

WebTarget is created with the TARGET_URI that is the URL http://localhost:8080/
jersey-sse-twitter-sample where the application is deployed.

The webTarget.path("twittersse") method points to the location of the
ServerSentEventsResource class covered earlier that is the REST resource.

Using the request().post(Entity.text(message)) method the tweets that are
obtained from the Twitter Search API are sent as a Text Entity.

This is the sequence of events:

1.	 The user deploys the application and invokes the Servlet client from this URL
http://localhost:8080/jersey-sse-twitter-sample.

2.	 The EJB timer gets scheduled every 10 seconds.
3.	 The EJB timer will invoke the Twitter Search API to get the tweets for

"glassfish" in JSON format.
4.	 The EJB timer sends the data obtained in step to the JAX-RS

ServerSentEventsResource class using the POST request.
5.	 The JAX-RS resource ServerSentEventsResource opens the EventOutput

channel, which is the outbound channel for the Server-sent Events.
6.	 The Servlet client in step 1 has the EventSource object open that is listening

for the Server-sent Events.
7.	 The Servlet client uses JSON-P API to parse the Twitter feeds.
8.	 Finally the tweets are shown in the browser.

RESTful Web Services by Example

[92]

The library application
The library application is a simple, self-contained, real-life-based application that
demonstrates HTML5 technologies such as WebSockets and shows how to use
JAX-RS verbs, how to write data using JSON-P API, and how to take advantage
of the asynchronous aspect of processing the resources. To stay on track the
application contains the components that describe the preceding technologies
using a simple GUI and does not have fancy dialog boxes or very complicated
business logic.

How the application is deployed
The build system used for the sample application is Maven and the sample can be
deployed in any Java EE 7-compatible application server, notably GlassFish v4.0,
which is an open source reference implementation of Java EE specification.

The project's layout
The project's directory layout follows the standard Maven structure, which is briefly
explained in the following table:

Source code Description

src/main/java This directory contains all the sources required by the
library application.

src/main/webapp This directory contains the JavaScript files, HTML
files, and the WEB-INF/web.xml file.

The library application GUI
The library application consists of one screen that serves as the vehicle for showing
different rendering of the data and forms for gathering inputs. The screen is shown
in the following screenshot:

Chapter 5

[93]

Using the screen, a user can do the following operations:

1.	 Browse the collection of books.
2.	 Search for a book.
3.	 Checkout a book.
4.	 Return a book.
5.	 Place hold on a book.

The following table shows the action taken by a user, the details of what happens
behind the scenes, and the API and technologies involved in processing the requests:

Action API and technology used

Browse the collection of books This task uses the JAX-RS GET verb to get
the collection of books in the library. It uses
the JSON-P API to write the data in JSON
format. We use an implementation of JAX-RS
MessageBodyWriter class, which knows how to
serialize a custom class to JSON output.

Borrow a book When a book is checked out from the library it
reduces from the collection of books, which the
library has. This task demonstrates the use of the
JAX-RS verb DELETE and deletes the book from
the collection.

RESTful Web Services by Example

[94]

Action API and technology used

Return a book When a book is returned to the library it will be
added to the collection of books that the library
has. This task demonstrates the use of the JAX-RS
verb POST and adds the book to the collection.

Place hold on a book When a book is placed on hold, the library
application should notify other users currently
having the book to return it. Once the book is
returned, a notification should be sent to the user
requesting the book. This is an asynchronous
operation. This task demonstrates the use of
asynchronous processing of the JAX-RS resources.

Application interaction monitoring
There is a pane that will show what is the query, which was sent to the endpoint.
Additionally, we will show the output returned by the endpoint.

A detailed look at the library application
After an initial introduction to what the application is supposed to do, let's dissect
it further and study each individual component that builds this application.

