

PowerShell Troubleshooting
Guide

Minimize debugging time and maximize troubleshooting
efficiency by leveraging the unique features of the
PowerShell language

Michael Shepard

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

PowerShell Troubleshooting Guide

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1211114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-357-1

www.packtpub.com

Cover image by Michal Jasej (milak6@wp.pl)

www.packtpub.com

Credits

Author
Michael Shepard

Reviewers
Christian Droulers

Rob Huelga

Steve Shilling

Acquisition Editor
Meeta Rajani

Content Development Editor
Adrian Raposo

Technical Editors
Tanvi Bhatt

Pragnesh Billimoria

Copy Editors
Simran Bhogal

Maria Gould

Ameesha Green

Project Coordinator
Kinjal Bari

Proofreaders
Simran Bhogal

Joel T. Johnson

Indexer
Monica Ajmera Mehta

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

About the Author

Michael Shepard has been working with computers since the early '80s, starting
with an Apple II in school and a Commodore 64 at home. He started working in the
IT industry in 1989 and has been working full-time since 1997. He has been working
at Jack Henry & Associates, Inc. since 2000. His focus has changed over the years
from being a database application developer to a DBA, an application admin, and
is now a solutions architect. In his years as a DBA, he found PowerShell to be a
critical component in creating the automation required to keep up with a growing
set of servers and applications. He is active in the PowerShell community at Stack
Overflow and projects at CodePlex. He has been blogging about PowerShell since
2009 at http://powershellstation.com.

I'd like to thank my employer, Jack Henry & Associates, Inc., for
allowing me the freedom over the last few years to both learn and
teach PowerShell. My wonderful wife, Stephanie, and my children,
Simeon and Gwen, also deserve thanks for humoring me when
I can't stop talking about PowerShell, and for giving me some
breathing room to write.

http://powershellstation.com

About the Reviewers

Christian Droulers is a late-blooming software developer. He only started
programming in college and has not stopped since. He's interested in beautiful,
clean, and efficient code.

Steve Shilling has worked in the IT industry commercially since 1987, but
started with computers in 1982 writing BASIC programs and debugging game
programs written by others. He has broad knowledge about Unix, Windows, and
Mainframe systems. He primarily lives in the Unix/Linux world automating systems
for deployments and businesses, and has spent many years working in system
administration, software development, training, and managing technical people. He
remains in the technical field of expertise providing knowledge and experience to
companies around the world to make their systems stable, reliable, and delivered
on time. His experience has taken him through many different industries covering
banking and finance, insurance services, betting exchanges, TV and media, retail, and
others, allowing him to have a unique perspective of IT in business where most have
only worked in one industry.

Steve works for TPS Services Ltd., which specializes in IT training and consultancy,
life coaching, management training, and counselling. The IT part of TPS Services Ltd.
specializes in Linux/Unix systems for small, medium, and large organizations, and
the integration of Linux and Windows systems.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: PowerShell Primer 7

Introduction 7
Cmdlets 8

The big three cmdlets 10
Functions 13
Scripts 14
Pipelines 15

How pipelines change the game 17
What's the fuss about sorting? 19

Variables 20
Modules 21
Further reading 22
Summary 23

Chapter 2: PowerShell Peculiarities 25
PowerShell strings 25

String substitution 26
How string substitution goes wrong 28
Escaping in PowerShell strings 29

Function output 29
Pipeline processing 32
PowerShell error handling 37

The trap statement 37
try, catch, and finally statements 39
Non-terminating errors 40

Further reading 42
Summary 43

Table of Contents

[ii]

Chapter 3: PowerShell Practices 45
Filter left 45
Format right 47
Comment-based help 49
Using Write-* cmdlets 53

Write-Host 53
Output – the correct way 54
What about the other Write-* cmdlets? 55
Which Write should I use? 57
Write-Verbose 57
Write-Debug 58
Write-Warning 58
Write-Error 58
Write-Progress 59

Further reading 60
Summary 61

Chapter 4: PowerShell Professionalism 63
Naming conventions 63

Cmdlet and function naming 64
Parameter naming 65
Module naming 66
Variable naming 67

Modularization 67
Breaking a process into subtasks 67
Helper functions 68
Single responsibility principle 69
Don't repeat code 69
Understanding the process 70

Version control 71
Using version control with PowerShell 73

Unit testing 73
Rolling your own unit tests 74
Why is PowerShell testing difficult? 77
An introduction to Pester 78
Mocking with Pester 80

Further reading 82
Summary 83

Chapter 5: Proactive PowerShell 85
Error handling 85

Error-handling guidelines 86

Table of Contents

[iii]

Error-handling techniques 86
Investigating cmdlet error behavior 88
Catch and release 89

CmdletBinding() 90
Common parameter support 91

SupportsShouldProcess 92
Parameter name validation 93

Parameter value validation 94
Pipeline input 96
Pipelines and function execution 99
Parameter type transformation 102
#REQUIRES statements 104
Set-StrictMode and Set-PSDebug -strict 105
Further reading 107
Summary 107

Chapter 6: Preparing the Scripting Environment 109
Validating operating system properties 109

Workstation/server version 110
Operating system version 111
Putting it all together 114

Validating service status 115
Validating disk and memory availability 116
Validating network connectivity 119

Using telnet 119
Using Test-NetConnection 120
Writing Test-NetConnection in downstream versions 120
Testing UDP and ICMP connectivity 122
Validating connectivity prior to implementation 123
Putting it all together 124

Further reading 127
Summary 127

Chapter 7: Reactive Practices – Traditional Debugging 129
Reading error messages 130

The color problem 130
Changing console colors 131
Changing ISE colors 132
PowerShell profiles 134
Error message content 134

Using Set-PSDebug 137

Table of Contents

[iv]

Debugging in the console 140
Debugging in the ISE 145
Event logs 147

Listing event logs 149
Reading event logs 150
Writing to event logs 152

The PSDiagnostics module 153
Using –confirm and –whatif 154
Reducing input set 156
Using Tee-Object to see intermediate results 158
Replacing the foreach loop with the foreach-object cmdlet 159
Further reading 165
Summary 166

Chapter 8: PowerShell Code Smells 167
Code smells 168

Code smells, best practices, antipatterns, and technical debt 168
Language-agnostic code smells 169
PowerShell-specific code smells 169
Missing Param() statements 170
Homegrown common parameters 172
Unapproved verbs 173
Accumulating output objects 174
Sequences of assignment statements 175
Using untyped or [object] parameters 176
Static analysis tools – ScriptCop and Script Analyzer 180

ScriptCop 180
Script Analyzer 182

Further reading 185
Summary 186

Index 187

Preface
PowerShell Troubleshooting Guide uses easy-to-understand examples to explain the
PowerShell language, enabling you to spend more of your time writing code to
solve the problems you face and less time agonizing over syntax and cryptic error
messages. Beginning with the foundations of PowerShell, including functions,
modules, and the pipeline, you will learn how to leverage the power built into
the language to solve problems and avoid reinventing the wheel. Writing code in
PowerShell can be fun, and once you've learned the techniques in this book, you
will enjoy PowerShell more and more.

What this book covers
Chapter 1, PowerShell Primer, provides a brief introduction to some of the most
important entities in the PowerShell language including cmdlets, functions, scripts,
and modules. A special emphasis is placed on the importance of the pipeline in
PowerShell operations.

Chapter 2, PowerShell Peculiarities, includes a number of features of the PowerShell
language, which are unusual when compared with other mainstream programming
languages. Examples of these topics are output from functions and non-terminating
errors.

Chapter 3, PowerShell Practices, shows a few ways that the scripting experience in
PowerShell can be improved, either in performance or in maintainability. A lengthy
discussion of the various output cmdlets is included.

Chapter 4, PowerShell Professionalism, gives examples of practices that might not be as
familiar to traditional system administrators but are common among professional
developers. These practices will help scripters create more reliable products and be
more confident when making changes to existing codebases.

Preface

[2]

Chapter 5, Proactive PowerShell, presents a number of practices that, when applied to
code, will result in more flexible code with fewer bugs. In a sense, this is pre-emptive
troubleshooting, where we create our code thoughtfully in order to reduce the need
for troubleshooting later.

Chapter 6, Preparing the Scripting Environment, covers the idea of knowing the
characteristics of the environment in which your scripts are running. We also
spend some effort trying to weed out network connectivity issues.

Chapter 7, Reactive Practices – Traditional Debugging, shows how to perform traditional
troubleshooting in PowerShell using the debugging features of the console and the
ISE, along with other techniques. It wraps up with an example of how using the
wrong PowerShell feature to perform an operation can lead to poor performance.

Chapter 8, PowerShell Code Smells, explains the concept of code smells (signs of poorly
implemented code) and compares it with antipatterns, best practices, and technical
debt. It then shows some ways that PowerShell code might begin to smell.

What you need for this book
Most of the examples in the book will work with PowerShell Version 2.0 and above.
In places where a higher version of the engine is required, it will be indicated in
the text. You should have no problems running the provided code on either a client
installation (Windows 7 or greater) or a server installation (Windows Server 2008 R2
or greater).

Who this book is for
This book is intended for anyone who has some experience with PowerShell and
would like to expand their understanding of the language design and features in
order to spend less time troubleshooting their code. The examples are designed to
be understood without needing any specific application knowledge (for example,
Exchange, Active Directory, and IIS) in order to keep the intent clear. A few sections
are aimed at system administrators specifically. This is due to the different skill set
that most administrators bring to the table compared with developers. However,
the points made are applicable to anyone using PowerShell.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The Get-Help cmdlet has a number of switches that control precisely what help
information is displayed."

A block of code is set as follows:

param($name)
 $PowerShellVersion=$PSVersionTable.PSVersion
 return "We're using $PowerShellVersion, $name!"

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

#find largest 5 items in the directory tree
dir -recurse |
 tee-object –Variable Files |
 sort-object Length |
 tee-object –Variable SortedFiles |
 select-object -last 5

Any command-line input or output is written as follows:

Get-ChildItem "c:\program files" –include *.dll –recurse

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "It features
a button labeled Scan Script, a gear button for options, and a grid for results."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message. If there is a topic that you
have expertise in and you are interested in either writing or contributing to a book,
see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

PowerShell Primer
This chapter will give you a very brief overview of the main features of the
PowerShell language. By the end of the chapter, you will be familiar with the
following topics:

• Cmdlets
• Functions
• Scripts
• Pipelines
• Variables
• Modules

Introduction
Windows PowerShell (or just PowerShell, for short) was introduced by Microsoft
in late 2006 accompanied by little fanfare. In the last seven years, PowerShell has
gone from being what might have seemed like a research project to what is now
the mainstay of Windows automation and is included in every Windows operating
system and most of the major Microsoft products including Exchange, System
Center, SQL Server, SharePoint, and Azure.

PowerShell is often thought of as a command-line language, and that is an
accurate (but incomplete) view. Working on the command line in PowerShell is a
joy compared to MS-DOS batch files and most of the command-line tools that IT
professionals are used to having at their fingertips work with no changes in the
PowerShell environment. PowerShell is also a first-class scripting language where
the knowledge you gain from the command line pays off big time. Unlike MS-DOS,
PowerShell was designed from the beginning to be a powerful tool for scripting.
Unlike VBScript, there is an interactive PowerShell console that allows you to
iteratively develop solutions a bit at a time as you work your way through
a sequence of objects, methods, and properties.

PowerShell Primer

[8]

PowerShell includes several different elements that work together to create a very
powerful and flexible ecosystem. While this chapter will give you an overview of
several of these pieces, be aware that the PowerShell language is the subject of many
books. For in-depth coverage of these topics, refer to PowerShell In Practice by Don
Jones, Jeffery Hicks, and Richard Siddaway, Manning Publications.

Cmdlets
In PowerShell, a cmdlet (pronounced "command-let") describes a unit of
functionality specific to PowerShell. In version 1.0 of PowerShell, the only way to
create a cmdlet was by using managed (compiled) code, but 2.0 introduced advanced
functions, which have the same capabilities as cmdlets. Built-in cmdlets exist to
interact with the filesystem, services, processes, event logs, WMI, and other system
objects. Some examples of cmdlets, which also show the flexibility in parameter
passing, are shown as follows:

• Get-ChildItem "c:\program files" –include *.dll –recurse: This
cmdlet outputs all .dll files under c:\program files

• Get-EventLog Application –newest 5: This cmdlet outputs the five most
recent entries in the Application event log

• Set-Content –path c:\temp\files.txt –value (dir c:\): This cmdlet
writes a directory listing to a text file

Cmdlets are named with a two-part construction: verb-noun. Verbs in PowerShell
describe the actions to be performed and come from a common list provided by
Microsoft. These include Get, Set, Start, Stop, and other easy-to-remember terms.
The Get-Verb cmdlet provides the list of approved verbs with some information on
how the verbs can be grouped. The following screenshot shows the beginning of the
list of verbs and their corresponding groups:

Chapter 1

[9]

PowerShell nouns specify on which kind of objects the cmdlet operates. Examples
of nouns are Service, Process, File, or WMIObject Unlike the list of verbs, there is
no managed list of approved nouns. The reason for this is simple. With every new
version of Windows, more and more cmdlets are being delivered which cover more
and more of the operating system's features. An up-to-date reference for verbs along
with guidance between similar or easily confused verbs can be found at http://
msdn.microsoft.com/en-us/library/ms714428.aspx.

Putting nouns and verbs together, you get full cmdlet names such as Get-Process
and Start-Service. By providing a list of verbs to choose from, the PowerShell
team has gone a long way toward simplifying the experience for users. Without
the guidance of a list such as this, cmdlet authors would often be forced to choose
between several candidates for a cmdlet name. For instance, Stop-Service is the
actual cmdlet name, but names such as Kill-Service and Terminate-Service
would both convey the same effect. Knowing that Stop is the approved verb not only
makes the decision simple, it also makes it simple to guess how one would terminate
a process (as opposed to a service). The obvious answer would be Stop-Process.

Cmdlets each have their own set of parameters that allow values to be supplied on
the command line or through a pipeline. Switch parameters also allow for on/off
options without needing to pass a value. There is a large set of common parameters
that can be used with all cmdlets. Cmdlets that modify the state of the system also
generally allow the use of the –Whatif and –Confirm risk mitigation parameters.
Common parameters and risk mitigation parameters are covered in detail in
Chapter 5, Proactive PowerShell.

http://msdn.microsoft.com/en-us/library/ms714428.aspx
http://msdn.microsoft.com/en-us/library/ms714428.aspx

PowerShell Primer

[10]

The big three cmdlets
When learning PowerShell, it's customary to emphasize three important cmdlets that
are used to get PowerShell to give information about the environment and objects
that are returned by the cmdlets. The first cmdlet is Get-Command. This cmdlet is
used to get a list of matching cmdlets, scripts, functions, or executables in the current
path. For instance, to get a list of commands related to services, the Get-Command
service command would be a good place to start. The list displayed might look
like this:

The thought behind listing Get-Command as the first cmdlet you would use is that it
is used to discover the name of cmdlets. This is true, but in my experience you won't
be using Get-Command for very long. The verb-noun naming convention combined
with PowerShell's very convenient tab-completion feature will mean that as you
get familiar with the language you will be able to guess cmdlet names quickly
and won't be relying on Get-Command. It is useful though, and might show you
commands that you didn't know existed. Another use for Get-Command is to figure
out what command is executed. For instance, if you encountered the Compare $a $b
command line and didn't know what the Compare command was, you could try the
Get-Command command to find that Compare is an alias for Compare-Object.

PowerShell provides aliases for two reasons. First, to provide aliases
that are commands in other shells (such as dir or ls), which lead us
to PowerShell cmdlets that perform similar functions. Secondly, to
give abbreviations that are shorter and quicker to type for commonly
used cmdlets (for example, ? for Where-Object and gsv for Get-
Service). In the PowerShell community, a best practice is to use
aliases only in the command line and never in scripts. For that reason, I
will generally not be using aliases in example scripts.

Chapter 1

[11]

A similar trick can be used to find out where an executable is found: Get-Command
nslookup | Select-Object Path returns the path C:\Windows\system32\
nslookup.exe.

The second and probably most important cmdlet is Get-Help. Get-Help is used to
display information in PowerShell's help system. The help system contains information
about individual cmdlets and also contains general information about PowerShell-
related topics. The cmdlet help includes syntax information about parameters used
with each cmdlet, detailed information about cmdlet functionality, and it also often
contains helpful examples illustrating common ways to use the cmdlet.

Pay attention to the help files. Sometimes, the problem you are
having is because you are using a cmdlet or parameter differently
than the designer intended. The examples in the help system might
point you in the right direction.

The following screenshot shows the beginning of the help information for the Get-
Help cmdlet:

PowerShell Primer

[12]

Another source of information in the help files are topics about the PowerShell
language. The names of these help topics start with about_, and range from a few
paragraphs to several pages of detailed information. In a few cases, the about_ topics
are more detailed than most books' coverage of them. The following screenshot
shows the beginning of the about_Language_Keywords topic (the entire topic is
approximately 13 pages long):

The Get-Help cmdlet has a number of switches that control precisely what help
information is displayed. The default display is somewhat brief and can be expanded
by using the –Full or –Detailed switches. The –Examples switch displays the list
of examples associated with the topic. The full help output can also be viewed in a
pop-up window in PowerShell 3.0 or higher using the –ShowWindow switch.

PowerShell 3.0 and above do not ship with any help content. To
view help in these systems you will need to use the Update-
Help cmdlet in an elevated session.

Chapter 1

[13]

The final member of the big three is Get-Member. In PowerShell, all output from
commands comes in the form of objects. The Get-Member cmdlet is used to display
the members (for example, properties, methods, and events) associated with a set
of objects as well as the types of those objects. In general, you will pipe objects
into Get-Member to see what you can do with those objects. An example involving
services is shown as follows:

Functions
Functions are similar to cmdlets and should follow the same naming conventions.
Whereas cmdlets are compiled units of PowerShell functionality written in managed
code like C#, functions are written using the PowerShell language. Starting with
PowerShell 2.0, it has been possible to write advanced functions, which are very
similar to cmdlets. It is possible to use common parameters and risk mitigation
parameters with advanced functions. An example of a function is shown as follows:

function get-PowerShellVersionMessage{

param($name)

 $PowerShellVersion=$PSVersionTable.PSVersion

 return "We're using $PowerShellVersion, $name!"

}

PowerShell Primer

[14]

Calling the function at the command line is straightforward, as shown in the
following screenshot:

Scripts
Scripts are simply files with a .ps1 file extension, which contain PowerShell code.
It is possible to parameterize a script file in the same way that you would a function
using a Param() statement at the beginning of the file. If we were to store the
following code in a file called Get-PowerShellVersionMessage.ps1, it would be
roughly equivalent to the Get-PowerShellVersionMessage function in the
previous section:

param($name)
 $PowerShellVersion=$PSVersionTable.PSVersion
 return "We're using $PowerShellVersion, $name!"

A security feature of PowerShell is that it won't run a script in the current directory
without specifically referring to the directory, so calling this script would look
like this:

.\get-powershellversionmessage –name Mike

The following screenshot shows the aforementioned code being stored in a file:

Chapter 1

[15]

And the output would be (on the computer I'm using): We're using
PowerShell 4.0, Mike.

Depending on your environment, you might not be able to run scripts
until you change the execution policy. The execution policy dictates
whether scripts are allowed to be executed, where those scripts can
be located, and whether they need to be digitally signed. Typically, I
use set-executionpolicy RemoteSigned to allow local scripts
without requiring signatures. For more information about execution
policies, refer to about_execution_policies.

It is also possible to define multiple functions in a script. However, when doing
so, it is important to understand the concept of scope. When a script or function
is executed, PowerShell creates a new memory area for definitions (for example,
variables and functions) that are created during the execution. When the script or
function exits, that memory is destroyed, thereby removing the new definitions.
Executing a script with multiple functions will not export those functions into the
current scope. Instead, the script executes in its own scope and defines the functions
in that scope. When the script execution is finished, the newly created scope is
exited, removing the function definitions. To overcome this situation, the dot-source
operator was created. To dot-source a file means to run the file, without creating a
new scope in which to run. If there was a script file with function definitions called
myFuncs.ps1, dot-sourcing the file would use the following syntax:

. .\myFuncs.ps1

Note that there is a space after the first dot, and that since the script is in the current
directory explicit use of the directory is required.

Pipelines
PowerShell expressions involving cmdlets and functions can be connected together
using pipelines. Pipelines are not a new concept, and have been in DOS for a long
time (and in Unix/Linux forever). The idea of a pipeline is similar to a conveyor
belt in a factory. Materials on a conveyor belt move from one station to the next as
workers or machinery work on the materials to connect, construct, or somehow
modify the work in progress. In the same way, pipelines allow data to move from
one command to the next, as the output of one command is treated as the input
for the next. There is no practical limit to the number of commands that can be
connected this way, but readability does keep command lines from continuing
forever. It can be tempting to string more and more expressions together to create
a single-line solution, but troubleshooting a pipeline evaluation can be tricky.

PowerShell Primer

[16]

When working with long pipeline constructions, consider
breaking the line into several expressions to make the
execution clearer.

Prior to PowerShell, pipelines dealt with output and input in terms of text, passing
strings from one program to the next regardless of what kind of information was
being processed. PowerShell makes a major change to this paradigm by treating all
input and output as objects. By doing this, PowerShell cmdlets are able to work with
the properties, methods, and events that are exposed by the data rather than simply
dealing with the string representation. The PowerShell community often refers to the
methods used by string-based pipelines as parse-and-pray, which is named after the
twin operations of string parsing based on an understanding of the text format and
hoping that the format of the output doesn't ever change. An example, shown in the
following screenshot, illustrates this quite well:

It's easy to think of the output of the MS-DOS dir command as a sequence of files
and folders, but if the output is carefully studied, something different becomes clear.
There is a tremendous amount of other information provided:

• Volume information
• Volume serial number
• A directory-level caption
• A list of files and folders
• A count of files

Chapter 1

[17]

• The total size of those files
• The number of directories
• The space free on the drive

To work with this output and deal with, for instance, the file names, there's a
tremendous amount of work that would need to be done to analyze the formatting of
all of these elements. Also, there are several different formatting parameters that can
be used with the MS-DOS dir command that would affect the output. By passing
data between cmdlets as objects, all of this work is eliminated. The PowerShell
Get-ChildItem cmdlet, which is similar to the MS-DOS dir command, outputs a
sequence of file and directory objects if the current location is a filesystem location.

How pipelines change the game
To see how the choice of an object-oriented pipeline changes the way work is done,
it is sufficient to look at the MS-DOS dir command. I am picking on the dir
command because it has a simple function and everyone in IT has some level of
experience with it. If you wanted to sort the output of a dir command, you would
need to know what the parameters built into the command are. To do that, you'd
do something like this:

PowerShell Primer

[18]

It's clear that the designer of the command had sorting in mind, because there is a
/O option with five different ways to sort (ten if you include reverse). That is helpful,
but files have a lot more than five properties. What if you wanted to sort by more
than one property? Ignoring those questions for a moment, does the collection of
sorting options for this command help you at all if you were trying to sort the
output of a different command (say an ATTRIB or SET command)? You might hope
that the same developer wrote the code for the second command, or that they
used the same specifications, but you would be disappointed. Even the simple
operation of sorting output is either not implemented or implemented differently
by MS-DOS commands.

PowerShell takes an entirely different approach. If you were to look at the help for
Get-ChildItem, you would find no provision for sorting at all. In fact, PowerShell
cmdlets do not use parameters to supply sorting information. Instead, they use the
object-oriented pipeline. MS-DOS developers needed to encode the sort parameters
for the dir command inside the dir command itself is because that is the only
place that the properties exist (including sorting criteria). Once the command
has been executed, all that is left is text, and sorting text based on properties
is a complex parse-and-pray operation (which we have already discussed). In
PowerShell, however, the output of Get-ChildItem is a sequence of objects, so
cmdlets downstream can still access the properties of the objects directly. Sorting in
PowerShell is accomplished with the Sort-Object cmdlet, which is able to take a
list of properties (among other things) on which to sort the sequence of objects that
it receives as input. The following are some examples of sorting a directory listing in
MS-DOS and also in PowerShell:

Sorting method DOS
command

PowerShell equivalent

Sort by filename DIR /O:N Get-childitem | sort-object Name

Sort by extension DIR /O:E Get-ChildItem | Sort-object
Extension

Sort by size DIR /O:S Get-ChildItem | Sort-object Size

Sort by write date DIR /O:D Get-ChildItem | Sort-object
LastWriteTime

Sort by creation date Out of
luck

Get-ChildItem | Sort-object
CreationTime

Sort by name and size Out of
luck

Get-ChildItem | Sort-object
Name,Size

Chapter 1

[19]

It can be clearly seen by these examples that:

• PowerShell examples are longer
• PowerShell examples are easier to read (at least the sorting options)
• PowerShell techniques are more flexible

The most important thing about learning how to sort directory entries using Sort-
Object is that sorting any kind of objects is done the exact same way. For instance,
if you retrieved a list of applied hotfixes on the current computer using Get-hotfix,
in order to sort it by HotFixID, you would issue the Get-Hotfix | Sort-Object –
Property HotFixID command:

Another point to note about sorting objects by referring to properties is that the
sorting is done according to the type of the property. For instance, sorting objects by
a numeric property would order the objects by the magnitude of the property values,
not by the string representation of those values. That is, a value of 10 would sort
after 9, not between 1 and 2. This is just one more thing that you don't have to
worry about.

What's the fuss about sorting?
You might be asking, why is sorting such a big deal? You'd be correct; sorting is
not necessarily a tremendously important concept. The point is, the method that
the designers of PowerShell took with the pipeline (that is, using objects rather than
strings) that allows this sorting method also allows other powerful operations such
as filtering, aggregating, summarizing, and narrowing.

PowerShell Primer

[20]

Filtering is the operation of selecting which (entire) objects in the pipeline will
continue in the pipeline. Think of filtering like a worker who is inspecting objects on
the conveyor belt, picking up objects that are bad and throwing them away (in the
bit bucket). In the same way, objects that do not match the filter criteria are discarded
and do not continue as output. Filtering in PowerShell is done via the Where-Object
cmdlet and takes two forms. The first form is somewhat complicated to look at, and
requires some explaining. We will start with an example such as the following:

Get-ChildItem | Where-object {$_.Size –lt 100}

Hopefully, even without an explanation, it is clear that the output would be a list
of files that have a size less than 100. This form of the Where-Object cmdlet takes
a piece of code as a parameter (called a scriptblock), which is evaluated for each
object in the pipeline. If the script evaluates to true when the object in the pipeline
is assigned to the special variable $_, the object will continue on the pipeline. If it
evaluates to false, the object is discarded.

PowerShell 3.0 made a couple of changes to the Where-Object cmdlet. First, it added
an easier-to-read option for the $_ variable, called $PSItem. Using that, the previous
command can be rewritten as follows:

Get-ChildItem | Where-object {$PSItem.Size –lt 100}

This is slightly more readable, but Version 3.0 also added a second form that
simplifies it even more. If the script block is referring to a single property, a single
operator, and a constant value, the simplified syntax can be used, shown as follows:

Where-Object Property Operator Value

Note that there are no braces indicating a scriptblock, and no $_ or $PSItem.
The simplified syntax for our sample filter command is this:

Get-ChildItem | Where-Object Size –lt 100

Variables
PowerShell variables, similar to variables in other programming languages, are
names for data stored in memory. PowerShell variable references begin with a dollar
sign and are created by assigning a value with the assignment operator (the equals
sign). Unlike many programming languages, you do not need to define variables
before using them or even specify what type of information the variable is going to
point to. For instance, the following statements are all valid:

$var = 5

$anothervar = "Hello"

$files = dir c:\

Chapter 1

[21]

Note that while the first two assignments were simple (integer and string constants),
the third involved executing a pipeline (with a single statement) and storing the
results of that pipeline in a variable. The command in the third line returns a
collection of more than one kind of object (it has files and folders). Note that there is
no special notation required to store a collection of objects.

Several common parameters in PowerShell take the name of a variable in order to
store results of some kind in that variable. The –ErrorVariable, –WarningVariable,
–OutVariable parameters, and (new in Version 4.0) –PipelineVariable parameter
all follow this pattern. Also, all of the *–Variable cmdlets have a –Name parameter.
These parameters are expecting the name of the variable rather than the contents of the
variable. The name of the variable does not include the dollar sign. In the following
screenshot, you can see that the –outvariable parameter was passed the file value,
which caused a copy of the output to be stored in the variable called file:

In short, referencing the content of the variable involves the dollar sign, but
referencing the variable name does not.

Modules
In Version 1.0 of PowerShell, the only ways to group lists of functions were to either
put script files for each function in a directory or to include several functions in a script
file and use dot-sourcing to load the functions. Neither solution provided much in
the way of functionality, though. Version 2.0 introduced the concept of modules. A
PowerShell module usually consists of a folder residing in one of the directories listed
in the PSModulePath environment variable and contains one of the following:

• A module file (.psm1) with the same name as the folder
• A module manifest (.psd1) with the same name as the folder
• A compiled assembly (.dll) with the same name as the folder

PowerShell Primer

[22]

One tremendous advantage that modules have over scripts is that while every
function in a script is visible when the script is run, visibility of functions (as well
as variables and aliases) defined within a module can be controlled by using the
Export-ModuleMember cmdlet.

The following module file, named TroubleShooting.psm1, re-implements the
Get-PowerShellMessage function from earlier in the chapter using a helper
function (Get-Message). Since only Get-PowerShellVersionMessage was exported,
the helper function is not available after the module is imported but it is available to
be called by the exported function.

function Get-Message{
param($ver,$name)
 return "We're using $ver, $name!"
}

function Get-PowerShellVersionMessage{
param($name)
 $version=$PSVersionTable.PSVersion
 $message=Get-Message $version $name
 return $message
}

Export-ModuleMember Get-PowerShellVersionMessage

Importing a module is accomplished by using the Import-Module cmdlet. Version
3.0 of PowerShell introduced the concept of automatic importing. With this feature
enabled, if you refer to a cmdlet or function that does not exist, the shell looks in
all of the modules that exist on the system for a matching name. If it finds one, it
imports the module automatically. This even works with tab-completion. If you hit
the Tab key, PowerShell will look for a cmdlet or function in memory that matches,
but If it doesn't find one it will attempt to load the first module that has a function
whose name matches the string you're trying to complete. Listing the cmdlets that
have been loaded by a particular module is as simple as the Get-Command –Module
module name.

Further reading
For more information, check out the following references:

• The Monad Manifesto at http://blogs.msdn.com/b/powershell/
archive/2007/03/19/monad-manifesto-the-origin-of-windows-
powershell.aspx

http://blogs.msdn.com/b/powershell/archive/2007/03/19/monad-manifesto-the-origin-of-windows-powershell.aspx
http://blogs.msdn.com/b/powershell/archive/2007/03/19/monad-manifesto-the-origin-of-windows-powershell.aspx
http://blogs.msdn.com/b/powershell/archive/2007/03/19/monad-manifesto-the-origin-of-windows-powershell.aspx

Chapter 1

[23]

• Microsoft's approved cmdlet verb list at http://msdn.microsoft.com/en-
us/library/ms714428.aspx

• get-help get-command

• get-help get-verb

• get-help about_aliases

• get-help get-member

• get-help about_functions

• get-help about_functions_advanced

• get-help about_scripts

• get-help about_execution_policies

• get-help about_scopes

• get-help about_pipelines

• get-help where-object

• get-help about_variables

• get-help about_commonparameters

• get-help about_modules

Summary
In this chapter, we have seen the main building blocks of PowerShell as a language.
We have demonstrated how similar functionality can be implemented using a
function, a script, and a module. An emphasis was placed on how PowerShell's
use of an object-oriented pipeline gives tremendous advantages in terms of
flexibility without re-implementing common features such as sorting and filtering
in each function.

PowerShell provides an innovative programming and scripting experience. The
next chapter will highlight various ways that the PowerShell language functions
differently from other programming languages.

http://msdn.microsoft.com/en-us/library/ms714428.aspx
http://msdn.microsoft.com/en-us/library/ms714428.aspx

PowerShell Peculiarities
In many ways, PowerShell is different (as a language) than other traditional
programming languages. Some of PowerShell's peculiarities will be presented in
this chapter, as well as some guidance on how to avoid common pitfalls. Here are
the topics we'll cover in this chapter:

• Strings (quoting, substitution, and escaping)
• Function return values
• Pipeline processing
• Error handling and non-terminating errors

PowerShell strings
In PowerShell, either double quotes or single quotes can be used to express string
literals. For instance, the following values are the same:

"HELLO WORLD"
'HELLO WORLD'

Using both kinds of quotes can be useful when quoting strings which themselves
contain quotes, such as the following:

"I can't stop using PowerShell"
'He said, "I like using PowerShell" all day long'

PowerShell Peculiarities

[26]

If a single quote is needed in a single-quoted string, you can double the quote (for
example, 'can't is a contraction'). The same technique allows the use of double-quotes
in a double-quoted string. Strings written this way can be somewhat confusing to look
at and it is easy to lose track of the number of quotes. A simpler method of including
a double quote character in a string is to escape it with the backtick (`), also called a
grave accent. The following string is an example: "the `" character is a double quote".

A peculiar kind of string in PowerShell is called a here-string. Here-strings allow
strings to cross several lines and also to contain quotes of either kind without any
doubling. Here-strings begin with either @" or @' at the end of a line and end with
"@ or '@ respectively at the beginning of a line. A common error is to indent the
closing punctuation (so that it is not at the beginning of a line) which causes the
here-string to not be terminated. The syntax highlighting in the integrated scripting
environment (ISE) will provide a good visual cue that something isn't quite right in
this situation. The following illustration shows a couple of correctly formatted here-
strings and one that isn't correctly terminated. Note that the text after the final here-
string shows an error and the code hint explains the problem:

String substitution
The main difference between single- and double-quoted strings (both normal strings
and here-strings) is that single-quoted strings are static while double-quoted strings
perform string substitution. Variable references contained in double-quoted strings
are replaced with string representations of the contents of the variable. For example,
if the variable $name contains the value "Mike", the double-quoted string "My name
is $name!" would become "My name is Mike!".

Chapter 2

[27]

String substitution is a great timesaver. In many languages, embedding values
in string output involves string concatenation, and code ends up with lots of
expressions such as "My name is "+$name+"!". If the desired output involves
several variables, the expression will need to be broken down into more and more
segments. However, embedding several variables in PowerShell is often as simple as
including the variable names in the string.

For simple objects (such as strings, integers, and floating point numbers), the
representation of the variable that is used in the string substitution is the same value
that you would see if you used Write-Host (for example) to display the value. For
complex objects, however, the value is the result of the object's ToString() method.
This means, generally, the way $var is output is different from how "$var" is
output, as shown in the following screenshot:

If a variable is an array, the value that is placed in a string is the value of each of
the items in the array separated by the value of the built-in $ofs variable (which
stands for output field separator). The default value of $ofs is a space, but it can
be changed to create strings delimited by whatever is desired, as shown in the
following screenshot:

PowerShell Peculiarities

[28]

How string substitution goes wrong
String substitution is a simple concept, but there are a few common issues that
people encounter with it. First, it is critical to realize that string substitution is
only performed on double-quoted strings. For example, the string 'My name is
$name!' will not be changed in any way. A second common error is trying to embed
something more complicated than a variable value in a string. For instance, if $file
is a reference to a file, you might be tempted to use "the file is $file.length
bytes long" and expect to have the length of the file replace $file.length in the
string. The rule of string substitutions that the engine looks for a variable name and
replaces it with a value. In this case, $file is the name of a variable and it will be
replaced with the name of the file. The remainder of the string will be unchanged,
as shown in the following code snippet:

$file=dir *.* | select -first 1

"the file is $file.length bytes long"
the file is C:\Users\Mike\.gradle.length bytes long

In order to include complicated expressions in a string, one approach is to use the
subexpression operator $(); for example, "the file is $($file.length) bytes
long". Subexpressions in strings are not limited to property references, though. Any
expression (including cmdlets) is allowed. The string "the process started at
$(Get-Date)" is an example of using code in a string.

A second method to include complicated expressions in a string is to use the
format operator, -f. Using the format operator involves preparing a string with
placeholders numbered starting with zero and providing a list of values to be
substituted. The previous example involving file lengths could be rewritten using
the format operator as follows:

"the file is {0} bytes long" -f $file.length

Including more than one value is just as easy:

"the file {0} is {1} bytes long" -f $file.FullName,$file.length

There are several advantages to using the format operator over using string
substitution. First, since the placeholders are short, the final string is much shorter
in the code listing and will be easier to read on the screen and in a printout. Second,
with the format operator, special formatting codes can be applied to the placeholders
to format the values in specific ways. For example, formatting a date value in a long
date format would use a placeholder such as {0:D}, and formatting a floating point
value with two decimals would use {0:N2}. A reference for formatting codes can be
found at http://msdn.microsoft.com/en-us/library/26etazsy.aspx.

http://msdn.microsoft.com/en-us/library/26etazsy.aspx

Chapter 2

[29]

Escaping in PowerShell strings
A common practice in programming languages is to use the backslash (\) as an
escape character to allow special characters to be written in strings. PowerShell's
integration as a scripting and command-line language necessitates that the backslash
not be given any special meaning other than the traditional meaning as a path
separator. Therefore, the backtick is used as the escape character. To include a
dollar sign in a string without triggering substitution, you can escape the dollar sign
with a backtick like so: "the value of the variable `$var is $var". Notice
that the first dollar sign is escaped with a backtick but the second one isn't, so the
second $var will be replaced. This technique was mentioned earlier to include a
literal double quote in a double-quoted string. An important point to remember is
that substitution is not performed on single-quoted strings, so including an escaped
single quote in a single-quoted string doesn't work.