The following is the order in which the details of the application will be covered:

•	 The web.xml
•	 The Application subclass implementation in our application
•	 The JAX-RS Entity Providers used in our application
•	 The HTML page
•	 JavaScript snippets and JAX-RS resource methods for the following functions:

°° Browsing the collection of books
°° Searching for a book
°° Checking out a book
°° Returning a book
°° Placing a hold on the book

Chapter 5

[95]

The web.xml
To set up the application, configure the servlet deployment descriptor web.xml
as follows:

<servlet>
 <servlet-name>org.sample.library.BookApplication</servlet-name>
 <init-param>
 <param-name>
 javax.json.stream.JsonGenerator.prettyPrinting</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

<welcome-file-list>
 <welcome-file>
 index.html
 </welcome-file>
</welcome-file-list>
<servlet-mapping>
 <servlet-name>org.sample.library.BookApplication</servlet-name>
 <url-pattern>/app/*</url-pattern>
</servlet-mapping>

In the preceding snippet, we defined a servlet to take the subclass of the JAX-RS
Application BookApplication. The URL pattern is /app/*.

The Application subclass
Here is the snippet of the BookApplication class, which is mentioned in the
web.xml description.

Chapter 1, Building RESTful Web Services Using JAX-RS, covered the Application class in
detail. It is used to register the JAX-RS resources and specialized Entity Providers.

public class BookApplication extends Application {

 @Override
 public Set<Class<?>> getClasses() {
 Set<Class<?>> classes = new HashSet<Class<?>>();
 classes.add(BooksResource.class);
 classes.add(BookCollectionWriter.class);

RESTful Web Services by Example

[96]

 classes.add(BookWriter.class);
 return classes;
 }
}

The BookApplication class extends the JAX-RS Application class. In the
getClasses() method implementation, the following are registered:

•	 BookResource.class

•	 BookCollectionWriter.class

•	 BookWriter.class

The BookResource class is covered in detail in the next few sections, with every
function of the JavaScript; the corresponding method of the BookResource class
will be explained.

The BookCollectionWriter class is an implementation of a MessageBodyWriter
interface, which takes a List<Book> object and serializes it to the JSON format.
To produce the application/json encoded output, the BookCollectionWriter
class uses JSON-P API.

The BookWriter class provides the facility to serialize the user-defined Book class,
which is shown in the following section. The Book class has fields such as name of
the book, author, and ISBN. Using this BookWriter class it is possible to convert
this Book class into a format specified in the resource, for example, "text/plain"
or "application/json".

JAX-RS Entity Provider: BookCollectionWriter
Similar to the BookWriter class covered in the earlier section there is a class called
BookCollectionWriter in the sample; this is used to serialize a list of books. Here is
an implementation of the writeTo() method in the BookCollectionWriter class:

@Override
public void writeTo(List<Book> books, Class<?> type, Type
 genericType, Annotation[] annotations, MediaType mediaType,
 MultivaluedMap<String, Object> httpHeaders, OutputStream
 entityStream) throws IOException, WebApplicationException {
 StringWriter writer = new StringWriter();
 if (mediaType.equals(MediaType.APPLICATION_JSON_TYPE)) {
 JsonGenerator generator = Json.createGenerator(writer);
 Map<String, Object> configs;
 configs = new HashMap<String, Object>(1);

Chapter 5

[97]

 configs.put(JsonGenerator.PRETTY_PRINTING, true);

 generator.writeStartArray();
 for (Book book: books) {
 generator.writeStartObject()
 .write("Name", book.getName())
 .write(" ISBN", book.getIsbn())
 .write("Author",book.getAuthor()) .writeEnd();

 }
 generator.writeEnd();
 generator.close();
 entityStream.write(writer.toString().getBytes());
 } else if (mediaType.equals(MediaType.TEXT_PLAIN_TYPE)) {
 StringBuilder stringBuilder = new StringBuilder("Book ");
 for (Book book: books) {
 stringBuilder.append(book.toString()).append("\n");
 }
 entityStream.write(stringBuilder.toString().getBytes());

 }
}

The preceding code does media type filtering; if the mediaType parameter equals
MediaType.APPLICATION_JSON_TYPE, then it uses the JSON-P API to create a
JsonGenerator object. Using the writeStartArray() and writeStartObject()
methods of JsonGenerator class, the array of JSON objects is written.

If the mediaType parameter equals MediaType.TEXT_PLAIN_TYPE, then a String
representation of the books is returned.

The HTML page
As you may recall, when the application is launched in the browser, you will see the
index.html screen. Let's take a peek at the source code of the index.html file:

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>Library App</title>
 <script src="main.js">
 </script>

RESTful Web Services by Example

[98]

 </head>
 <body>
 <h1 id="helloMessage">
 </h1>

 Please enter the following details:
 <p>
 Book Name:
 <input type="text" value="Game of thrones" id="bookName"/>
 </p>

 <button onclick="search_onclick()">Search</button>
 <button onclick="checkout_onclick()">Checkout</button>
 <button onclick="return_onclick()">Return</button>
 <button onclick="hold_onclick()">Hold</button>
 <button onclick="browse_onclick()">Browse Collection</button>

 <h2>Book Information</h2>
 <h3>JAX-RS query sent by the Application:</h3>

 <div id="query" style="border: 1px solid black; color: black;
height: 6em; width: 80%"></div>
 <h3>Output from the JAX-RS query</h3>
 <div id="output" style="border: 1px solid black; color: black;
height: 18em; width: 80%"></div>
 </body>
</html>

This is standard HTML, which uses an external JavaScript file called main.js to
import the following functionalities:

•	 Browsing the collection of books
•	 Searching for a book
•	 Checking out a book
•	 Returning a book
•	 Placing hold on a book

The highlighted div elements query and output show the JAX-RS query and the
output on the page. Every button has an onclick() event associated with it that calls
a function in JavaScript. Each function shall be covered in detail in the next section.

Chapter 5

[99]

Browsing the collection of books
When a user clicks on the Browse Collection button on the HTML page, the input is
checked and then the sendBrowseRequest() function is called in the JavaScript.

Using JavaScript
Here is the snippet of the sendBrowseRequest():

function sendBrowseRequest() {
 var req = createRequest(); // defined above
 // Create the callback:
 req.onreadystatechange = function() {
 if (req.readyState == 4) {
 document.getElementById("query").innerHTML="GET
 app/library/books" ;
 document.getElementById("output").innerHTML=
 req.responseText;
 }
 }
 req.open("GET","app/library/books" ,true);
 req.send(null);
}

The createRequest() function is used to create an XMLHttpRequest object as
covered in Chapter 2, WebSockets and Server-sent Events. The request, which is
sent to the JAX-RS resource, is a GET request with the URI /app/library/books
(we shall cover the JAX-RS resource in the next section). When the value of the
XMLHttpRequest object's readyState is 4, it means that the response is complete
and we can get the data. In our sample, we display the responseText using the
snippet document.getElementById("output").innerHTML=req.responseText;.

The JAX-RS resource method for the GET request
Here is the snippet for the GET request:

@GET
@Path("books")
@Produces({MediaType.TEXT_PLAIN, MediaType.APPLICATION_JSON})
public List<Book> browseCollection() {
 return bookService.getBooks();
}

This is a very simple method that will use the BookCollectionWriter class that
we covered earlier to output the List<Book> objects in JSON format or in the plain
text format.

RESTful Web Services by Example

[100]

Searching for a book
When a user clicks on the Search button on the HTML page,
the sendSearchWSRequest() function is called in the JavaScript.

Using JavaScript
The sendSearchWSRequest() function demonstrates the WebSockets functionality
in our application. A WebSocket URI is initializing in the JavaScript as follows:

var wsUri = "ws://localhost:8080/libraryApp/app/websockets";
function sendSearchWSRequest(book) {
 websocket.send(book);
 console.log("Searching for: " + book);
}

The sendSearchWSRequest() function uses the WebSocket JavaScript API to send
the string book name to the BookWebSocket class shown in the following section.

The WebSockets endpoint
Here is the snippet for the WebSockets's ServerEndpoint annotated
class BookWebSocket:

@ServerEndpoint(value="/app/websockets")
public class BookWebSocket {
 @OnMessage
 public String searchBook(String name) {
 return "Found book " + name;
 }
}

The BookWebSocket is a POJO that is annotated with @ServerEndpoint and initialized
to a URI of /app/websockets. The @OnMessage annotation on the searchBook()
method will cause this method to be invoked when the WebSockets server endpoint
receives the message. The WebSockets endpoint simply returns back a string with the
name of the book for the case of simplicity of the sample.

Checking out a book
When a user clicks on the Checkout button on the HTML page, the input is checked
and then the sendCheckoutRequest() function is called in the JavaScript.