The following is a table of allowed special characters in double-quoted strings:

Value Meaning
`0 Null
`a Alert (bell)
`b Backspace
`f Form feed
`n New line
`r Carriage return
`t Horizontal tab
`v Vertical tab

Function output
The example function included in Chapter 1, PowerShell Primer, used string
substitution and returned the single result of that operation. As a reminder,
here it is again:

function Get-PowerShellVersionMessage{
param($name)
 $PowerShellVersion=$PSVersionTable.PSVersion
 return "We're using $PowerShellVersion, $name!"
}

PowerShell Peculiarities

[30]

This pattern (that is, performing a calculation and returning the result) is common
to procedural programming languages such as C#, Java, and Visual Basic. In
PowerShell, however, functions are more complicated than the usage in this
scenario in several ways.

In statically-typed languages, the type of a function (that is, the type of a value
returned by the function) is either declared as part of the function definition or
inferred by the compiler. In PowerShell, the only consideration of a type associated
with the output of a function is in the help provided for the function. This output
type can be used by a PowerShell host to guide IntelliSense in the environment,
but does not place any restrictions on the function in any way. That is, there is no
constraint on what types of objects a function outputs. For example, the help for
Get-Service indicates that it outputs System.Service.ServiceController
objects, as shown in the following screenshot:

Because of this, when you use Get-Service in a pipeline, the environment can tell
what properties are relevant, as shown in the following screenshot:

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Chapter 2

[31]

As a specific example of the varying output types of a function in PowerShell,
consider the Get-ChildItem cmdlet. A similar command in the .NET framework
would be the GetFiles static method of the System.IO.Directory class, which
returns an array of strings corresponding to the files in a directory. Get-ChildItem,
on the other hand, generally outputs a list of FileInfo objects, but depending on the
particular parameters used it might output nothing, a list of FileInfo objects, or a
single FileInfo object. Consider the following code to see an example of this
in action:

$files = Get-ChildItem -path *.exe

foreach ($file in $files){
 # do something interesting
}

The code follows a common pattern (that is, get a list of objects and use foreach to
iterate through the list) and the intent of the code is plain. A problem arises in trying
to interpret the foreach loop over a value that is not a list. If there are no .exe files
in the current directory, $files will be empty. By this I mean that $files won't be
an empty list; it will simply be $null. What about the situation where there is exactly
one .exe file? Does it make sense to loop through a single file? Again, this is not a list
with one file in it, it is a single FileInfo object.

In PowerShell Versions 1.0 and 2.0, the answer was to be more careful when storing
lists in variables. By adding a type of [array] to $files, we have instructed the
engine to make sure that what is stored in the variable is indeed an array. In this
case, the zero and single object cases result in an empty list and a list containing one
object. The loop now makes sense:

[array]$files = Get-ChildItem -path *.exe

foreach ($file in $files){
 # do something interesting
}

PowerShell Peculiarities

[32]

PowerShell Version 3.0 has a different approach to solving this problem. In this
version, each non-null, non-collection object is given a Count property with a value
of 1 and indexer that shows that the first item in the collection (at index 0) is the
object itself. The built-in $null value has a Count property of 0. However, in the case
of a null object, the indexer isn't really usable because the index needs to be less than
the count (which is zero). These extra properties are added invisibly, that is, they
do not show up in the output of Get-Member, but they can still be evaluated, as the
following illustrates:

Pipeline processing
Another way that functions in PowerShell are different from other languages is how
they interact with the pipeline. Functions in PowerShell output objects that can be
picked up as input to subsequent functions or cmdlets. This in and of itself is not
unique, but the timing of the output is different from other languages.

Consider the process of obtaining a listing of all of the files on a drive. For some
drives this operation will be very lengthy, possibly taking several minutes to
complete. In PowerShell though, the list of files begin to appear almost instantly.
The process can take a while to be complete, but the function (Get-ChildItem) will
output file and folder objects as each directory is scanned rather than waiting to have
all of them collected in a list and returning the list all at once. This feature of
built-in cmdlets is something that might easily be taken for granted, but when
writing functions, the concept of a return value needs to be carefully considered.

Although PowerShell includes a return keyword, the use of return is optional and
omitting it is even considered by some to be a best practice. PowerShell functions
will return a value that is included after a return statement, but that is not the only
kind of output in a function.

Chapter 2

[33]

The rule for function output is simple. Any value produced in a
function that is not consumed is added to the output stream at
the time the value is produced.

Consuming a value can be accomplished in many ways:

• You can assign the value to a variable
• You can use the value in an expression, as an argument to a cmdlet,

function, or script
• You can pipe the value to Out-Null
• You can cast the value as [void]

With that understanding, consider the following PowerShell functions, which all
return a single value:

function get-value1{
 return 1
}

function get-value2{
 1
 return
}

function get-value3{
 1
}

function get-value4{
 Write-Output 1
}

The first function uses the traditional method to output the single value and end
the execution of the function. The second includes the value as an expression that is
not used and is thus added to the output stream. The return statement in the second
function ends the execution of the function, but does not add anything to the output
stream. The third function outputs the value just as the second did, but does not
include the superfluous return statement. The final version uses the Write-Output
cmdlet to explicitly write the value to the output stream. The important point to
understand is that values can be output from a function in more places than just the
return statement. In fact, the return statement is not even needed to output values
from a function.

PowerShell Peculiarities

[34]

When writing a function, it is extremely important to ensure that the values that
are produced in the process of executing are consumed. In most cases, values
will be consumed by the natural activities in your function. However, sometimes
values are produced as a side effect of activities and make it into the output stream
inadvertently. As an example, consider the following code:

function Write-Logentry{
param($filename,$entry)
 if(-not (test-path $filename)){
 New-Item -path $filename -itemtype File
 }
 Add-Content -path $filename -value $entry
 Write-Output "successful"
}

The intent of the code is to create a file if it doesn't exist, and then add text to that
file. The problem comes in when the file is created. The New-Item cmdlet writes
a FileInfo object to the output stream as well as creating the file. Since the code
doesn't do anything with that value, the FileInfo object from the New-Item cmdlet
is part of the output of the function. It is very common on Stack Overflow to see
PowerShell questions that involve this kind of error. Using New-Item (or the mkdir
proxy function for New-Item) is often the source of the extraneous object or objects.
Other sources include the Add() methods in several .NET classes, which in addition
to adding items to a collection, also returns the index of the newly added item.

Pinpointing this kind of error in a function is often confusing because the error
message will almost never indicate that the function is the problem. The error
message will be downstream from the function where the output is used. In the
Write-Logentry example function, instead of a value of "successful", the
output could be an array of objects containing a FileInfo object and the value
"successful". Trying to compare the result for a good value might look as follows:

Chapter 2

[35]

At first look, errors will seem like nonsense. What does PowerShell mean that it can't
find a method called StartsWith()? Looking at the type of the variable shows that
instead of the string that is expected, it contains an array, as shown in the
following screenshot:

Similar errors will occur when expecting a numeric result and trying to do
calculations on the value. Doing calculations with arrays is probably not going to
work, and if it does, it will not work as intended.

It is possible to collect all of the values that are to be output in a variable and wait
to output the values until the end of the function, but this is not recommended.
One simple reason is that this requires the function writer to keep track of all of the
objects and to have memory allocated for the entire collection. Using the output
stream naturally, that is, writing to the output stream as objects become available,
allows downstream PowerShell cmdlets to work with them while the rest of the
objects are being discovered.

The following is a practical example:

function find-topProcess{
 param([string[]]$computername)

 $computername |
 foreach{ Get-WmiObject Win32_Process |
 sort-object WorkingSetSize -Descending |
 Select-Object -first 5 PSComputerName,
 Name,
 ProcessID,
 WorkingSetSize
 }
}

PowerShell Peculiarities

[36]

This function takes a list of computer names and outputs the five processes on each
computer that use the highest amount of memory. It could have been written as
the following:

function find-topProcessBad{
 param([string[]]$computername)

 $processes=$()
 $computername |
 foreach{ $processes+=Get-WMIObject Win32_Process |
 Sort-Object WorkingSetSize -Descending |
 Select-Object -first 5 PSComputerName,
 Name,
 ProcessID,
 WorkingSetSize
 }
 return $processes
}

The final output would be the same, in that the same values would be returned in the
same order. On the other hand, the way the output is seen by downstream pipeline
elements is very different. In the first case, as each computer is scanned, the list of
processes is sent to the output stream and then the next computer is considered.
There is no local storage in the function at all. In the second case, the processes from
each computer are appended to a list. The downstream pipeline elements won't see
any output from this function until all of the computers have been scanned. If only
a few computer names are being passed in, there is little difference. But if the list
is hundreds or thousands of names long, or if the network latency is high enough
that it takes a long time to get each set of results, it may be several minutes until any
output is delivered. If the function is being called at the command line, it may not be
obvious that anything is happening.

Another implication of the second example is that all of the objects need to be stored
in a list in memory. This example used a small list of small objects (five) so the effect
might not be seen. If the function returned all processes with all of the properties
associated with those objects, the memory usage would be quite high. Memory
allocation times will also factor into execution time as well.

To help keep memory usage and execution time lower, try to write
objects to the output stream immediately rather than storing them
in a collection to be returned all at once.

Chapter 2

[37]

PowerShell error handling
Discussions about error handling in PowerShell revolve around two things: the
statements used in error handling, and what constitutes an error that needs to
be handled.

The trap statement
PowerShell error handling had a rocky start. The Version 1.0 error handling
statement was the trap statement. This statement is similar to the ON ERROR GOTO
statement in Visual Basic 6. This was a functional way to do error handling, but it
was not what most programming languages had been using for the last decade. If a
trap statement is included in a scope, when an exception (called a terminating error
in PowerShell terminology) occurs in that scope, the execution is stopped and the
trap statement is executed. By default, trap statements handle any terminating error
and can be written to only handle certain types of errors. In the scope of the trap
statement, the $_ special variable contains the error or exception that was caught.

The default execution for a trap statement writes the error to the error stream
(separate from the output stream) and continues the function after the statement that
had the error. The break and continue keywords are used in a trap statement to
either exit the function or to continue the execution without writing the error to the
error stream.

The following screenshot shows an example of a trap statement without using break
or continue. Notice that the error is written to the error stream and the execution of
the function is resumed:

PowerShell Peculiarities

[38]

The following screenshot shows an example of a trap statement using continue.
Notice that the error is not written to the error stream and the execution of the
function is resumed:

Finally, an example of a trap statement using break. You will notice in the following
screenshot that the error is written to the error stream and the execution of the
function is not resumed:

The reality of the trap statement is that it is rarely used except when only PowerShell
Version 1.0 is available. The additional error handling features added in Version 2.0
are much more easily understood and less complicated.

Chapter 2

[39]

If you find yourself having trouble following the
execution path of a trap statement, try to rewrite the
function using try, catch, and finally.

try, catch, and finally statements
Version 2.0 of PowerShell introduced traditional try, catch, and finally statements
to the language, which work in a similar fashion to structured error handling in
languages such as C#, Java, and VB.NET. In a try, catch, and finally construct,
code that might throw a terminating error is enclosed in a try block. One or more
catch blocks will be present to handle specific classes of errors. An optional finally
block can contain code that is always executed whether an exception is thrown in the
try block or not. In this model, there is no concern about the code in the try block
being resumed or not. Once a terminating error occurs, the execution immediately
jumps to the catch blocks to be handled. The remaining code in the try block is not
executed. As is the case in the trap statement, in the catch block, the special variable
$_ contains the error that occurred.

The next screenshot shows a simple example using try, catch, and finally. Note
that there is a catch block for a specific type of error, but in this case the more
general catch-all catch block was selected because the exception that is thrown does
not match the specific exception type named in the first catch block.

PowerShell Peculiarities

[40]

Non-terminating errors
While the trap statement might be considered peculiar because languages generally
include some sort of structured error handling like try, catch, and finally,
PowerShell error handling is peculiar for a completely different reason. In the
previous sections, we were careful to use the terminology terminating error to
describe situations that triggered the error handling capabilities. The reason for
this is that PowerShell includes another type of error, not surprisingly called a
non-terminating error, which is not found in other languages.

To understand non-terminating errors, it is helpful to consider a typical PowerShell
script operating in a datacenter that retrieves performance counters from several
thousand servers using CIM. With CIM, an administrator can issue a request to all of
these servers using a single cmdlet. Anyone who has worked in a datacenter knows
that with a large number of servers, there will always be some that are not working
quite right for some reason. The reason might be storage-related, network-related,
an OS issue, or maybe the servers are simply offline for maintenance. In a typical
programming model, attempting to access these servers will result in an error. If the
error stops the execution flow, the remainder of the servers will not be able to provide
information. What is worse is that the information that has already been retrieved will
be lost as well since the statement that is doing the retrieval encountered an error so no
assignment can be made to a variable (or anything else, for that matter).

This situation is not ideal. What an administrator would want is to retrieve what
information is available and accessible, but also be able to see what errors occurred
in order to log them or respond to them in some way. To address this concern,
PowerShell introduced non-terminating errors. By default, a non-terminating error is
written to the error stream, but does not trigger error handling (try, catch, finally,
or trap).

Chapter 2

[41]

An example of a non-terminating error uses the Get-WMIObject to access localhost
and a non-existent computer, as shown in the following screenshot:

Note that an error occurred (stating that RPC wasn't available on the NOBODY
computer), but that the execution of Get-WMIObject continued accessing the
localhost computer. The error handling code did not execute because the error in
question is a non-terminating error.

This is often the desired outcome as explained previously. On the other hand, what if
it is appropriate to execute the error handling code if a non-terminating error occurs?
Cmdlets provide a parameter called –ErrorAction, which can be used to override
the default behavior. The default value for –ErrorAction is Continue, which means
to write the error to the error stream, add it to the $Error collection, and continue
executing the current statement. To force the cmdlet to treat non-terminating errors
as exceptions (terminating errors), use the value Stop. The possible values for
the –ErrorAction parameter are listed in the following table:

Value Meaning
Stop Treats any errors as terminating errors (that is, throws an

exception).
Continue Writes the error to the error stream, adds it to the $Error

collection, and continues the execution.
SilentlyContinue Adds the error to the $Error collection and continues execution.

Does not write the error to the error stream.
Inquire Asks the user whether to continue or not.
Ignore Continues execution without writing to the error stream or

recording the error.
Suspend Opens a nested prompt for interactive debugging (refer to

Chapter 7, Reactive Practices – Traditional Debugging).

PowerShell Peculiarities

[42]

The following screenshot illustrates the use of a non-terminating error as
an exception:

In this case, since the –ErrorAction was set to Stop, the execution of the cmdlet was
terminated as soon as an error (in this case, a non-terminating error) occurred. The
catch statement was triggered, the error was not written to the output stream, but it
was written to the $Error collection.

Further reading
You can go through the following references for more information on this topic:

• get-help about_quoting_rules

• get-help about_PowerShell_Ise.exe

• get-help about_preference_variables

• get-help about_operators

• get-help about_escape_characters

• get-help about_return

• get-help about_trap

• get-help about_try_catch_finally

• get-help about_throw

• Learn about formatting codes at http://msdn.microsoft.com/en-us/
library/26etazsy.aspx

http://msdn.microsoft.com/en-us/library/26etazsy.aspx
http://msdn.microsoft.com/en-us/library/26etazsy.aspx

Chapter 2

[43]

Summary
In this chapter, we looked at several aspects of the PowerShell language that are
implemented in ways different from other popular programming languages such as
C#, Java, and VB.NET. On the topic of strings, types of quotes, string substitution,
and escaping special characters were covered. The discussion of PowerShell
functions focused on the types and number of objects returned and how functions
in PowerShell write objects to an output stream throughout the execution of the
function rather than returning all of the values at the end of execution. The final topic
focused on error handling methods in PowerShell, including the trap statement from
PowerShell Version 1.0, the more advanced try, catch, and finally statements
included from Version 2.0, and the difference between terminating errors and
non-terminating errors.

The focus of the next chapter will be on practices that will help keep PowerShell
code performing well and easy to debug.

PowerShell Practices
In this chapter, we will discuss a few practices that will help PowerShell scripts
run faster and produce the results that are expected. We will also cover optional
output to the user and documentation in terms of built-in help along with the
following topics:

• Filter left
• Format right
• Comment-based help
• Output using Write-* cmdlets

Filter left
As discussed in Chapter 1, PowerShell Primer, pipelines are a central feature of
PowerShell. Cmdlets can sometimes create a tremendous amount of data though,
and pushing that data through a pipeline does have performance implications in
terms of memory and processor usage. Filter left is the principle that objects should
be filtered as early as possible in the pipeline. Since pipelines flow from left to right,
the filter should be as far to the left as it can be.

For example, the following pipelines have the same results and to show the SQL
Server datafiles (*.mdf) in order of size:

PowerShell Practices

[46]

Even though the results are the same, the execution is about as different as possible.
The first pipeline collects all of the files on the disk into a collection, sorts that list,
and then selects the .mdf files. The second passes all of the files on the disk again, but
filters them before sorting. The third example only creates objects for the .mdf files
and only sorts those objects.

Using the Measure-Command cmdlet to get the time each of these takes to execute
reveals the very different performance. Note that I have formatted the statements to
make them easier to fit on the page. The measurement code is as follows:

Measure-Command {dir d:\ -recurse |
 Sort-Object -Property Size -descending |
 Where-Object Extension -eq '.mdf'} |
 Select TotalMilliseconds

Measure-Command {dir d:\ -recurse |
 Where-Object Extension -eq '.mdf' |
 Sort-Object -Property Size -descending } |
 Select TotalMilliseconds

measure-command {dir d:\ -recurse -filter *.mdf |
 Sort-Object -Property Size -descending } |
 Select TotalMilliseconds

And the following screenshot shows the results:

Putting the filter on the extreme left caused the code to take about 80 percent less
time in this instance. Filtering before sorting provided a slight benefit, but not
nearly this striking.

Chapter 3

[47]

This seems like a simple example, but the principle is important. In production
environments, there may be dozens or even hundreds of scripts running at the
same time on a server, so the performance of each script is something that needs to
be considered. When remoting is added into the mix the performance is magnified
as the objects not only require memory but also network bandwidth. The difference
between retrieving a list of all files on a server and pulling the single file that is
needed is tremendous.