Chapter 5

[101]

Using JavaScript
Here is the snippet of the sendCheckoutRequest() function:

function sendCheckoutRequest(book) {
 var req = createRequest(); // defined above
 ;
 // Create the callback:
 req.onreadystatechange = function() {

 if (req.readyState == 4) {
 document.getElementById("query").innerHTML=
 "DELETE app/library/book/" + encodeURI(book.trim());
 document.getElementById("output").innerHTML
 =req.responseText;

 }
 }
 req.open("DELETE","app/library/book/" + book,true);
 req.send(null);
}

The request, which is sent to the JAX-RS resource, is a DELETE request placed on the
/app/library/book/ URI. We will cover the JAX-RS resource in the next section.

The JAX-RS resource method for the DELETE request
Here is the code snippet for the DELETE request:

@DELETE
@Path("book/{name}")
@Produces({MediaType.TEXT_PLAIN })
@Consumes({MediaType.TEXT_PLAIN })
public Book checkoutBook(@PathParam("name") String nameOfBook) {
 return bookService.deleteBook(nameOfBook);

}

This is a very simple method that will delete the book if it exists in the collection and
send back the book details using the BookWriter class covered earlier.

Returning a book
When a user clicks on the Return button on the HTML page, the input is checked
and then the sendReturnRequest() function is called in the JavaScript.

RESTful Web Services by Example

[102]

Using JavaScript
Here is the snippet of the sendReturnRequest() function:

function sendReturnRequest(book) {
 var req = createRequest(); // defined above
 ;
 // Create the callback:
 req.onreadystatechange = function() {

 if (req.readyState == 4) {
 document.getElementById("query").innerHTML=
 "POST app/library/book/" + encodeURI(book.trim());
 document.getElementById("output").innerHTML=
 req.responseText;

 }
 }
 req.open("POST","app/library/book/" + book,true);
 req.send(null);
}

The request, which is sent to the JAX-RS resource, is a POST request with
app/library/book/ as the target URI.

The JAX-RS resource method for the POST request
Here is the code snippet for the POST request:

@POST
@Path("book/{name}")
@Produces({MediaType.TEXT_PLAIN })
@Consumes({MediaType.TEXT_PLAIN })
public String returnBook(@PathParam("name") String nameOfBook) {

 return "Successfully returned Book " + nameOfBook;
}

Placing a hold on a book
When a user clicks on the Hold button on the HTML page, the input is checked and
then the sendHoldRequest() function is called in the JavaScript.

Chapter 5

[103]

Using JavaScript
Here is the snippet of the sendHoldRequest() function:

function sendHoldRequest(book) {
 var req = createRequest(); // defined above
 ;
 // Create the callback:
 req.onreadystatechange = function() {

 if (req.readyState == 4) {
 document.getElementById("query").innerHTML=
 "POST app/library/hold/" + encodeURI(book.trim());
 document.getElementById("output").innerHTML=
 req.responseText;

 }
 }
 req.open("POST","app/library/hold/" + book,true);
 req.send(null);

}

A POST request is sent to the JAX-RS resource located at the app/library/hold/
URI. The resource is described in the next section.

The JAX-RS resource method for the asynchronous
POST request
Here is the JAX-RS resource method that places a hold on a book. This is
an asynchronous resource, which is covered in Chapter 4, JSON and
Asynchronous Processing:

/**
* Asynchronously reply to placing a book on hold after sleeping for
sometime
*
*/
@POST
@Produces({MediaType.TEXT_PLAIN})
@Path("hold/{name}")
public void asyncEcho(@PathParam("name") final String name, @
Suspended final AsyncResponse ar) {
 TASK_EXECUTOR.submit(new Runnable() {

RESTful Web Services by Example

[104]

 public void run() {
 try {
 Thread.sleep(SLEEP_TIME_IN_MILLIS);
 } catch (InterruptedException ex) {
 ar.cancel();
 }
 ar.resume("Placed a hold for " + name);
 }
 });
}

The parameter ar of type AsyncResponse is similar to the AsyncContext class in
the Servlet 3.0 specification and facilitates asynchronous request execution. In this
example the request is suspended for a specific duration and the response is pushed
to the client with the AsyncResponse.resume() method.