Filter left!
Make sure you keep the filtering parameters and cmdlets as
far to the left in the pipeline as possible.

Format right
The next important practice in PowerShell is to format right. This means that any
format cmdlets included in the pipeline should be at the far right of the pipeline.
While filter left is primarily about efficiency, format right concerns the kinds of
objects produced. To see this, have a look at the following output:

PowerShell Practices

[48]

First, you can see that the Get-Service cmdlet outputs the ServiceController
objects. Piping those ServiceController objects to Format-List, though,
produces a series of objects with indecipherable properties, as shown in the
following screenshot:

Chapter 3

[49]

Once a formatting cmdlet has been executed, the only objects on the pipeline are
PowerShell formatting objects which are only useful by the PowerShell host. As a
general rule, the only cmdlets that can follow a formatting cmdlet in the pipeline
are the output cmdlets that start with Out-. These output cmdlets are designed to
interpret these formatting objects and render formatted output accordingly. Since
pipelines always end in Out-Default, there's little danger of ever encountering one
of these formatting objects unless something is included between the formatting
cmdlet and the end of the pipeline, which is shown in the following screenshot:

Trying to sort the objects after formatting them is a common mistake. It is clear from
this example that the ServiceController is no longer present, and that attempting
to use the properties of the original objects are going to fail.

Because of the destructive nature of formatting cmdlets, the best practice is to not
use them in functions or scripts unless the output of the script or function in question
never needs to be manipulated programmatically. In other words, use formatting
only if the output is intended for people to use rather than as input to other scripts
or functions.

Avoid using formatting cmdlets in functions or scripts that may
provide input for other functions or scripts. To show that the code
uses formatting, consider naming the function or script with the
verb Show (for example, Show-ServiceInfo).

Comment-based help
As mentioned in Chapter 1, PowerShell Primer, the help system in PowerShell is
very useful. When writing functions and scripts in PowerShell, it is important to
provide the same kind of documentation so users are able to use the code correctly.

PowerShell Practices

[50]

In order to get the minimal amount of help available, the only requirement is to
create a function. Take a look at the following screenshot, for example, shows the
help content generated automatically for a simple function:

There is even help for specific parameters, as shown in the following screenshot:

Chapter 3

[51]

It should be clear that PowerShell is using the definition of the function to generate
the help content. This is extremely helpful for several reasons, some of which are
listed as follows:

• The syntax section is never out of sync with the definition. There is no need
to worry about missing or misspelled parameters or whether the brackets are
in the right places.

• It is not necessary to create a separate file (or any file at all) in order to have
help for a function.

• Help for a function will be consistently displayed.

The help seen in the earlier examples is not nearly as complete as the help seen for
cmdlets, such as Get-ChildItem or Get-WMIObject, so how does one provide the
missing pieces of information? The answer is comment-based help.

Using comment-based help is a very simple process. The content for the help system
is usually embedded in a function or immediately before the function in a comment
or series of comments. The following screenshot illustrates this well:

PowerShell Practices

[52]

Given this function definition with embedded comment-based help, get-help now
returns a much more complete topic:

As stated in the comments at the end of this topic, the examples are visible by using
get-help with the –Examples switch. The following screenshot illustrates this:

Chapter 3

[53]

There is some flexibility in the precise placement of the comment as well as a
tremendous variety of information that can be included. For complete details, refer to
the about_Comment_Based_Help topic.

Using Write-* cmdlets
When writing PowerShell functions, it is often confusing to know exactly which
cmdlet should be used to produce output. There are a number of cmdlets and
methods that seem to do the same thing at first glance. The most important thing to
remember in this context is that functions should always write objects to the output
stream. In order to do this, there are several correct ways and one incorrect way that
is frequently used.

Write-Host
PowerShell scripters who are beginners see the Write-Host cmdlet as a simple way
to produce output. It is similar to a PRINT statement in many languages and if output
to the console is the goal, it is a perfect fit. Unfortunately, the output is made solely
to the console (or, in PowerShell terminology, the host). The following screenshot
shows the main issue with Write-Host:

Even though the function seems to output the string, attempting to capture the
output in a variable shows that the value isn't actually output, but instead is simply
text written to the host. Because of this, Write-Host is not a good fit for functions.
Scenarios where Write-Host makes sense to use in a function are similar to those
where formatting cmdlets are used (as discussed earlier in this chapter).

Write-Host should only be used where output is to be read by
a user and not ever by another function. This is one of the most
universally accepted PowerShell best practices.

PowerShell Practices

[54]

Output – the correct way
A cmdlet that at first glance looks similar to Write-Host is Write-Output. Rewriting
the get-stuff function from the previous section using Write-Output produces the
expected results, as shown in the following screenshot:

Even though the output looks the same in the console, capturing the output in a
variable is successful this time. The reason is that Write-Output writes the values of
its parameters to the output stream rather than the host. Think back to the discussion
about how a function returns values in Chapter 1, PowerShell Primer, and you might
recall that there are several ways to return values from a function. All of these
variations produce equivalent results:

Chapter 3

[55]

What about the other Write-* cmdlets?
Write-Host and Write-Output are only two of several Write-* cmdlets. The other
core cmdlets are listed as follows:

• Write-Verbose

• Write-Warning

• Write-Debug

• Write-Progress

• Write-Error

The first four cmdlets (Write-Verbose, Write-Warning, Write-Debug, and
Write-Progress) are intended to be used to provide optional information about
code execution. The output from these cmdlets is controlled by a set of preference
variables. Preference variables are predefined by the host and used to indicate
what action should be taken when one of these cmdlets is executed. The following
screenshot shows the list preference variables with the PSDrive mechanism . The full
list of predefined preference variables can be seen along with their values by listing
matching names from the variable:

PSDrives and PSProviders are mechanisms PowerShell uses to expose
hierarchical storage. The FileSystem provider implements drives that
match local and mapped drives. Other providers, such as the Variable
and Function providers, give some visibility to PowerShell objects. In
this example, we used the dir alias of Get-ChildItem to view a list of
variables using the Variable: drive in the same way we would have
looked at files in a folder.

PowerShell Practices

[56]

We came across the $errorActionPreference variable in Chapter 2, PowerShell
Peculiarities, in the context of error handling with non-terminating errors. The
following shows an example of using $VerbosePreference to control the output
from Write-Verbose:

Since the value of $VerbosePreference was SilentlyContinue, no output was
produced by the first invocation of the cmdlet. Changing the value to Continue
allowed output from the second call. Note that the output is written to the host
differently than output that comes from Write-Host or Write-Output. That is
because Write-Verbose writes to its own stream. Write-Debug, Write-Warning,
Write-Error, and Write-Verbose each have their own output streams, which are
distinct from the standard object output stream.

Possible values for preference variables include: Stop, Continue,
SilentlyContinue, Ignore, Inquire, and Suspend. Not all values are valid for all
variables. The acceptable values are given in the following table:

Variable Potential values (default values are shown with
quotes)

ErrorActionPreference Stop, "Continue", SilentlyContinue,
Inquire, and Suspend

DebugPreference Stop, Inquire, Continue, and
"SilentlyContinue"

VerbosePreference Stop, Inquire, Continue, and
"SilentlyContinue"

WarningPreference Stop, Inquire, "Continue", and
SilentlyContinue

ProgressPreference Stop, Inquire, "Continue", and
SilentlyContinue

ConfirmPreference and WhatIfPreference are not listed in the table because they
deal with risk mitigation rather than output. Their usage will be explained in detail
in Chapter 7, Reactive Practices – Traditional Debugging.

Chapter 3

[57]

Preference variables are global in scope; that is, their value is used in all scopes unless
they are overwritten in a local scope. Because of this, care should be given in changing
these variables from their default values. Changing $ErrorActionPreference to
Stop, for instance, might cause error handling in other functions or modules to stop
working correctly.

Which Write should I use?
Except for Write-Output or its equivalents, which should always be used for
function output, the precise use of the Write-* cmdlets is neither mandatory
nor spelled out in the help content. The exact meaning of the verbose, warning,
and debug streams is left to the user of the function or script. On the other hand,
it is useful to have some guidelines for what kind of information should be
communicated using these streams.

Write-Verbose
Verbose output should include non-technical information that will be valuable to the
end user, enabling them to understand the functional processes that are taking place.
For instance, using Write-Verbose to indicate when each step of a ten-step process
is being started would be appropriate. If timing information is something that an
end user might want to see, that might be included as well at a high level. It would
probably not be usual practice to show timing information for individual iterations
of a loop or low-level tasks. The following screenshot shows an example of built-in
verbose output with import-module:

PowerShell Practices

[58]

Write-Debug
Debug output, as the name implies, is intended to be used to troubleshoot the code
in question. Because of this, the content of debug output should provide insight into
the implementation details of the operations. Unlike verbose output, which should
be general information, debug output should be technical information including
variable values, property values, counts, low-level timing information, and so on.
The information provided in the debug stream should make what is happening in
the code clear and why it is happening. Depending on the complexity of the function,
the amount of debug information might be overwhelming, but the point is to provide
enough details to help solve problems. Most end users will avoid turning on
debug output unless they are working with the code, so the amount of output is
not a problem.

Write-Warning
Warning output should always point out conditions that are not as expected, but are
also not fatal. Some examples, depending on the operation, might be overwriting a
file, no results from a query, stopping a service that is already stopped, or trying to
delete a file that doesn't exist. None of these occurrences would necessarily mean
that the code would need to stop, but might help the user correct something in
the environment.

Write-Error
The error stream is for non-terminating errors. As discussed in Chapter 2, PowerShell
Peculiarities, non-terminating errors indicate that something went wrong, but that
the entire operation does not need to stop. By sending output to the error stream, a
user could inspect the $Error collection to see the specifics about what needs to be
followed up on or what results might be missing from the function output.

Chapter 3

[59]

Write-Progress
The progress stream is where information about the process completion status is
written. Operations that might take a long time to complete and have a known
number of steps can send the completed percentage or other status information.
The following screenshot shows an example using Write-Progress in the
Integrated Scripting Environment (ISE):

The following screenshot shows the output rendered in the console:

PowerShell Practices

[60]

In summary, the following table gives the guidelines for when to use the different
output Write-* cmdlets:

Cmdlet Type of information
Write-Output Objects
Write-Host Formatted text
Write-Verbose Nontechnical process information
Write-Debug Technical implementation details
Write-Warning Problems
Write-Error Non-terminating errors
Write-Progress Process completion information

Further reading
You can go through the following list of references for more information:

• get-help measure-command

• get-help out-default

• get-help about_comment_based_help

• get-help get-help

• get-help write-host

• get-help write-output

• get-help write-debug

• get-help write-warning

• get-help write-progress

• get-help write-verbose

• get-help write-error

Chapter 3

[61]

Summary
This chapter dealt with practices that are specific to PowerShell. Filter left and
format right are important principles to keep in mind in order to keep pipelines
efficient and avoid losing properties that are needed. Comment-based help and the
various Write-* cmdlets are crucial parts of the PowerShell environment that
allow users to discover details about cmdlets and parameters and understand the
operation of code.

The next chapter will introduce topics that, while common in development groups,
might not be firmly established in the system administration groups. These
programming professionalism topics include using naming standards, modularization,
and unit testing.

PowerShell Professionalism
PowerShell scripters might not think of the process of writing a script as a
development process, but some industry-standard development practices are
appropriate to use with PowerShell, for example:

• Naming standards
• Source control
• Modularization (functional decomposition)
• Unit testing/mocking

Naming conventions
Naming conventions are not rocket science and they are certainly not unique to
PowerShell. They are also not concrete rules that will cause your code to stop
working if they are ignored. On the other hand, the designers of PowerShell began
the language with a strong foundation of consistent naming which is one of the
keys to its success. In the following sections, we will discuss several instances where
naming conventions will improve your PowerShell experience.

PowerShell Professionalism

[64]

Cmdlet and function naming
As discussed in Chapter 1, PowerShell Primer, built-in cmdlets are named with a
verb-noun format using a verb from a predefined list of approved verbs. This format
is not required for user-defined cmdlets, functions, advanced functions, or scripts,
but is highly recommended. The only place where not having properly named
functions will cause any kind of programmatic issue is when a module, including the
code, is imported into a PowerShell session. A module exporting functions that are
not correctly named will cause a warning when the module is imported. To disable
the warning, the –DisableNameChecking switch can be used. –Verbose will allow
us to see the individual function definitions being imported and will show which
functions have issues with naming. The following function uses the verbose output
to find incorrectly named functions:

function Get-InvalidFunction{
Param([string]$module)
if(Get-Module $module){
 Remove-Module $module -force
}
Import-Module $module -Force -Verbose *>&1 |
 Select-String "The '(.*)' command in the (.*)' module .*" |
 Where-Object {$_.Matches.Groups[2].Value -eq $module} |
 Foreach-Object { $_.matches.groups[1].Value}

}

When the Get-InvalidFunction function is used to find invalid function names in
the SQLPS module, for instance, it shows two offending functions, shown as follows:

A simple test shows that although PowerShell will warn about functions in modules
that use improper verbs, it does not indicate a problem with functions that do not
follow the verb-noun syntax. The following code snippet shows a function missing a
dash, and a function to detect poorly named functions in modules:

function testnaming{
 Write-Host "No dash!"
}

function get-MissingDashFunction{
Param([string]$module)

Chapter 4

[65]

if(get-module $module){
 Remove-Module $module -force
}
 Import-Module $module -force -Verbose *>&1 |
 Select-String "Importing function '(.*)'.*" |
 Where-Object {$_.Matches.Groups[1].Value -notlike "*-*"} |
 Foreach-Object { $_.matches.groups[1].Value}

}

The following screenshot illustrates the output showing the function that is missing
the dash:

A final thing to mention is that the convention for the noun in a function name is to
be a singular noun. This sometimes leads to awkwardly named functions, such as
get-MissingDashFunction in the previous example, but in order to stay consistent
with delivered modules this is a convention that should be observed.

Parameter naming
There are no fixed rules for parameter naming, but we can learn from the authors
of the built-in cmdlets and try to use their examples. For instance, looking at the
parameters to the get-childitem cmdlet, we can see the following parameters
(excluding common parameters):

• Path

• LiteralPath

• Filter

• Include

• Exclude

• Recurse (switch)
• Force (switch)
• Name (switch)
• Attributes

• Directory (switch)

PowerShell Professionalism

[66]

• File (switch)
• Hidden (switch)
• ReadOnly (switch)
• System (switch)

The first thing to see is that –Path (and –LiteralPath) are the parameters to supply
the identity of the child items. This is a good pattern to follow, instead of using other
alternatives such as $filename, $file, $inputfile, and so on. Also note that like
most of the *-Item cmdlets, the Get-ChildItem cmdlet provides parameter sets
to allow both standard paths (including wildcards) and literal paths, which might
include special characters that PowerShell would otherwise attempt to interpret. A
final thing to see is that a number of switch parameters have been provided to make
it simpler to get the specific results without requiring Where-Object. Obviously, not
all possibilities are covered with switches, but most of the common cases have been
addressed. Other filtering parameters include –Filter, –Include, and –Exclude.

As we write functions, we should try to think about using our functions and include
parameters that make their use as fluid and effortless as possible. As we use our own
functions (a practice known as dogfooding) we will invariably find things that
don't flow quite as we'd like them to, so we will have an opportunity to improve
them at that time.

Module naming
A survey of public PowerShell modules will reveal fairly quickly that there is no
accepted naming convention for modules. Patterns include starting with Posh,
starting with PS, using verb-noun formatting, or using single or compound words to
name the module. With that out of the way, the following are a few guidelines that
will help in this area:

• Use a company-specific prefix for private modules to avoid naming conflicts
with public modules (for example, XYZActiveDirectory for a module of
functions related to the ActiveDirectory implementation at company XYZ)

• Use a consistent naming scheme for your modules (for example, don't have
some Posh modules and some verb-noun modules)

• Group functions into modules based on functionality (rather than project)
and name the module according to that functionality

Following these simple guidelines will make your module names easier to remember
and make it easier to find functions when you need to look at the source code.

Chapter 4

[67]

Variable naming
Like modules, there is no accepted naming convention for variables. Again, some
commonsense practices will help you keep your variable usage straight and less
error-prone. The following is a list of some of these practices:

• Do not use a type prefix for variable names (for example, use $FileName
instead of $strFileName).

• Do not overly abbreviate variable names. Tab completion makes using
longer, descriptive variable names less painful.

• Do not reuse variables. PowerShell is garbage-collected, so any efficiency
gained by avoiding new variables is miniscule compared to the risk of using
a variable incorrectly.

• Avoid generic variable names like $temp, $var, $obj, and so on. Use the
variable name to indicate what the variable is being used for or what is
being stored.

• Use camel casing (initial capitals in each subsequent word contained in the
variable name) to increase readability, for example, $customerNumber.

Modularization
Writing a script to accomplish a task can be a daunting process. For those of us
that are administrators without any programming background, it might not be
straightforward to even know where to start.

For very simple tasks, it might be possible to write the entire script in a single line-
by-line flow. While this is possible for the shortest tasks, as we get more comfortable
with scripting we will definitely be applying PowerShell to more complex problems.
Writing complex scripts in a simple start-to-finish way is bound to cause difficulties.
In the following sections, we will give some basic instruction on how to go from
an idea to a workable script. We will use the task of copying a production database
down to a development server as an example.

Breaking a process into subtasks
The first step is to break the task down into subtasks or steps. A common way to do
this is to use a comment statement (starting with the hash character, #) for each step.
For our example, it might look something like the following:

#Find the latest full backup file

#Figure out how much space is required to restore the database

PowerShell Professionalism

[68]

#Make sure there is enough space for the restore

#Restore the database with _REFRESH suffix

#Wipe out database-level security on the _REFRESH database

#Export the original database's security as a sql statement

#Run the sql statement to assign the correct security to the _REFRESH
database

#Close all connections to the original database

#Rename the original database to _OLD

#Rename the _REFRESH database to drop the suffix

#Send an email to notify users of the completion

Describing a task in this kind of detail is a crucial step in automating. This level of
information can be shared with users who might not be familiar with PowerShell for
them to validate that what you are writing is going to accomplish the required result.
More importantly, it gives us smaller items to work on writing so we can focus on
very specific things rather than getting lost in the big picture.