The Singleton EJB BookService
Here is the code for the Singleton EJB, which stores the details about the books:

@Singleton
public class BookService {

 private static final HashMap<String,Book> books =
 new HashMap<String,Book>();

 public static void addBook(Book book) {
 books.put(book.getName(), book);
 }

 public static int getSize() {
 return books.size();
 }

 public static Book deleteBook(String isbn) {
 return books.remove(isbn);
 }

 public static List<Book> getBooks() {
 return new ArrayList<Book>(books.values());
 }

Chapter 5

[105]

 public BookService() {
 // initial content
 addBook(new Book("Java EE development using GlassFish
 Aplication Server","782345689","David Heffinger"));
 addBook(new Book("Java 7 JAX-WS Web Services",
 "123456789","Deepak Vohra"));
 addBook(new Book("Netbeans IDE7 CookBook","2234555567",
 "Rhawi Dantas"));
 addBook(new Book("Getting Started with RESTful WebServices",
 "11233333","Bhakti Mehta, Masoud Kalali"));

 }
}

Thus, we have seen a detailed view of the library application, which uses the
different JAX-RS 2.0, WebSockets, and JSON-P APIs.

Summary
This chapter covered two real life examples of RESTful Web Services. At the beginning,
using the event notification sample, we demonstrated how to use Server-sent Events
with asynchronous processing of servlets and how the server can push data to the
clients as and when the events occur.

Continued on, in the library application we covered the JAX-RS API and also the
custom message body readers, writers. We also demonstrated the use of JSON-P API.
The library application showed how to use WebSockets from a JavaScript client and
send messages to WebSockets endpoints.

Index
Symbols
@ApplicationPath annotation 15, 41
@Asynchronous annotation 75
@ClientEndpoint annotation

about 42 , 52
attributes 52
configurator attribute 52
decoders attribute 52
encoders attribute 52
subprotocols attribute 52
value attribute 52

@Consumes annotation 14, 15, 19, 41
@Context annotation 15, 41
@DELETE annotation 15, 41
@GET annotation 15, 41
@OnClose annotation 42
@OnError annotation 42
@OnMessage annotation 42, 49
@OnOpen annotation 42, 49
@Path annotation 15, 41
@PathParam annotation 13, 15, 41, 42
@POST annotation 15, 41
@Produces annotation 14, 15, 19, 41
@Provider annotation 19
@ServerEndpoint annotation

about 42, 48
attributes 48
configurator attribute 48
decoders attribute 48
encoders attribute 48
subprotocols attribute 48
value attribute 48

A
addEventListener function 34
anatomy, SSE 32
applications, based on Server-sent Events

best practices 59
Application subclass

defining 12
asynchronous EJB invocation

types 75
Asynchronous Servlet client

using, in event notification
application 84-88

asynchronous session bean
developing 76

Async Servlet 79
async session bean

client servlet, developing for 76-78

B
Base URI 9
Bean Validation API

using, with JAX-RS 22, 23
best practices, Server-sent Events based

applications
fault tolerance, handling 60
origin, checking for event source 59
working with proxy servers 59
working with Server-sent Events 59

best practices, WebSockets based
applications

about 56
maximum size, controlling of message 57

[108]

rate, limiting of sending data 56
working with proxy servers 57
working with WebSockets 57

binary data
sending 52, 53

Binary Large Objects (blob) 52
book

checking out, JavaScript used 101
placing on hold, JavaScript used 103
returning, JavaScript used 102
searching, JavaScript used 100

book, checking out
JAX-RS resource method, for DELETE

request 101
BookCollectionWriter class

implementing, in library application 96
book, placing on hold

JAX-RS resource method, for asynchronous
POST request 103

book, returning
JAX-RS resource method, for asynchronous

POST request 102
books collection

browsing, in library application 99
browsing, JavaScript used 99

books collection, browsing
JAX-RS resource method, for GET

request 99
book search

WebSockets endpoint 100

C
chunked transfer encoding, long polling 30
Client API, for JAX-RS 16
client servlet

developing, for async session bean 76-78
close function 34, 39
components, RESTful Web Services

base URI 9
HTTP methods 9
media type 9

content types 16
createRequest() function 99
custom entity providers, JAX-RS

about 17

MessageBodyReader 17-20
MessageBodyWriter 20-22

D
Data Confidentiality (CONFIDENTIAL) 54
Data Integrity (INTEGRAL) 54
decode() method 50
decoders 49-51
DELETE request 8, 9
deserializing 7