Helper functions
One of the things we can do with this process outline is to look for obvious functions
that we will need to write to help us accomplish the steps. In this example, it is clear
that we are going to need to be able to communicate with the database. SQL Server
comes with a PowerShell module called SQLPS. Using that module to do the low-
level database communication, some examples of helper functions that might make
sense are given as follows:

• Execute a SQL statement
• Get file sizes from a SQL backup file
• Restore a database

Chapter 4

[69]

Note that these functions are going to help us write our script, but they are not
limited in usefulness to our script alone. Because of this, it would make sense to have
a module with these functions in it with a name like SQLServerTools. If we have
identified common operations that we need to break out that were specific to this
task, we might have helper functions embedded in the script. Remember, though,
that reusability is a key benefit of scripting, so try to think in terms of writing more
general-purpose functions.

Single responsibility principle
In programming, the single responsibility principle is one of the basic principles
of object-oriented programming. This principle states that an object should have a
single responsibility. PowerShell uses objects throughout, but most scripting is not
considered to be object oriented. On the other hand, the principle can be applied to
functions as well as objects. When we write a function, we should make sure that the
function performs one operation. When it does more than one thing, it makes using
the function difficult. What if we only want one of the things to be done? We could
introduce switches to indicate which responsibilities we want to address, but this
type of complexity is unnecessary. It is simpler to break the function into multiple
functions, each with their own responsibility.

Don't repeat code
One of the keys to automation is that, ideally, anything that you might need to do
more than once should be automated. When writing scripts, this principle can be
extended to encompass code that is repeated. That is, any code that you might use
more than once should be extracted into a function. The reason is that by doing
this, you have isolated that operation. By isolating it, any changes to the operation
need only be made in one place, rather than needing to find all of the places that we
copied the code to.

In our example, we see that we are renaming databases twice, so that immediately
indicates that we should have a function to handle that operation. To begin with,
we don't need to actually write the function. Simply defining the function with its
parameters is a good way to start. This can be done as follows:

function rename-Database{
Param($connection,
[string]$name,
[string]$newName)

#construct and invoke sql statement to rename the database

}

PowerShell Professionalism

[70]

Since we identified the need to have a helper function to execute SQL statements,
we can use that helper function in this function once it has been written. Another
example of writing general purpose functions can be seen in the requirement to find
the latest full backup. A first attempt at writing this might look like the following
code snippet:

Function get-LatestFullBackup{
Param($SQLInstanceName,$DatabaseName)
 #look through the appropriate files and return the latest full
backup file
}

Although this does satisfy our requirement, it will only satisfy that specific
requirement. A more general approach might look like the following code snippet:

Function get-BackupFiles{
Param($SQLInstance,
 $Database,
 [switch]$latest,
 [switch]$full)
 #get the backup files for the database in question
 #if $full was specified, use where-object to
 only include those files
 #if $latest was specified, use sort-object and
 select-object to only return the latest file
}

With this definition, we can possibly do other things with backup files, such as figure
out how old our backups are on disk (what's the oldest full backup) or determine
how much disk space is taken up by the backups of a specific database. It takes some
thought to write functions with more general focus, but the time spent in designing
them will pay off in the end.

Understanding the process
Once we have defined the steps in the task and written the appropriate helper
functions, the next thing to do is to code each of the steps. At this point, we still
might find some helper functions that need to be written. For instance, the following
code snippet might be the start of the script:

#Find the latest full backup file
$backup=get-backupFiles –sqlinstance $source `
 –database $DBName –latest -full
#figure out how much space is required to restore the database

Chapter 4

[71]

$space=get-backupSize $backup

#Make sure there is enough space for the restore
If (-not (test-diskSpace –computername $dest `
–size $space)){
 Throw "$space bytes needed on $dest"
}
#Restore the database with _REFRESH suffix
Start-Restore –SQLInstance $dest –database "$DBName`_REFRESH" `
–path $backup

As you expand each step, you will probably realize that there is information that you
need in order to execute the step. When this happens, simply insert a step to take
care of it. That may involve writing more helper functions. Complex steps might be
better broken down into smaller steps. One way to do this is to simply replace the
step with the list of smaller steps. Another approach (which I prefer) is to write that
step as a function, and include the smaller steps in it. You will need to be careful to
pass all of the required information into the new function. Eventually, you will find
that you have all of the steps coded and are ready to test your script!

Breaking your script into smaller sections is not a magic trick that makes it more
reliable, but it does allow you to test the smaller portions (for example, the helper
functions) independently of the whole process. Gaining confidence in the quality of
your helper functions makes it possible to spend more time focusing on the business
process, which means higher productivity. A big part of troubleshooting is knowing
where to look for mistakes. Being able to eliminate large portions of your code will
make a tremendous difference.

Version control
Source control, or version control, is for developers, right? Why would PowerShell
scripters, who are mostly administrators of one flavor or other, need to use source
control? Here are a few scenarios that will hopefully convince you.

You get a call at midnight that a mission-critical script is failing. You dial into the
server and look at a thousand-line script with no indication of what the problem
is. With source control you would at least be able to look at the history of the script
and see if there were any changes made recently. Recent changes aren't always the
culprit, but without anything else to go on, they are usually a good place to start.
If you're lucky, the person who made the changes included a really good check-in
comment about why the changes were made that will help you determine if it's
relevant. If it sounds like it's the problem, a solution might be as simple as reverting
the script to its previous version.

PowerShell Professionalism

[72]

Let's take a look at a second scenario. The drive storing the scripts on your
production server just bit the dust. You can kind of remember what the scripts on
that server were doing, but do you have time to rewrite them? If you were using
source control, you should be able to get the latest versions of all of the scripts.

Perhaps you have more than one administrator writing scripts. Having a central place
to store scripts is a pretty straightforward result of using source control. Source control
also allows more than one person to be working on a script and gives the ability to
merge the changes together. This might seem somewhat far-fetched, but as more and
more tasks in the Microsoft ecosystem are turning to PowerShell, the more likely this
scenario is becoming. Once most admins are scripting the possibility of a collision
("Hey, I was editing that file! You just wiped out my changes!") is much greater.

With a software project, there's the idea of a project. It could be a website, a desktop
application, a service, or a mobile app, but there is a definite grouping that makes
sense to use when organizing a source code repository. With PowerShell, scripting
generally involves building up a good selection of modules with helper functions
related to the tasks you perform, and a bunch of scripts that use those modules.
There's no "big thing" that stands out that will be a natural organization.

One way to organize a repository of PowerShell scripts is to have a folder of modules
(which would each have its own subfolder) and a folder of scripts. This setup would
mirror the Documents\WindowsPowerShell folder present in each Windows user
profile. Another possibility is to organize the repository according to what server the
scripts are going to be deployed on.

However you choose to organize your repository, the important thing is that you
consistently commit code to the repository. Committing code is similar to making a
backup. You know you can always go back to that point in time. Just as you wouldn't
consider running a database without performing periodic backups, you should not
write scripts without frequently committing those scripts. An important ingredient
in a commit is a comment describing what changes were made and why. The system
will take care keeping track of who made the changes, to what files, and when the
changes were made.

Chapter 4

[73]

Using version control with PowerShell
Since PowerShell runs on Windows systems, we have several good options for
version control, including Team Foundation Services (TFS), Subversion, Git, and
Mercurial (hg). If we consider TFS Express edition, all of these are free of charge,
so there is no financial reason to keep from implementing one. Each has its own
advantages and disadvantages, so choose the one that's best suited to you. Your
company might already have a standardized version control system, so ask around
to see if the choice has been made for you.

All four of the version control systems mentioned have popular GUI frontends and
extensions to Windows Explorer, so using them can be as simple as right-clicking
on files and folders and selecting the appropriate operation in a context menu. With
PowerShell, though, we have a couple of other possibilities. We can use the built-in
command-line interfaces for these systems or we can use PowerShell cmdlets written
to interface with them.

The specific details of how to use version control (that is, which commands perform
which operations) are beyond the scope of this section. The important point for
you to take away is that you need to be submitting your scripts to a version control
system. How that happens is mostly a matter of preference. No matter what software
you decide on, whatever workflow you chose to check code, the benefits will follow
from consistent use.

Unit testing
Unit testing is the logical continuation of modularizing code. Once you have
broken the problem into smaller pieces or units, the next step is to test those units.
To perform unit testing means that we will write tests that exercise each unit with
a variety of inputs that will ensure that the code is correct. One emphasis of unit
testing is that the tests need to be automatic. That is, we're not reading a list of test
cases off of a piece of paper and running the code with each to verify that the results
are as expected. Unit tests are code and are just as important as the code being
tested (and as such should be checked into your version control system). Developers
are familiar with automated unit testing, but the use of unit tests by system
administrators is growing. As system administration begins to involve more and
more code, the knowledge that the code we use is correct is of utmost importance.

You might hear discussion of Test Driven Development (TDD), which relies on
a failing unit test in order to do any development, but for our purposes that is not
necessary. Our emphasis will simply be on using unit tests to have confidence in
our implementation.

PowerShell Professionalism

[74]

Another important point is that unit tests only test the code in the function. They are
not intended to test the entire environment (filesystem, network, database, and so
on). End-to-end testing involving the entire infrastructure is called integration testing
and is a separate subject.

Rolling your own unit tests
Let's consider a function that takes a list of computer names and a domain name
as parameters and returns a list of fully-qualified domain names (FQDN). An
implementation might look like the following code snippet:

function get-fqdn{
Param([string[]]$computerName,
 [string]$domainName)
 $output=@()
 foreach($computer in $computerName){
 $output+=$computer+'.'+$domainName
 }
 return $output
}

At first, we might try to think of some things to test using the following list of
conditions and their respective code:

• Pass two computer names and a domain name (base test):
get-fqdn comp1,comp2 -domain test.com #Should
 be @("comp1.test.com","comp2.test.com")

• Pass a single computer name and a domain name:
get-fqdn comp1 -domain test.com #Should be "comp1.test.com"

• Pass a single computer name and a domain name starting with a dot:
get-fqdn comp1 -domain .test.com #Should be
 "comp1.test.com"

• Pass a FQDN (instead of a computer name) and a domain name:

get-fqdn comp1.domain.com -domain .test.com #Should be
 "comp1.domain.com"

Chapter 4

[75]

It's important to understand that writing unit tests is, in a way, writing the
specification for your code. For instance, the third and fourth tests are logical, but
they weren't in the description of the code. By writing these tests in code, we are
expressing how our function is intended to be called as well as explaining what
kind of output is expected. Unit tests that are kept up to date are an important kind
of documentation. In fact, functioning unit tests are often the best documentation
since written documentation (in the form of documents or comment-based help, for
example) can get out of sync with the code. Unit tests that pass necessarily reflect the
code as written or they wouldn't pass.

To test these conditions, you would probably need some helper functions. We will
introduce an open source framework to simplify this later in the chapter, but at this
point we will keep it simple. The following is a simple function that tests whether
two arrays are equal:

function test-arraysEqual{
Param([array]$a,
[array]$b)
-not (compare-Object -ReferenceObject $a -DifferenceObject $b)
}

This works because the Compare-Object cmdlet returns the difference objects
for objects in the list which are different. The –not changes the empty list from
equal arrays into a $true and changes the list of objects for different lists (which is
logically $true) into $false. With that function, we can express the previous list of
tests using the following code snippet:

test-arraysEqual (get-fqdn comp1,comp2 -domain test.com)
 ("comp1.test.com","comp2.test.com")

test-arraysEqual (get-fqdn comp1 -domain test.com)
 ("comp1.test.com")

test-arraysEqual (get-fqdn comp1 -domain .test.com)
 ("comp1.test.com")

test-arraysEqual (get-fqdn comp1.domain.com -domain test.com)
 ("comp1.domain.com")

PowerShell Professionalism

[76]

When we run that, we get the following disappointing, but not very surprising, results:

True
True
False
False

The two tests we hadn't thought about when writing the code didn't pass. Let's make
a quick adjustment to the code to fix that:

function get-fqdn{
Param([string[]]$computerName,
 [string]$domainName)
 $output=@()
 if($domainName.StartsWith(".")){
 $domainName=$domainName.Substring(1)
 }
 Foreach($computer in $computerName){
 if($computer.Contains('.')){
 $output+=$computerName
 } else {
 $output+=$computer+'.'+$domainName
 }
 }
 return $output
}

Now, we get a clean set of results:

True
True
True
True

That's the rhythm of coding with unit tests. You write code, you test it. You fix the
code so the tests pass. If you think of more things to test, you add tests and repeat.

Chapter 4

[77]

A great thing about unit tests is that if you have an implementation with all passing
tests, you can change the way you implement it and you can still know if the
implementation is correct (with respect to the tests). In the following example, we
could remove the use of the $output variable to hold the results and simply output
the values directly to the pipeline instead:

function get-fqdn{
Param([string[]]$computerName,
 [string]$domainName)
 if($domainName.StartsWith(".")){
 $domainName=$domainName.Substring(1)
 }
 foreach($computer in $computerName){
 if($computer.Contains('.')){
 $computerName
 } else {
 $computer+'.'+$domainName
 }
 }
}

Seeing that the unit tests all still pass tells us that this was a valid change. If we had
gotten any failures, we would know we still have some work to do.

If you find a bug in your code, a good thing to do is isolate that bug in a unit
test before fixing the test. When you write the test first, you are making sure you
understand what went wrong. You are saying "the code should have returned this"
and instead you get a negative result. That doesn't seem like it's telling you anything,
but once you've corrected the code you now have a test that should pass.

Why is PowerShell testing difficult?
Consider the following function:

function get-dayOfWeek{
 return (get-date).DayOfWeek
}

PowerShell Professionalism

[78]

While this is a simple function that is not performing anything original, and we
would probably not write tests for it, it is interesting to try to imagine how we would
go about trying to test it. We could certainly test it manually by running it and
looking at a calendar, but the fact that the output is dependent on the current date
makes it difficult. Many typical PowerShell functions have many more dependencies
than this.

Thinking back to our example in the section on modularization, you'll remember
we had a function that renamed databases. Writing a unit test for that would not
be nearly as straightforward as the tests we showed for get-fqdn in the previous
section. For instance, it requires that there is an SQL Server instance with a database
we can connect to. It would also require that we have permissions to rename the
database and that there isn't a database with the new name on that SQL instance.
Similarly, most PowerShell scripts deal with external entities: filesystems, servers,
active directory, exchange, and so on. It's not reasonable to assume that there is a test
environment available for testing scripts. Even if there was, there is no guarantee
that it is configured like the live environment that our scripts will be running in.
Furthermore, the logic of our function is what we want to test, not the behavior of
the external system. To isolate our tests from external dependencies like this, we will
turn to the concept of mocking and the Pester testing framework.

An introduction to Pester
The Pester framework (https://github.com/pester/Pester) gives us a more
structured way to perform our unit tests. First of all, Pester has us create a fixture
for our unit testing purposes with the new-fixture function. A fixture is simply
a folder with two scripts in it. The first script has the function we are going to test.
The second is where our tests will go. The test script files must be named with an
extension of .Tests.PS1 in order for Pester to be able to find them. After copying
the get-fqdn function into the first script, I have rewritten the tests in Pester's
syntax. The vocabulary Pester uses is from the behavior-driven development (BDD)
style of testing. The syntax might look strange because it doesn't follow the verb-
noun format in tests. Instead, our tests are included in an It statement, and use the
Should function and the Be assertion. Understanding exactly how the PowerShell
works is interesting and I recommend reading through the Should function to help
in this regard. For our purposes, though, it is enough to know that this is a simple
and self-explanatory way to write tests, such as the following:

$here = Split-Path -Parent $MyInvocation.MyCommand.Path
$sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path).Replace(".
Tests.", ".")
. "$here\$sut"

https://github.com/pester/Pester

Chapter 4

[79]

Describe "get-fqdn" {

 It "works with a list" {
 get-fqdn comp1,comp2 domain.com |
 Should Be 'comp1.domain.com','comp2.domain.com'
 }
 It "works with a single computername" {
 get-fqdn comp1 domain.com |
Should Be 'comp1.domain.com'
 }
 It "works with a leading dot in domainname" {
 get-fqdn comp1 .domain.com |
Should Be 'comp1.domain.com'
 }
 It "doesn't modify a specified fqdn" {
 get-fqdn comp1.domain2.com .domain.com |
Should Be 'comp1.domain2.com'
 }

}

Running the tests with the Invoke-Pester function gives us the following result
which shows that all four tests passed:

Executing all tests in C:\Users\Mike\SkyDrive\Documents\
PowerShellTroubleshooting\ChapterDrafts\Chapter4_1stDraft\Code\get-
fqdn
Describing get-fqdn
 [+] works with a list 22ms
 [+] works with a single computername 2ms
 [+] works with a leading dot in domainname 24ms
 [+] doesn't modify a specified fqdn 2ms
Tests completed in 51ms
Passed: 4 Failed: 0

PowerShell Professionalism

[80]

Mocking with Pester
One of the interesting features of the Pester framework is the ability to create mocks.
In general, a mock is something that will be substituted for a dependency in a unit
test. The mock is created so that it only has the behavior that we are interested in and
gives predictable results. Testing the simple function we described earlier is fairly
simple to accomplish with mocks. First, let's write the following function:

function get-dayOfWeek{
 return (get-date).DayOfWeek
}

Now, let's consider the following tests:

$here = Split-Path -Parent $MyInvocation.MyCommand.Path
$sut = (Split-Path -Leaf
 $MyInvocation.MyCommand.Path).Replace(".Tests.", ".")
. "$here\$sut"

Describe "DayOfWeek" {

 It "Returns Thursday for 6/26/2014" {
 Mock Get-Date {return [DateTime]'6/26/2014'}
 get-DayOfWeek | Should Be 'Thursday'
 }
 It "Returns Monday for 3/24/2014" {
 Mock Get-Date {return [DateTime]'3/24/2014'}
 get-DayOfWeek | Should Be 'Monday'
 }

Note that we used the Mock function to create versions of get-date that return
specific dates. With those dates, it is trivial to check the day of the week against
the return value. By using a mock, we have eliminated the dependency on the
implementation of get-date and are free to concentrate on how the output of
get-date is used.