E
EJB

interacting, with Twitter Search API 88-91
EJB 3.1

asynchronous processing 75
EJB 3.2

asynchronous processing 75
EJB timer 81
emerging standards

and Java EE 40
comparing 43
ID, associating with event 33
SSE 31
WebSockets 37

encoders 49, 50
entities, JAX-RS 16, 17
event

ID, associating with 33
event names, associating with 34

event based API
used, for manipulating JSON documents 62

event names
associating, with events 34

event notification application
about 79
Application class, implementing 83
Asynchronous Servlet client, using 84-88
detailed look 82
EJB, interacting with Twitter Search API

88-91
GUI 80, 81
JAX-RS resource, using 83, 84
projects layout 80

[109]

servlet deployment descriptor,
deploying 82

web.xml 82
EventSource 31
EventSource interface

addEventListener function 34
close function 34
onerror event function 34
onmessage event function 34
onopen event function 34
removeEventListener event function 34

F
fault tolerance

handling, for Server-sent Events 60
features, JAX-RS

bean validation support 10, 22, 23
Client API 10, 16
server side asynchronous support 10

filters 74
fire-and-forget mechanism 75

G
getData() method 58
GET request 8, 9
getSize() method 20
GlassFish

URL 80
GlassFish v4.0

URL 80
google-gson 61
GUI, event notification application 80, 81
GUI, library application 92-94

H
HEAD request 8, 9
HTML5 47
HTML page, library application 97, 98
HTTP 26
HTTP methods 9

I
ID

associating, with event 33

idempotent method, REST 9
interceptors 74
invoke-and-check-later mechanism 75
isWritable() method 20

J
Jackson 61
Java API for Representational State

Transfer. See JAX-RS
Java API, for WebSockets

decoders 48-51
encoders 48-50

Java Architecture for XML Binding. See
JAXB

JavaBeans 22
Java EE

and emerging standards 40
and Server-sent Events 40-42
and WebSockets 42, 43

JavaScript
and Server-sent Events 34-36

Java WebSocket Client API 52
javax.json package 62
JAXB 18
JAX-RS

about 10
Application subclass, defining 12
Bean Validation API, using with 22, 23
custom entity providers 17
entities 16, 17
features 10
methods, defining for resource 11
MIME types, defining 11, 12
root resource, defining 11
subresources, defining 13

JAX-RS 2.0
new features 72

JAX-RS annotations
@ApplicationPath 15
@Consumes 15
@Consumes annotation 14
@Context 15
@DELETE 15
@GET 15
@Path 15
@PathParam 15

[110]

@POST 15
@POST annotation 14
@Produces 15
@Produces annotation 14
about 14

JAX-RS Entity Provider 96
JAX-RS resource

using, in event notification
application 83, 84

Jersey API
used, for developing Server-sent

Event client 58
JMS (Java Message Service) 75
JSON API

JsonArray class 62
JsonBuilder class 62
JsonGenerator class 62
JsonNumber class 62
JsonObject class 62
JsonParser class 62
JsonReader class 62
JsonString class 62
JsonWriter class 62
overview 62

JsonArray class 62
JsonBuilder class 62
JSON documents

generating 65
manipulating, event based API used 62
manipulating, JSON object model used 65
parsing 61, 64-66
producing 61, 63

JSON format 61
JsonGenerator class 62
JsonNumber class 62
JsonObject class 62
JSON object model

used, for manipulating JSON documents 65
JSON-P API 61
JsonParser class 62
JsonReader class 62
JsonString class 62
JsonWriter class 62
JSR 61
JSR 353 61
JSR 353 Java API for JSON Processing 88

L
Last-Event-ID 60
library application

about 92
Application subclass, implementing 95, 96
book, checking out 100
book collection, browsing 99
BookCollectionWriter class,

implementing 96
book, returning 101
book, searching 100
deploying 92
detailed look 94
GUI 92-94
hold, placing on book 102
HTML page 97, 98
interaction, monitoring 94
JAX-RS Entity Provider 96
projects layout 92
servlet deployment descriptor,

configuring 95
Singleton EJB BookService 104
web.xml 95

long polling
about 28, 44
chunked transfer encoding 30
limitations 31

long polling client
and XMLHttpRequest 29, 30

M
marshalling 18
Maven

about 80
URL 80

MDBs (Message Driven Beans) 75
media type 9
MessageBodyReader interface 17-20
MessageBodyWriter interface 20-22
messages data

sending 52, 53
MIME types

defining 11, 12

[111]