A more complicated function allows us to use more of the functionality provided
by Pester. The following is a function that restarts the current machine if it has been
running for more than 30 days:

function restart-ServerAfter30Days {
 $lastBootTime=get-CIMInstance Win32_OperatingSystem |
select-object -expand LastBootUpTime
 $now=get-date
 if(($now - $lastBootTime).TotalDays -gt 30) {

Chapter 4

[81]

 Restart-Computer -WhatIf
 }
}

To test this function, we first need to remove the dependency on Get-Date and
Get-CIMInstance using mocks. We also need to mock Restart-computer because
it would not be helpful for the computer running the test to restart during the test.
We can use the Assert-MockCalled function to ensure that the Restart-Computer
cmdlet was called (or not) in the correct situations. Finally, we have supplied a filter
on the Get-CIMInstance mock so that it only applies if the Win32_OperatingSystem
class name was passed as a parameter. In this case, the filter was not necessary, but it
serves to illustrate the usage of filters. The following code snippet explains this:

$here = Split-Path -Parent $MyInvocation.MyCommand.Path
$sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path).Replace(".
Tests.", ".")
. "$here\$sut"

Describe "restart-ServerAfter30Days" {
 Mock get-CIMInstance { new-object PSObject -prop @{LastBootUpTi
me=[Datetime]'2/1/2014'}} -parameterFilter {$ClassName -eq 'Win32_
OperatingSystem'}
 Mock Restart-Computer {}
 Context "When restart date is more than 30 days old" {
 Mock get-date {return [Datetime]'4/1/2014'}
 restart-ServerAfter30Days
 It 'reboots' {
 Assert-MockCalled Restart-Computer -times 1
 }
 }
 Context "When restart date is less than 30 days old" {
 Mock get-date {return [DateTime]'2/15/2014'}
 restart-ServerAfter30Days
 It 'Does not reboot' {
 Assert-MockCalled Restart-Computer -times 0
 }
 }
}

PowerShell Professionalism

[82]

Again, using Invoke-Pester shows us that the function passes both tests in the
following code snippet:

Executing all tests in C:\Users\Mike\SkyDrive\Documents\
PowerShellTroubleshooting\ChapterDrafts\Chapter4_1stDraft\Code\
restartTest
Describing restart-ServerAfter30Days
 Context When restart date is more than 30 days old
 [+] reboots 4ms
 Context When restart date is less than 30 days old
 [+] Does not reboot 26ms
Tests completed in 30ms
Passed: 2 Failed: 0

Mocking is an important tool in the unit testing arsenal and allows us to test a
number of things that would be difficult to test without them. On the other hand, as
the mocking scenario gets more and more complex, there is a question about how
tightly-coupled your code and the mock object are. Tightly-coupled code is a danger,
as it makes changing code difficult. If you find yourself spending a lot of your time
writing mocks, you might want to take a step back and re-evaluate.

Further reading
Take a look at the following references for more information:

• Naming conventions at http://en.wikipedia.org/wiki/Naming_
convention_%28programming%29

• Dogfooding at http://en.wikipedia.org/wiki/Eating_your_own_dog_
food

• Modularization at http://en.wikipedia.org/wiki/Modular_programming
• Unit testing at http://en.wikipedia.org/wiki/Unit_testing
• Pester at https://github.com/pester/Pester
• Mocking at http://en.wikipedia.org/wiki/Mock_object

http://en.wikipedia.org/wiki/Naming_convention_%28programming%29
http://en.wikipedia.org/wiki/Naming_convention_%28programming%29
http://en.wikipedia.org/wiki/Eating_your_own_dog_food
http://en.wikipedia.org/wiki/Eating_your_own_dog_food
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Unit_testing
https://github.com/pester/Pester
http://en.wikipedia.org/wiki/Mock_object

Chapter 4

[83]

Summary
In this chapter, we looked at several practices borrowed from traditional software
development that will help your scripting look more professional. These practices
include things like using naming conventions for different types of PowerShell
entities, breaking scripts down into smaller units, using version control consistently,
and finally unit testing and mocking.

In the next chapter, we will look at using some of the built-in features of PowerShell
to proactively create more trouble-free programs. These features include error
handling (try / catch vs trap), parameterization and pipeline input, parameter
validation, parameter type transformation, and so on.

Proactive PowerShell
PowerShell includes capabilities to improve the quality of scripts that will prevent
some of the problems that might be encountered in the scripting process. In this
chapter, we'll cover the following topics:

• Error handling (try/catch versus trap)
• Parameterization and pipeline input
• Pipelines and function execution
• Parameter validation
• Parameter type transformation
• Strictmode/PSDebug
• #REQUIRES statements (version or administrator)
• CmdletBinding and common parameters

Error handling
Chapter 2, PowerShell Peculiarities introduced PowerShell's two error-handling
mechanisms: the trap statement and the try, catch, and finally statements. That
chapter explained how these statements function in PowerShell code. The following
sections will give you some guidance on how to use them effectively and some
techniques for writing error-handling code.

Proactive PowerShell

[86]

Error-handling guidelines
The first thing to mention is that although the trap statement can be effective for
handling errors, its flow can be confusing, especially when considering the many
ways to exit a trap statement. For this reason, it is a good idea to avoid the trap
statement in most cases and use the try / catch / finally constructions instead.
Since environments that only support PowerShell Version 1.0 are not very common,
try, catch, and finally can be used almost everywhere. Also, the flow of try /
catch / finally is much more linear, leading to less confusion about the flow
of execution.

A second point is that when writing error-handling code (with either try/catch/
finally, or trap), we should avoid using empty error handlers. The following code
is a bad example of handling errors:

#this is bad!
try {
 Start-Service MSSQLSERVER -Computer CORPSQL -errorAction Stop
} catch { }

The reason this is a poor practice is simple. If it doesn't matter whether the code
had an error, the operation couldn't have been very important. If we don't need
the code to succeed, or even to know what went wrong, we probably don't need
to be executing the code in the first place. The same observation can be made
for using the Ignore value for the ErrorAction common parameter or the
$ErrorActionPreference variable. Since that setting instructs PowerShell to not
only refrain from writing errors to the error stream but also to not record the error in
the $Error collection, there is no way to know whether the operation succeeded or
not, and there is no way to know what went wrong.

Error-handling techniques
First of all, let's state for the record that it is important to handle errors. That might
sound obvious, but it is easy to get caught up in how powerful PowerShell is and
then forget that even though PowerShell has the capability to do things, the world
doesn't always cooperate with our plans. For instance, consider the following line of
a script:

$service = Get-Service MSSQLServer –computername MYSERVER

Chapter 5

[87]

While the expectation might be that the statement in question will always succeed,
and in ordinary circumstances it will, there are clearly some ways in which things
can go wrong. Scripters with a development background usually start the
error-handling process with code like this:

Try{
 $service = Get-Service MSSQLServer –ComputerName MYSERVER
}
catch {
 #handle the error appropriately
}

In this case, this approach is not successful since the Get-Service cmdlet doesn't
throw terminating errors but emits non-terminating errors instead. Even though
we're trying to handle all errors here, the try / catch statements seem to have
no effect.

Using a try / catch / finally construct in conjunction with the –ErrorAction
STOP parameter gives us the ability to handle non-terminating errors. The code now
looks like this:

Try {
$service = Get-Service MSSQLServer –computername MYSERVER –ErrorAction
Stop
} catch {
 #respond appropriately to the error condition.
}

Knowing what kinds of errors need to be handled can be accomplished by running
some sample broken scripts:

#test a good computer name with a bad service name
Get-Service MSSQLSERVERZZZZ –ComputerName Localhost
#test a bad computer name with a good service name
Get-Service MSSQLSERVER –ComputerName NOSUCHCOMPUTER

This gives a good start for trying to figure out how to respond. Now, we need to
determine whether these errors are terminating errors or non-terminating errors.
Like we covered in Chapter 2, PowerShell Peculiarities, non-terminating errors aren't
caught by a try / catch construction, so we can do something like the following:

Try {
 Get-Service MSSQLSERVERZZZZ –ComputerName Localhost
} catch {
 "An exception : ($_) happened"
}

Proactive PowerShell

[88]

In this case, the code indicates that an exception (that is, a terminating error) has not
occurred, so we know that this particular error is a non-terminating error. To handle
non-terminating errors, we need to use the –ErrorAction parameter with the
value Stop:

Try {
 Get-Service MSSQLSERVERZZZZ –computername Localhost –ErrorAction
Stop
} catch {
 $err=$_
 "An exception : ($err) happened"
}

We are now able to handle this condition. By repeating this process with each kind of
bad parameter, we can figure out how to structure the error-handling code.

Investigating cmdlet error behavior
Although the PowerShell language designers have worked very hard to create a
scripting environment that is very consistent and have included many language
features to help out in this direction, it can be dangerous to assume that different
cmdlets will respond to errors in the same way. A couple of examples should
indicate the danger of assuming cmdlets behave similarly.

First, have a look at the following script, which gets references to the Spooler service
on two computers using Get-Service and Get-WMIObject:

$computers='localhost','NOSUCHCOMPUTER'
Get-Service Spooler –ComputerName $computers
Get-WMIObject Win32_Service –ComputerName
 $computers –Filter "Name='Spooler'"

The Get-Service cmdlet simply returns the localhost spooler with no indication
of any error except for the delay in trying to resolve the nonexistent computer. The
Get-WMIObject cmdlet, on the other hand, emits a non-terminating error about not
being able to connect to the RPC service on NOSUCHCOMPUTER, which is the service
responsible for WMI communication.

A second example concerns operations that require administrative privileges. In a
PowerShell instance that is not running with administrative privileges, the Get-VM
cmdlet simply returns no objects even if there are VMs configured on the system.
On the other hand, stop-service BITS will emit a non-terminating error if it's run as a
non-administrator.

Chapter 5

[89]

Hopefully, these examples are sufficient to convince you that actually investigating
the error responses for cmdlets is a valuable exercise. Being able to respond correctly
to the error conditions is an important part of troubleshooting PowerShell code.

Catch and release
One last thing to mention about error handling is that error handling in a function
or script does not necessarily need to respond to every possible error. This might
seem to contradict the previous sections' emphasis on investigating error modes for
cmdlets that you're using, but there is an important distinction. It really only makes
sense to handle the errors that are related to the process that is being performed. For
instance, code that deals with reading a performance counter should probably be
expected to react to only a few kinds of errors:

• Missing performance counters
• Insufficient privileges to read the performance counter

What conditions are we not considering? What about the Out of Memory errors?
What if the OS is shutting down? What if a non-terminating error is not one of the
conditions that you have a response for? In cases such as these, it might make sense
to either throw the exception again (in the case of a terminating error) or rewrite the
error to the error stream, as shown in the following code snippet:

try {
 Get-Service BLAH -ErrorAction stop
} catch {
 if($_.Exception.Message -like 'Cannot find any service*'){
 #do something about the missing service
 } else {
 throw
 }
}

This is not always necessary, but it does allow system-level errors to be handled at
the appropriate level.

Proactive PowerShell

[90]

CmdletBinding()
In PowerShell Version 1.0, the only way to write cmdlets was with managed code.
Starting with Version 2.0, it became possible to write advanced functions that have
all of the capabilities of managed cmdlets but are written in 100 percent PowerShell.
The key to writing advanced functions (also sometimes called script cmdlets) is the
CmdletBinding() attribute, which is added to the Param() statement. Since the
attribute is tied to the Param() statement, advanced functions must have a Param()
statement even if they have no parameters. In this case, an empty Param() statement
can be used. The following is an example of a normal function and an advanced
function, which are nominally the same:

#this is a normal function
function add-item{
param($x,$y)
 Write-Output $x+$y
}

#the same function as an advanced function
function add-itemAdv{
[CmdletBinding()]
param($x,$y)
 Write-Output $x+$y
}

Chapter 5

[91]

Common parameter support
Although the two functions seem to be the same, Get-Help shows that there is
a difference:

One of the benefits of writing advanced functions is the support for common
parameters. From the about_CommonParameters help topic, we can see that the basic
set of common parameters that are available to every advanced function or cmdlet
(in PowerShell Version 4.0) include the following:

• -Debug

• -ErrorAction

• -ErrorVariable

• -OutVariable

• -OutBuffer

Proactive PowerShell

[92]

• -PipelineVariable

• -Verbose

• -WarningAction

• -WarningVariable

Supporting these parameters means that we don't have to do anything to make them
work. For instance, we can use Write-Verbose throughout our advanced function
and the verbose output will show up if the –Verbose switch is specified. Similarly,
we can use Write-Error to emit non-terminating errors and the engine will convert
them to exceptions if the caller specifies –ErrorAction Stop.

SupportsShouldProcess
Cmdlets whose execution changes the state of the system where some risk is
involved should include risk mitigation parameters, which are the following:

• -WhatIf

• -Confirm

For an advanced function to use these parameters, the SupportsShouldProcess
parameter of the CmdletBinding attribute should be given a value of $true.
Portions of code that involve the risk should be guarded with the $PSCmdlet.
ShouldProcess() method. This method returns $true unless the caller specified
the –WhatIf switch or the –Confirm switch followed by a negative response:

function remove-something{
[CmdletBinding(SupportsShouldProcess=$true)]
Param($item)

 if ($PSCmdlet.ShouldProcess($item)){
 Write-Output "Removing $item"
 }

}

Chapter 5

[93]

Here is some sample output from that advanced function showing the operation of
the –Whatif and –Confirm switches:

Parameter name validation
One important consequence of writing advanced functions (that is, using
CmdletBinding) is that named parameters that are passed but do not exist in the
function will cause the parameter binding to fail. The following code will help you
understand this:

function f1{
Param($a,$b)
 Write-Host $a+$b
}

function f2{
[CmdletBinding()]
Param($a,$b)
 Write-Host $a+$b
}

Given these two functions, observe the following output:

Proactive PowerShell

[94]

Though this is a very simple example, and it doesn't seem like a big deal, parameter
name checking is an essential ingredient in writing robust scripts. The reason is
that we don't generally name parameters things such as A and B. Longer parameter
names such as ConnectionString and ComputerName are much easier to mistype,
and without this feature, parameter name typos will go unnoticed. Also, because the
parser is checking parameter names, it is possible to abbreviate parameter names and
the parser will be able to determine which parameter is being referenced.

This kind of mistake bit me early in my PowerShell experience when I was testing
some code. I was trying to stop a demo system and "typoed" the name of the
parameter that specified which system to stop. The code in question didn't do any
sanity checking to make sure that reasonable parameters were supplied. Since this
was PowerShell Version 1.0, which didn't have advanced functions, the function
didn't receive any –System parameter and ignored the demo system name that I
passed with the wrong parameter name. I shut down all relevant systems in my
company. Oops! This is not the kind of mistake you want to make.

Parameter value validation
In addition to validating the names of parameters, using CmdletBinding() allows us
to provide several types of validation rules for values of parameters. Validation rules
enable us to provide checks that are performed by the parameter binding engine that
specify when values are appropriate or not for the function. These parameter checking
attributes can be divided into two groups: requirement validation and value checking.
Requirement checking indicates whether the parameter is required or if various types
of empty values are allowed. These attributes include the following:

• Mandatory

• AllowNull

• AllowEmptyString

• AllowEmptyCollection

• ValidateNotNull

• ValidateNotNullOrEmpty

Chapter 5

[95]

Value checking attributes restrict the values that are allowed for a parameter. Value
checking attributes include the following:

• ValidateCount

• ValidateLength

• ValidatePattern

• ValidateRange

• ValidateScript

• ValidateSet

Parameter attribute usage is illustrated in the following script:

Function test-validation{
[CmdletBinding()]
Param([ValidateLength(4,10)][string]$word)
Write-Output "the word was $word"
}

In this script, we have used the ValidateLength parameter attribute to ensure that
values passed in for $word are strings between 4 and 10 characters in length. Passing
invalid values (either longer or shorter) will cause this validation rule to fail and an
error will be emitted without executing the function. We can fairly easily write code
to validate the parameter without attributes like this:

Function test-validation{
[CmdletBinding()]
Param([string]$word)
 #Don't do this!
 If($word.Length –lt 4 –or $word.Length –gt 10){
 Throw "The value for $word has an invalid length"
 }
Write-Output "the word was $word"
}

Proactive PowerShell

[96]

There are several reasons this approach should be avoided. Some of them are
listed as follows:

• It involves more manual coding
• The function is actually executing, so any errors in the parameter validation

might end up with inadvertent results
• The parameter checking code is separated from the parameter definition
• Custom error messages will be inconsistent between different scripters (and

often even with the same scripters)
• Custom error messages will not (in general) be localized, so they will appear

in the scripter's language only

Pipeline input
The ability to accept pipeline input has been included in PowerShell since Version
1.0. There are three main ways to deal with the pipeline: $input, filters, and (fully
specified) functions.

The $input automatic variable exposes an enumerator (think collection) of all the
values passed in on the pipeline. An example using the $input automatic variable
might look like this:

Function get-pipelineinput{
 $input | Foreach-Object {Write-Host "the object was $_"}
}

The second option, filters, are simply functions whose bodies are executed for each
pipeline element. Filters use the $_ symbol to represent the current pipeline element.
Here is an example of a filter script:

Filter get-reverse{
 $_.ToString().Reverse()
}

Chapter 5

[97]

Because there is no way to specify what types of values were available for
pipeline input using the $input or $_ variables, these are not good solutions for
most production scripts. With PowerShell Version 2.0 and the introduction of
CmdletBinding(), another more powerful option became available, using parameter
attributes to indicate pipeline binding. Before illustrating these parameter attributes,
we need to explain that the example functions presented in Chapter 1, PowerShell
Primer, did not illustrate the full form of a function definition. When working with
the pipeline we need to know that there are three possible sections in a function
definition: Begin, Process, and End. If no named section is used, the (unnamed)
function body is the end section. Here is the full form of a function:

Function <function name>{
[CmdletBinding()]
Param(<parameters>)
Begin {
 #<executed before processing pipeline items>
 }
Process {
 #<code executed for each pipeline item>
 }
End {
 #<executed after processing pipeline items>
 }
}

It should be clear from the outline that the begin block is executed at the beginning
of the pipeline, before any items have been processed. The process block is then
executed for each item received from the pipeline that can be accessed via the $_
variable which is also used in filters or with parameters that have been designated to
bind to pipeline items.

The ValueFromPipeline and ValueFromPipelineByPropertyName parameter
attributes allow a function to indicate how specific parameters bind to items on the
pipeline. ValueFromPipeline tells the engine to attempt to bind each pipeline item
to a parameter as an object. The ValueFromPipelineByPropertyName attribute
instructs the engine to examine each item on the pipeline and use the object properties
whose names match the parameter name to populate the parameter. Unlike with
ValueFromPipeline, more than one parameter can bind to a property name with the
same pipeline object. This should be made clearer with the following example:

Function get-fileExtension{
[CmdletBinding()]
Param([Parameter(ValueFromPipeline=$true)]

Proactive PowerShell

[98]

 [System.IO.FileInfo]$file,
 [Parameter(ValueFromPipelineByPropertyName=$true)]
 [String]$extension)
Process{
 Write-Output "The filename was $($file.Name)"
 Write-Output "the extension was $($file.Extension)"
 Write-Output "the extension is also $extension"
}
}

In this example, the $file parameter is set to bind with the FileInfo objects in
the pipeline. Likewise, the $extension parameter is set to bind with properties
called Extension on objects in the pipeline. Note that folders are represented by
the System.IO.DirectoryInfo class, so the $file parameter will not bind but
since those objects have the Extension properties the $extension parameter will
be populated. Here is an example of calling this function:

Chapter 5

[99]

The process block of a function is repeated for each object in the pipeline. However, if
the user calls the function supplying the values for the parameters on the command
line, we also need to make sure that our function will handle those seamlessly. Here is
a useful pattern to handle pipeline and command-line input with the same parameter:

function get-value{
[CmdletBinding()]
Param([Parameter(ValueFromPipeline=$true)]
 [string[]]$computername)
begin {
 #initialize
}
process{
 Foreach ($computer in $computername){
 #process one value from the pipeline or commandline
 }
}
end {
 #finish up
}
}

The new features of this function are making the parameter an array and adding
a loop in the process block. In this code, the process block will be executed once
for each pipeline item and the foreach loop in it will execute once per item. For
command-line input, the $computername parameter will have all of the values
supplied (rather than one at a time) and the loop in the process block will loop
through them. With command-line input, the process block will only execute once.

Pipelines and function execution
Although pipelines are written sequentially with each element following the previous
one, function execution in a pipeline is somewhat different. In order to illustrate this,
consider the following advanced functions that all allow pipeline input:

function A{
[CmdletBinding()]
Param([Parameter(ValueFromPipeline=$true)]$x)
 begin { Write-Host "A in begin"}
 process { Write-Host "A in Process{}"
 Write-Output $x }
 end { Write-Host "A in end"}

Proactive PowerShell

[100]

}
function B{
[CmdletBinding()]
Param([Parameter(ValueFromPipeline=$true)]$y)
 begin { Write-Host "B in begin"}
 process { Write-Host "B in Process{}"
 Write-Output $y }
 end { Write-Host "B in end"}
}
function C{
[CmdletBinding()]
Param([Parameter(ValueFromPipeline=$true)]$z)
 begin { Write-Host "C in begin"}
 process { Write-Host "C in Process{}"
 Write-Output $z }
 end { Write-Host "C in end"}
}

The only thing these functions do is display a message when one of the three
Begin-Process-End script blocks is run and output any objects that come in
from the pipeline. With this in mind, examine the output from the command line
1,2,3 | A | B | C in the following screenshot:

Chapter 5

[101]

The sequence of execution should be clear:

1. The Begin block of each function in the pipeline is executed in sequence.
2. The Process block of the first function is passed the first item in the pipeline.
3. Since the first Process block outputs an object, it is passed to the second

Process block, and so on.
4. After all of the pipeline objects have been processed, the End blocks are all

called in sequence.

If we don't use Begin-Process-End blocks in a function, only the End block is called.
In this case, the last value from the pipeline is still assigned to the parameter. To see
this, have a look at the following simple function:

function D{
[CmdletBinding()]
Param([Parameter(ValueFromPipeline=$true)]$z)
 Write-Host "This is the only block in D and `$z is $z"
}

Now, observe the output in the following screenshot from 1,2,3 | A | B | D and
compare it to the previous output:

Proactive PowerShell

[102]

Parameter type transformation
PowerShell allows us to ignore the idea of variable types in most situations and this
is a tremendous productivity boost. When you consider all of the different Common
Language Runtime (CLR) types that are used in a typical script it's easy to see
why not worrying about naming the types saves a lot of time. Adding in all of the
anonymous types (for instance, results of a select-object call), the need for a very
liberal typing system is obvious. One example when specifying types is useful, or
even critical, is when specifying parameters to a function:

function get-dayofweek{
param($date)
 Write-Output $date.DayOfWeek
}

This function seems like it would work well, but testing it shows that it's not quite
right, as shown in the following screenshot:

Since we didn't specify what type the parameter was, the problem was that the
constant string '5/27/2014' was passed into the parameter as is, that is, as a string.
Since the string didn't have a DayOfWeek property, the output is $null. The solution,
of course, is to include the type of the parameter as part of the definition, as shown in
the following script:

function get-dayofweek{
param([datetime]$date)
 Write-Output $date.DayOfWeek
}

Now the function works as expected:

Chapter 5

[103]

It's important to include the type of your parameter because the PowerShell engine
does a remarkable job to not only make sure that the type of object that is passed is
the correct type, but it also tries to coerce the value into the correct type. This is how
the '5/27/2014' string was changed into a DateTime object. PowerShell uses several
different methods to try to convert the supplied value to the requested type. In this
instance, it found a Parse() static method on the DateTime type with a single string
parameter and passed '5/27/2014' to it to create the value that was accepted by
the function.

Passing a value that does not correspond to a legitimate object of the correct type will
result in an error as the engine attempts to bind the value to the parameter:

PowerShell's method of automatic type conversion is almost always what is
expected. On the other hand, some types have constructors, such as shown in the
following screenshot, which we might not have considered:

While this doesn't seem to make sense, PowerShell pushed through and gave an
answer. It turns out that the DateTime type has a constructor that takes a single
integer parameter corresponding to the number of ticks (since the minimum
DateTime value). It's probably not what we wanted, but it's the price we pay for the
99 percent of the time where PowerShell is silently converting values (for example,
filename strings to FileInfo objects):

function get-extension{
param([System.io.fileinfo]$file)
 Write-Output $file.extension
}

Because the text value on the command-line was converted to a FileInfo object, we
are able to refer to its extension property:

Proactive PowerShell

[104]

The point to remember is that we can control what objects are accepted for parameters
by specifying the type of the parameter. We can't control what conversions PowerShell
will attempt to use to give us a correctly-typed object. We might get an unexpected
value if PowerShell uses an unusual transformation, but we won't have to validate the
type of the object we receive.

#REQUIRES statements
It's no secret that some code has prerequisites that need to be met in order for it to
work. In PowerShell, certain types of requirements can be specified in scripts using a
#REQUIRES statement. Although the #REQUIRES statement looks like a comment (that
is, it starts with #), it is a statement to the engine that tells PowerShell not to run the
script unless the requirements are met. As of PowerShell Version 4.0, the following
options are available in a #REQUIRES statement:

Option Parameters Notes
–Version N[.N] (for example, 4.0) Required version of

PowerShell engine
–PSSnapIn PSSnapinName [–Version N[.N]] Required Snapin (with

optional minimum
version #)

–Modules ModuleName[,ModuleName] or
Hashtable

Required modules to
be loaded

–ShellID ShellID Required PowerShell
Host (for example,
Microsoft.
PowerShellISE)

–RunAsAdministrator none Required session
privileges

When the conditions of the #REQUIRES statement are not met, or cannot be
met, the script will not load and will emit an error. With the following code in
RequireAdministrator.ps1 and a PowerShell session not running as administrator,
observe the error message that follows:

#Requires -RunAsAdministrator

Write-Host "hello world"

Chapter 5

[105]

Set-StrictMode and Set-PSDebug -strict
In addition to PowerShell not requiring a script to specify the type of a variable, it
also doesn't require any kind of declaration prior to using the variable. If the first use
of a variable is to assign a value to it, this relaxed attitude doesn't cause any harm.
On the other hand, reading a variable that hasn't been written to is generally not
what is intended.

There are two ways to ensure that reading from an uninitialized variable will cause
an error. The first, introduced in PowerShell Version 1.0, was to use the –strict
switch on the Set-PSDebug cmdlet. Once this has been issued in a PowerShell
session, references to uninitialized variables (except in string substitution) will
produce an error. References inside strings will resolve to $null. This is a global
switch in the engine and is reversed by issuing Set-PSDebug with the –off switch.
The following screenshot explains this:

The second method, introduced in PowerShell Version 2.0, is to use Set-StrictMode
and use the –Version parameter to specify the level of strictness. Set-Strictmode
–Version 1.0 gives the same results as Set-PSDebug –strict. Set-StrictMode –
Version 2.0 and causes the following conditions to result in an error:

• Referencing uninitialized variables in strings
• Referencing nonexistent properties of an object

Proactive PowerShell

[106]

• Calling a cmdlet using parentheses (as if it were an object method)
• Referencing a variable with no name (${})

The following screenshot illustrates the strict-mode errors:

As of PowerShell 4.0, –Version 2.0 is the most restrictive setting available. To
ensure that code uses all possible restrictions for future versions as well, the value of
Latest is available, which currently gives the same results as –Version 2.0.

One difference between Set-PSDebug and Set-StrictMode is that while Set-
PSDebug is a session-level setting, Set-StrictMode is scoped, that is, the setting
is changed in the current scope and its children. For this reason it can be used to
guard against errors in a function, module, or script without concern that it will
place restrictions on the session in general and is preferred over Set-PSDebug unless
working in PowerShell Version 1.0.

Chapter 5

[107]

Set-Strictmode is an important tool in our toolbox because the restrictions it makes
are generally encountered in erroneous code. Referencing uninitialized variables
usually happens when a variable is misspelled and similarly, with nonexistent
property names. Calling functions or cmdlets using method syntax (parentheses and
commas) is usually a mistake as it packages up the arguments as an array and passes
that array to the first parameter, which is rarely intended.

Further reading
You can go to the following references for more information:

• get-help about_try_catch_finally

• get-help about_functions_cmdletbinding_attribute

• get-help about_commonparameters

• get-help about_functions_advanced_methods

• get-help about_functions_advanced_parameters

• get-help about_functions

• get-help about_pipelines

• Parameter Type Transformation at http://blogs.msdn.com/b/
powershell/archive/2013/06/11/understanding-powershell-s-type-
conversion-magic.aspx

• get-help about_requires

• get-help set-strictmode

• get-help set-psdebug

Summary
This chapter has explored some really important PowerShell features in depth. We
spent a lot of time talking about advanced functions, parameters, and the pipeline.
The important Set-StrictMode cmdlet was introduced to show how to restrict
the PowerShell language slightly in ways that will help us script more carefully.
Hopefully, by employing some of these practices, you will be to write more
powerful, flexible scripts and avoid some common errors.

In the next chapter, we will turn our thoughts to the environment that scripts run in.
We will look at several ways to determine the characteristics of the environment in
order to eliminate errors that lie outside of our scripts.

http://blogs.msdn.com/b/powershell/archive/2013/06/11/understanding-powershell-s-type-conversion-magic.aspx
http://blogs.msdn.com/b/powershell/archive/2013/06/11/understanding-powershell-s-type-conversion-magic.aspx
http://blogs.msdn.com/b/powershell/archive/2013/06/11/understanding-powershell-s-type-conversion-magic.aspx

Preparing the Scripting
Environment

Writing scripts carefully and leveraging the PowerShell language is important, but
deploying those scripts into an uncertain environment can cause any number of
headaches. Validating that the scripting environment is configured as expected will
eliminate many of the potential errors that might otherwise occur. Several methods
to check the existing configuration will be presented in this chapter. Many of these
techniques are also useful for routine validation after maintenance (patching,
upgrading, and so on). In this chapter, we will cover the following topics:

• Validating the operating system (OS) version and 32/64-bit
• Validating the service status
• Validating disk and memory availability
• Validating network connectivity

Validating operating system properties
Details about the installed operating system on a computer can have a tremendous
impact on the operation of a script. In the following sections, we will examine
the Win32_OperatingSystem class and build a function that provides us with
the data we need to support our scripts. The class has over 60 properties, but a
handful of them are all we will need. We will use the Common Information Model
(CIM) cmdlets to retrieve the data, though using the Windows Management
Instrumentation (WMI) cmdlets will work as well. To start off, let's retrieve the
(only) instance of the class using the following script:

$os=get-CIMInstance –class Win32_OperatingSystem

Preparing the Scripting Environment

[110]

There is a lot of confusion between WMI and CIM. The CIM cmdlets
introduced in PowerShell Version 3.0 seem to provide the same
functionality as the WMI cmdlets that have always been present.
The main difference is that the CIM cmdlets use Web Services
Management (WSMAN) by default instead of using DCOM like
the WMI cmdlets. Also, CIM cmdlets allow you to use a session for
multiple requests, which reduces the overhead. If your environment
doesn't allow CIM cmdlets to be used, you should be able to use the
corresponding WMI cmdlets.

Workstation/server version
The designation of the installed operating system as a workstation or server (or
domain controller) is given by the ProductType property, which takes one of the
following values:

Value Meaning
1 Workstation
2 Domain controller
3 Server

Here, we see a computer that is running a workstation version of Windows:

If we store these values in an array with a dummy entry, the indices will correspond
with the product values:

$ProductTypes="Unused",
 "Workstation",
 "Domain Controller",
 "Server"

Chapter 6

[111]

Operating system version
We can get other information from Win32_OperatingSystem about the specific
version of the operating system that we have installed. The properties we will
use are:

• Caption

• ServicePackMajorVersion

• Version

In the following screenshot, you can see the values my laptop shows for
these properties:

The Caption property is clearly what a user will be familiar seeing, but it is going
to be difficult to use that in a script. The Version property will be easier to use in a
script, but the values aren't necessarily what would be expected by us. For instance,
I would have expected Windows 7 to be Version 7. Here is a table of the values that
are returned in this property and the corresponding operating system versions:

Version number Operating system
5.1 Windows XP
5.2 Windows Server 2003
5.2.3 Windows Server 2003 R2
6.0 Windows Vista or Windows Server 2008
6.1 Windows 7 or Windows Server 2008 R2
6.2 Windows 8 or Windows Server 2012
6.3 Windows 8.1 or Windows Server 2012 R2

Preparing the Scripting Environment

[112]

For versions 6.x we can use the ProductType to determine whether the OS is the
desktop (workstation) or Server edition. One last piece of information that will come
in handy is knowing whether the OS installation is a 32-bit or 64-bit installation. We
can start with the OSArchitecture property, which shows my computer to be 64-bit,
as shown in the following screenshot:

The OSArchitecture property does not exist in the WMI class definition delivered
on Windows XP or Windows Server 2003, which exist in both 32-bit and 64-bit
versions. There are other indicators of what architecture is present in hardware, like
the SystemType property of the Win32_ComputerSystem class or the Architecture
property of the Win32_Processor class, but those refer to the hardware rather
than the installed operating system. Rather than digging through all of the
possible WMI classes, a simpler approach is to simply look for the existence of a
ProgramFiles(x86) environment variable. All 64-bit installations will include this
environment variable, but 32-bit systems won't have it.

This gives us the following function to retrieve the architecture of the OS, which will
work for all versions:

function get-OSArchitecture{
 if (test-path "env:programfiles(x86)"){
 "64-bit"
 } else {
 "32-bit"
 }
}

Chapter 6

[113]

This code only works on the current machine because it uses ENV: drive. A
more general solution involves accessing environment settings through the
Win32_Environment class. Unfortunately, the ProgramFiles(x86) environment
variable isn't available in that class as a property. Fortunately, there are some other
environment variables we can use (in combination) if the OSArchitecture property
is not present. We can use the following function to retrieve environment variables
from remote machines:

Function Get-EnvironmentVariable{
Param(
[string]$name='%',
[string]$username='<SYSTEM>',
[parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
[string[]]$computername='localhost')

 Process{
 $values=Get-WMIObject –class
 Win32_Environment –computerName $computerName
 –filter "Name like '$name' and UserName='$username'"
 if($name.Contains('%')){
 $values
 } else {
 $values | select-object -ExpandProperty VariableValue
 }
 }
}

I've written the function so that it will return the value of a single variable or the
list of Win32_Environment objects if the name parameter contains a wildcard. This
makes it simple to retrieve a single value if that's what is needed.

With the Get-EnvironmentVariable function, we can write the following script:

Function get-legacyOSArchitecture{
Param($computername)
 If((get-EnvironmentVariable –name 'PROCESSOR_ARCHITECTURE' –
computername $computername) –eq 'AMD64'){
 '64-bit'
 } else {
 If((get-EnvironmentVariable –name 'PROCESSOR_ARCHITEW6432'
 –computername $computername) –eq 'AMD64'){
 '64=bit'
 } else {

Preparing the Scripting Environment

[114]

 '32-bit'
 }
 }
}

If you don't have a Windows 2003 or XP system, I would recommend using the
OSArchitecture property on Win32_OperatingSystem since there are several other
properties that we will want to look at on that class. Since both of these operating
systems are no longer supported, the need for a workaround should be short-lived.

Putting it all together
We can combine all of the research in the following sections into a flexible script
which retrieves all of the operating system details that we're interested in. To start,
our input will be a list of computer names. We should allow the parameter to be
provided on the command line or from the pipeline (by value or from a property).

Troubleshooting tip

When including a ComputerName parameter, remember to
allow the aliases of CN and MachineName. When populating the
parameter from the pipeline by property name, this will enable
input from Active Directory cmdlets as well as other sources.

The function looks like this:

function get-OperatingSystem{
[CmdletBinding()]
Param([Parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [Alias('CN','MachineName')]
 [string[]]$computerName=$env:ComputerName)
begin {
$ProductTypes='Unused',
 'Workstation',
 'Domain Controller',
 'Server'
}
process {
 foreach($computer in $computerName){
 $output=@{ComputerName=$computer}

Chapter 6

[115]

 $os=get-CIMInstance –computerName $computer
 –class Win32_OperatingSystem
 $output.OSDescription=$os.Caption
 $output.OSVersion=$os.Version
 $output.OSServicePack=$os.ServicePackMajorVersion
 $output.OSProductType=$ProductTypes[$os.ProductType]
 If($os | get-member OSArchitecture){
 $output.OSArchitecture=$os.OSArchitecture
 } else {
 $output.OSArchitecture=get-legacyOSArchitecture $computer
 }
 new-object PSObject -property $output
 }
}
}

As usual, we output objects from our function. Running this on my laptop yields the
following results:

Validating service status
One of the first things we learn to do with PowerShell is to inspect the services on a
computer. The Get-Service cmdlet with its –ComputerName parameter makes this a
simple task. For instance, if we had a list of computers that have SQL Server installed
in a variable called $servers, we could issue the following script to get the status of
the service running the default instance like this:

Get-service –name MSSQLSERVER –computername $server |
 Select-object –property Name,Status,MachineName

Preparing the Scripting Environment

[116]

If our goal was simply to find out whether the service is running, this will do the
trick. One piece of information that is missing from the objects output from the
Get-Service cmdlet is the name of the account that is used to run the service, the
run as account. To find that detail, we must turn to WMI. The class to use is Win32_
Service, which contains the StartName property. The value of the StartName
property is the name of the user account running the service. To find the run as user,
as well as the service state for the list of computers in $servers, we could use the
following command:

Get-WMIObject -class Win32_Service -filter "Name='mssqlserver'"
 –ComputerName $computer | select-object -Property
 Name,StartName,State

Validating disk and memory availability
Trying to run a script on a system that is out of memory or disk space is a frustrating
experience. An important piece of preparation is to determine the amount of
memory and disk space present as well as how much of each is unused. Retrieving
these statistics with WMI is a simple matter, and with a bit of effort we can make the
results more user-friendly.

We already encountered the Win32_OperatingSystem class in the first part of this
chapter. Fortunately for us, there are two properties on this class that will tell us both
the total amount and the free amount of memory.