N
new features, JAX-RS 2.0

asynchronous request processing 72-74
asynchronous response processing 72-74
filters 75
interceptors 75

NIO API 67

O
OAuth 89
object model API 67
onAllDataRead method 68
onclose event function 38
onDataAvailable method 68
onerror event function 34, 39
onError method 68
onEvent() method 58
onmessage event function 34, 39
onopen event function 34, 38
onWritePossible method 68
Outboundevent.Builder API 59

P
POJOs

converting, to RESTful endpoints 10
Polifill

URL 45
polling

about 26, 27
limitations 28

POST request 8, 9
processRequest function 35
programming models

about 25
long polling 28
polling 26, 27

projects layout, event notification
application 80

projects layout, library application 92
proxy servers

working with 59
PUT request 8, 9

Q
Quality of Service (QoS) 32

R
ReadListener interface

about 67
onAllDataRead method 68
onDataAvailable method 68
onError method 68

removeEventListener event function 34
Remy Polyfill 45
Representational State Transfer. See REST
requests, REST

DELETE 8
GET 8
HEAD 8
POST 8
PUT 8

response
validation errors, reading from 24

REST
about 7, 8
idempotent method 9
principles 7
requests 8
safe method 9

RESTful endpoints
POJOs, converting to 10

RESTful Web Service
about 8
components 9

retry directive 33
root resource, JAX-RS

defining 11

S
safe method, REST 9
sendBrowseRequest() function 99
sendCheckoutRequest() function 101
send function 38
sendHoldRequest() function 103
serialize 17
serializing 7

[112]

Server-sent Event client
developing, Jersey API used 58

Server-sent Events. See SSE
Servlet 3.1

about 67
modifications 71
ReadListener interface 67
WriteListener interface 68

Servlet API interfaces
modifications 68-71

ServletInputStream interface
about 68
isFinished property 68
isReady property 68
setReadListener method 68

ServletOutputStream interface
isReady method 68
setWriteListener method 68

Singleton EJB BookService
code 104

SOAP 7
SSE

about 44, 47, 58
anatomy 32
and Java EE 40-42
and JavaScript 34-36
fault tolerance, handling for 60
working with 59

startUpdating function 28
StAX 62
streaming event based API 67
subresources

defining 13

T
twitter4j API 89
Twitter Search API 79

EJB, interacting with 88-91
Twitter v1.1 API 89

U
unmarshalling 18
updateDiv function 28

V
validation

about 22
enabling, in application 23

validation errors
reading, from response 24

W
WebSocket class

close function 39
onclose event function 38
onerror event function 39
onmessage event function 39
onopen event function 38
send function 38
WebSocket constructor 38

WebSocket constructor 38
WebSocket handshake 37, 38
WebSockets

about 37, 44, 47
and Java EE 42, 43
browsers support 38, 39
JavaScript support 38, 39
securing 53-56

WebSockets based applications
best practices 56

willDecode() method 50
WriteListener interface 68
writeTo() method 20
WSDL 7

X
XML format 61
XMLHttpRequest object

about 29
and long polling client 29, 30

Thank you for buying
Developing RESTful Services with

JAX-RS 2.0, WebSockets, and JSON

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

RESTful Java Web Services
ISBN: 978-1-84719-646-0 Paperback: 256 pages

Master core REST concepts and create RESTful web
services in Java

1.	 Build powerful and flexible RESTful web
services in Java using the most popular Java
RESTful frameworks 2to date (Restlet, JAX-RS
based frameworks Jersey and RESTEasy, and
Struts 2)

2.	 Master the concepts to help you design and
implement RESTful web services

3.	 Plenty of screenshots and clear explanations to
facilitate learning

RESTful PHP Web Services
ISBN: 978-1-84719-552-4 Paperback: 220 pages

Learn the basic architechtural concepts and steps
through examples of consuming and creating
RESTful web service in PHP

1.	 Get familiar with REST principles

2.	 Learn how to design and implement PHP web
services with REST

3.	 Real-world examples, with services and client
PHP code snippets

4.	 Introduces tools and frameworks that can
be used when developing RESTful PHP
applications

Please check www.PacktPub.com for information on our titles

Java 7 JAX-WS Web Services
ISBN: 978-1-84968-720-1 Paperback: 64 pages

A practical, focused mini book for creating Web
Services in Java 7

1.	 Develop Java 7 JAX-WS web services using the
NetBeans IDE and Oracle GlassFish server

2.	 End-to-end application which makes use of the
new clientjar option in JAX-WS wsimport tool

3.	 Packed with ample screenshots and practical
instructions

Spring Web Services 2 Cookbook
ISBN: 978-1-84951-582-5 Paperback: 322 pages

Over 60 recipes providing comprehensive coverage of
practical real-life implementation of Spring-WS

1.	 Create contract-first Web services

2.	 Explore different frameworks of Object/XML
mapping

3.	 Secure Web Services by Authentication,
Encryption/Decryption and Digital Signature

4.	 Learn contract-last Web Services using Spring
Remoting and Apache CXF

5.	 Implement automated functional and load
testing

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building RESTful Web Services Using JAX-RS
	Understanding REST
	RESTful Web Services
	Verbs in REST
	Safety and idempotence

	Introduction to JAX-RS
	Converting POJOs to RESTful resources
	Defining a root resource as identified by a URI
	Defining the methods for the resource
	Defining the MIME types
	Defining the Application subclass
	Defining the subresources

	More on JAX-RS annotations
	The Client API for JAX-RS
	Entities in JAX-RS
	Custom entity providers in JAX-RS
	MessageBodyReader
	MessageBodyWriter

	Using the Bean Validation API with JAX-RS
	Enabling validation in the application
	Reading validation errors from the response

	Summary

	Chapter 2: WebSockets and
Server-sent Events
	The programming models
	Polling
	Long polling
	Chunked transfer encoding

	Emerging standards
	Server-sent Events
	The SSE anatomy

	Associating an ID with an event
	Connection loss and reconnecting retries
	Associating event names with events
	Server-sent Events and JavaScript

	WebSockets
	Web socket handshake
	Browser and JavaScript support for WebSockets

	Java EE and the emerging standards
	Java EE and Server-sent Events
	Java EE and WebSockets

	Comparison and use cases of different programming models and standards
	Summary

	Chapter 3: Understanding WebSockets and Server-sent Events
in Detail
	Encoders and decoders in Java API for WebSockets
	The Java WebSocket Client API
	Sending different kinds of message data: blob/binary
	Security and WebSockets
	Best practices for WebSockets based applications
	Throttling the rate of sending data
	Controlling the maximum size of the message
	Working with proxy servers and WebSockets

	Server-sent Events
	Developing a Server-sent Event client using Jersey API

	Best practices for applications based on Server-sent Events
	Checking if the event source's origin is as expected
	Working with proxy servers and Server-sent Events
	Handling fault tolerance for Server-sent Events

	Summary

	Chapter 4: JSON and Asynchronous Processing
	Producing and parsing JSON documents
	An overview of JSON API
	Manipulating JSON documents using the event-based API
	Producing JSON documents
	Parsing JSON documents
	Manipulating JSON documents using the JSON object model
	Generating JSON documents
	Parsing JSON documents

	When to use the streaming versus the object API

	Introducing Servlet 3.1
	NIO API and Servlet 3.1
	Introducing ReadListener and WriteListener
	Changes in the Servlet API interfaces
	More changes in Servlet 3.1

	New features in JAX-RS 2.0
	Asynchronous request and response processing
	Filters and interceptors

	Asynchronous processing in EJB 3.1
and 3.2
	Developing an asynchronous session bean
	Developing a client servlet for the async session bean

	Summary

	Chapter 5: RESTful Web Services
by Example
	Event notification application
	The project's layout
	The event notification GUI
	A detailed look at the event notification application
	The web.xml
	The implementation of the Application class
	The JAX-RS resource used by the application
	The Asynchronous Servlet client used by the application
	The EJB that interacts with the Twitter Search API

	The library application
	How the application is deployed
	The project's layout
	The library application GUI
	Application interaction monitoring
	A detailed look at the library application
	The web.xml
	The Application subclass
	JAX-RS Entity Provider: BookCollectionWriter
	The HTML page
	Browsing the collection of books
	Searching for a book
	Checking out a book
	Returning a book
	Placing a hold on a book
	The Singleton EJB BookService

	Summary

	Index