Get-CIMInstance Win32_OperatingSystem |
 Select-object FreePhysicalMemory,TotalVisibleMemorySize

The output on my laptop is this:

Since we're going to probably want to see these in a different unit than kilobytes, we
can use a trick recommended by Jeffery Hicks (Microsoft MVP in PowerShell) to add
script properties to the class returned by get-CIMInstance:

Update-TypeData -TypeName Microsoft.Management.Infrastructure.
CimInstance#root/cimv2/Win32_OperatingSystem `
 -MemberType ScriptProperty -MemberName TotalMemoryInGB
 -Value {[math]::Round($this.TotalVisibleMemorySize/1MB,2)}

Chapter 6

[117]

Update-TypeData -TypeName Microsoft.Management.Infrastructure.
CimInstance#root/cimv2/Win32_OperatingSystem `
 -MemberType ScriptProperty -MemberName FreeMemoryInGB
 -Value {[math]::Round($this.FreePhysicalMemory/1MB,2)}

The Update-TypeData cmdlet uses the extended type system in PowerShell to
add metadata to the class definition. The actual .NET framework class involved is
Microsoft.Management.Infrastructure.CimInstance, but PowerShell allows us
to differentiate between different types of CIMInstance objects by appending the full
WMI path to the type name, in this case, #root/cimv2/Win32_OperatingSystem.
This is a very useful thing to do since the data in different types of WMI instances
are very different. The results of the Update-TypeData cmdlet only affect the current
session, but they do make the display a lot nicer. In the following script, I'm using a
wildcard to select these properties from the object:

PS C:\> Get-CIMInstance win32_operatingsystem |select *inGB

The following screenshot shows the result:

A general purpose function to get memory statistics for a set of servers is as follows:

function get-ComputerMemory{
[CmdletBinding()]
Param([Parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [Alias('CN','MachineName')]
 [string[]]$computerName=$env:ComputerName)
 process {
 Get-CIMInstance Win32_OperatingSystem
 -ComputerName $computerName |
 select PSComputerName,@{N='TotalMemoryInGB';
 E={[math]::Round($_.TotalVisibleMemorySize/1MB,2)}},
 @{N='FreeMemoryInGB';
 E={[math]::Round($_.FreePhysicalMemory/1MB,2)}}
 }
}

Preparing the Scripting Environment

[118]

Here, I added the property conversions to gigabytes using expressions rather than
adjusting the type data.

To find the total disk space and free disk space we need to use the Win32_
LogicalDisk class. Fixed disks have DriveType of 3. The following command line is
used to find the disk space:

PS C:\ > get-CimInstance win32_logicaldisk -filter 'DriveType=3' |

 select DeviceID,Size,FreeSpace

Looking at the disks on my laptop shows the following results:

A function to find this information for a group of computers is similar to the function
to find memory statistics, as follows:

function get-DiskSpace{
[CmdletBinding()]
Param([Parameter(ValueFromPipeline=$true,ValueFromPipelineByPropertyN
ame=$true)]
 [Alias('CN','MachineName')]
 [string[]]$computerName=$env:ComputerName)
 process {
 get-CIMInstance Win32_LogicalDisk -filter 'DriveType=3'
-ComputerName $computerName |
 select PSComputerName,DeviceID,@{N='SizeInGB';
 E={[math]::Round($_.Size/1GB,2)}},
 @{N='FreeSpaceInGB';E={[math]::
 Round($_.Freespace/1GB,2)}}
 }
}

The results of this function will look like this:

Chapter 6

[119]

Validating network connectivity
In a perfect world, every computer system would be able to connect to any other
computer system that it needed to. In the real world, there are often complications
that arise due to firewalls and IPSec rules. Making sure that all of the needed
network connectivity is in place will help to eliminate a common source of
script failure.

Using telnet
You may be familiar with using telnet to test TCP connections. To do this, you need
to have telnet installed (it's not installed by default on recent server editions). Once
you have it installed, you simply run telnet hostname port, where you replace the
hostname and port with the appropriate values for your test. To see whether the box
you're on can connect to DBSERVER01 on port 1433 (the default SQL Server port),
run telnet DBSERVER01 1433. Since the port being tested is not necessarily a telnet
server, the output isn't always clear, but in general, when a connection is successful,
the screen is cleared. A failed connection will give an error message, as shown in the
following screenshot:

For one-off checking, telnet is pretty convenient. The main issue is that you'll need
to have the telnet client installed on every machine you'll be testing. Since you
probably don't need telnet otherwise, this can be a problem. This solution involves
logging in to each machine and testing each port individually, so it doesn't work
well for larger applications.

Before proceeding further, it is probably worth mentioning that there are products
designed primarily to test network connectivity, such as nmap or netcat. If you have
one of these at your disposal, or if you can get it approved by your IT team, these
will save you some time and effort. If you would like to implement something of this
nature using PowerShell, however, this section is for you.

Preparing the Scripting Environment

[120]

Using Test-NetConnection
An alternative to telnet was introduced in Windows 8.1 and Server 2012 R2 with
the Test-NetConnection cmdlet. On these versions of the operating system, the
Test-NetConnection cmdlet can be used to test TCP communication on a port
similar to how the telnet client does. The earlier test would be done with Test-
Netconnection, as shown in the following script:

Test-NetConnection –computerName DBSERVER01 –port 1433

This will return a detailed report about the availability of the connection. To get
a true/false result, append –InformationLevel Quiet. This is another convenient
solution, but it does require a specific operating system to be useful. Also, this
requires logging in to each machine in the environment, which might not be
very practical.

Writing Test-NetConnection in downstream
versions
Since we can't depend on Test-NetConnection being available everywhere, we can
write our own using .Net classes. The crucial class we will use is the [System.Net.
Sockets.TCPClient] class. Here is a somewhat flexible implementation:

function test-TCPConnection{
[CmdletBinding()]
Param([Parameter(ValueFromPipelineByPropertyName=$true)]
 [string]$computerName,
 [Parameter(ValueFromPipelineByPropertyName=$true)]
 [int]$port,
 [switch]$quiet)
process{
 try {
 $client=New-Object System.Net.Sockets.TCPClient
 $client.Connect($computerName,$port)
 $result=$true
 } catch {
 $result=$false
 } finally {
 $client.Close()
 }
 if($quiet){
 $result
 } else {

Chapter 6

[121]

 New-Object PSObject -property @{
ComputerName=$ComputerName;
 Port=$port;
 Connected=$result}
 }
}
}

There are several ways to use this function. The first and most straightforward way
is to simply test a single connection via the ComputerName and port parameters, as
shown in the following script:

Test-TCPConnection -computername DBServer01 -port 1433

This will return an object with the computer name, port, and the protocol (TCP)
as well as a Boolean property called connected that indicates the success of the
connection. If you just need a Boolean value for a test, like in an if statement, you
can supply the –quiet switch:

Test-TCPConnection -computername DBServer01 -port 1433 -quiet

By including the ValueFromPipelineByPropertyName parameter attribute on
both parameters, we can also easily consume input from a comma-separated
value (CSV) file. For instance, if we have a CSV file called Network.csv with the
following contents:

ComputerName,Port
DBServer01,1433
SMTPServer01,25
FTPServer01,22

We can then execute the following script:

Import-csv Networkcsv | test-TCPConnection

This will output a list of objects reporting the details of our connectivity. Note that
we did not include the ValueFromPipeline attribute for either of the parameters
because only one parameter at a time can receive pipeline input from an object,
rather than from a property, and we really need the computer name / port pair for
the parameter to make sense.

Preparing the Scripting Environment

[122]

Testing UDP and ICMP connectivity
Network connectivity is not limited to TCP though. An almost identical function can
be written to test for UDP connectivity, as follows:

function test-UDPConnection{
[CmdletBinding()]
Param([Parameter(ValueFromPipelineByPropertyName=$true)]
 [string]$computerName,
 [Parameter(ValueFromPipelineByPropertyName=$true)]
 [int]$port,
 [switch]$quiet)
process{
 try {
 $client=New-Object System.Net.Sockets.UDPClient
 $client.Connect($computerName,$port)
 $result=$true
 } catch {
 $result=$false
 } finally {
 $client.Close()
 }
 if($quiet){
 $result
 } else {
 new-object PSObject -property @{ComputerName=$ComputerName;
 Port=$port;
 Connected=$result}
 }
}
}

A final kind of connectivity is ICMP or ping. There is a built-in cmdlet called Test-
Connection introduced in PowerShell Version 2.0. We can write a wrapper function
so the signatures of our connectivity-testing functions will match. Note that ICMP
is not port-based, so the port parameter will be ignored. The following code snippet
explains this:

function test-ICMPConnection{
[CmdletBinding()]
Param([Parameter(ValueFromPipelineByPropertyName=$true)]
 [string]$computerName,
 [Parameter(ValueFromPipelineByPropertyName=$true)]
 [switch]$quiet)

Chapter 6

[123]

process{
 try {
 $result=test-connection -computerName $computerName -quiet
 } catch {
 $result=$false
 }
 if($quiet){
 $result
 } else {
 new-object PSObject -property @{ComputerName=$ComputerName;
 Port=-1; #ICMP doesn't use a port
 Protocol='ICMP';
 Connected=$result}
 }
}
}

Having function signatures that match will be helpful when we need to be able to
test different connectivity types with the same code in a later section.

Validating connectivity prior to
implementation
The previous functions work fine if the software being connected to has already been
implemented. But how can you check whether a computer can connect to an SQL
Server, for example, if SQL Server hasn't been installed yet? To handle this scenario,
we can write a script that listens on the appropriate port and run that on the server
we're trying to connect to. Since we don't want to accidentally leave a process
listening on a port that a piece of software will eventually try to use, we can build in
a timeout so that the listener will stop after a preset time interval. The following code
snippet demonstrates this:

function Start-TCPListener{
param([System.Net.IPAddress]$IPAddress=[System.Net.IPAddress]
 '0.0.0.0',[int]$port,[int]$timeout=10)
 try {

 $listener = new-object
 System.Net.Sockets.TcpListener($IPAddress, $port)
 $listeningTimeout=(get-date).AddSeconds($timeout)
 $listener.Start()
 while ((get-date) -lt $listeningTimeout
 -and !$listener.Pending()){

Preparing the Scripting Environment

[124]

 start-sleep -Milliseconds 50
 }
 if ($listener.Pending()){
 $client = $listener.AcceptTcpClient()
 Write-Output "Connected from
 $($client.Client.RemoteEndPoint)"
 } else {
 Write-Output "listener timed out after $timeout seconds"
 }
 $listener.Stop()
 } catch {
 write-Error "unable to start listener : $($_.Message)"
 }
}

Here, we're not interested in pipeline input because we're only going to start a single
listener at a time that will block until it receives a request or the time-out is reached.
By doing this, we can simulate the connectivity of the software that is going to be
installed. To use this function in conjunction with the test-TCPConnection function
from the previous section, follow these steps:

1. Open a PowerShell session on the listening computer
2. Open a PowerShell session on the calling computer
3. Run the Start-TCPListener function on the listening computer
4. Run the Test-TCPConnection function on the calling computer

With PowerShell remoting, you can open the sessions in remote PowerShell tabs in
ISE and you do not have to use remote desktop to make this work.

Putting it all together
The previous sections showed how to check ports in a one-at-a-time way, and to check
a number of remote connections from a single box as well as starting a TCP listener
in case a piece of software hasn't been installed yet. Unfortunately, in anything but
a simple system, the process of checking every kind of connectivity between every
computer is going to be a very time-consuming process. Also, due to the number
of combinations, it is going to be fraught with human error. To overcome these
challenges, we can turn to PowerShell remoting and automate much of the process.

Chapter 6

[125]

An assumption we're going to make is that you have a machine that can reliably
connect to all of the computers in the environment using PowerShell remoting. With
that in place, let's expand the input file we used for our TCPListener function to
include a source computer, a protocol, and a flag to say whether we need to start a
listener. Our sample input file might look like this:

Source,Destination,Port,Protocol,StartListener
Web01,DBServer01,1433,TCP,Y
Web02,DBServer02,1433,TCP,Y
Web01,SMTPServer01,25,TCP,N
Web01,NTPServer01,123,UDP,N

The function to test the ports would look something like this:

function Test-EnvironmentConnectivity{
Param([string]$path,[PSCredential]$Cred)

 $tests=import-csv $path
 if($Cred){
 $CredParam=@{Credential=$Cred}
 } else {
 $CredParam=@{}
 }
 $listeners=@{TCP=${function:start-tcpListener}}
 $testFunctions=@{TCP=${function:test-tcpConnection};
 UDP=${function:test-udpConnection};
 ICMP=${function:test-icmpConnection}}
 foreach($test in $tests){
 if($test.Startlistener -eq 'Y'){
 if(($listeners.ContainsKey($test.Protocol))){
 write-verbose "Starting $($test.Protocol)
 listener on $($test.Destination)"
 $listenerjob=invoke-command -ScriptBlock
 $listeners[$test.Protocol] -argumentList
 $test.Port -ComputerName $test.Destination
 @CredParam -AsJob
 }
 }
 try {
 $result=invoke-command -ScriptBlock
 $testFunctions[$test.Protocol] -ComputerName
 $test.Source -ArgumentList
 $test.Destination,$test.Port @CredParam
 if($result){

Preparing the Scripting Environment

[126]

 write-output ("{0} connection from {1} to {2} on
 port {3} succeeded" -f
 $test.Protocol,$test.Source,
 $test.Destination,$test.Port)
 } else {
 write-output ("{0} connection from {1} to {2} on
 port {3} failed" -f
 $test.Protocol,$test.Source,
 $test.Destination,$test.Port)
 }
 } catch {
 write-output ("{0} connection from {1} to {2}
 on port {3} failed" -f
 $test.Protocol,$test.Source,
 $test.Destination,$test.Port)
 } finally {
 if($test.StartListener -eq 'Y'){
 remove-job -job $listenerJob -Force
 }
 }
 }
}

Here's a sample input file with representative output:

Source,Destination,Port,Protocol,StartListener
Web01,DBServer01,1433,TCP,Y
Web02,DBServer02,1433,TCP,Y
Web01,SMTPServer01,25,TCP,N
Web01,FTPServer01,22,TCP,N
APP01,UDPServer,500,UDP,N

The following screenshot shows the corresponding output:

When running this function, you will probably want to inform your network security
group about your activities. Otherwise, they might think you're performing a port-
scanning attack on the network.

Chapter 6

[127]

Further reading
The following references will help you get more information on the topics covered
in this chapter:

• Enabling telnet at http://social.technet.microsoft.com/wiki/
contents/articles/910.windows-7-enabling-telnet-client.aspx

• get-help get-CIMInstance

• get-help about_WMI

• get-help about_WMI_Cmdlets

• get-help get-WMIObject

• get-help get-service

• get-help Update-TypeData

• get-help about_Types.ps1xml

• NetCat and NMAP- http://nmap.org/

• get-help Test-NetConnection

• get-help New-Object

Summary
This chapter focused on the environment that the script runs in, namely the
operating system installed on the servers, the hardware of the servers, and the
network connectivity between the servers. Making sure that all of these are
accounted for will make your PowerShell troubleshooting much easier, as an
unexpected result in one of these areas might make your script fail.

The next chapter will cover traditional troubleshooting techniques, including
debugging scripts both at the command line and in the ISE, using risk-mitigation
parameters, and other techniques that are unique to PowerShell.

http://social.technet.microsoft.com/wiki/contents/articles/910.windows-7-enabling-telnet-client.aspx
http://social.technet.microsoft.com/wiki/contents/articles/910.windows-7-enabling-telnet-client.aspx

Reactive Practices –
Traditional Debugging

So far, we have focused on making the code easier to troubleshoot. This chapter will
introduce the techniques used to troubleshoot the code while it's running. We will
see that the investment we've put into the proper design and implementation of our
code will make the job of troubleshooting much easier. The specific techniques that
we will cover in this chapter are as follows:

• Reading error messages
• Using Set-PSDebug
• Debugging in the ISE (or other integrated environment)
• Debugging in the console
• Event logs
• The PSDiagnostics module
• Using –confirm and –whatif
• Reducing input size
• Using Tee-Object
• Replacing the foreach loop with the foreach-object cmdlet

Reactive Practices – Traditional Debugging

[130]

Reading error messages
This section shouldn't be necessary for people who are serious about writing scripts,
but in my experience it involves one of the simplest techniques of troubleshooting
and, unfortunately, one of the techniques that is often overlooked. We have talked
about how to handle errors using try / catch / finally, and about the difference
between terminating and non-terminating errors, but we haven't spent any time
talking about error messages themselves. The simple practice of carefully reading
the error messages that occur can help to pinpoint not only the problem, but also
where the problem occurred in the code. While that information isn't unique to error
messages in PowerShell, I have seen countless occasions where it is overlooked.

The color problem
My personal opinion is that the default color scheme in the console and the ISE
is part of the reason. Due to the default color scheme, errors in PowerShell look
somewhat jarring and cause me, at least, to try to skip over them. If you're not
familiar with this phenomenon, the following screenshot shows some example
errors in the default schemes, first from the console:

Chapter 7

[131]

The error-display interface in the ISE isn't very good in my opinion, as is shown in
the following screenshot:

The red text on the dark blue background is hard to read (for me) and I know I have
often received bug reports of some red text rather than a useful cut-and-paste of the
error message. As a color-blind person, I don't tend to give advice on changing the
colors in a program. In this case, though, I always recommend that the foreground
and background color for error messages be changed.

Changing console colors
The configuration of the PowerShell console colors is done through the Get-Host
cmdlet. This cmdlet returns an InternalHost object that has a property called
PrivateData. The PrivateData property, in turn, has properties that describe the
foreground and background colors used to display different items in the console. The
list of colors is shown in the following screenshot:

Reactive Practices – Traditional Debugging

[132]

Note the red foreground and black background for errors. To change these,
simply set these properties to a more reasonable value. For instance, the following
screenshot illustrates a red background and white foreground error display:

Now, the error messages in the console still show red, but they are much more readable.

Changing ISE colors
The process of changing the colors in the ISE is similar to changing the console
colors, but it uses different objects. The ISE exposes its object model through the
$PsISE variable, which lets us work with several different components in the ISE,
as shown in the following screenshot:

Chapter 7

[133]

For our purposes, we will use the Options property, which again shows a lot of
potential places to customize the ISE:

The ErrorForegroundColor and ErrorBackgroundColor properties are clearly the
properties that control the appearance of errors, so let's set them first and see what
effect they have:

Reactive Practices – Traditional Debugging

[134]

Remember that these changes will need to be made in each session. One way to make
this happen all the time is to place them in a profile.

PowerShell profiles
Profiles are scripts that are run when a PowerShell session is started. Each
PowerShell host has four possible profiles. The value of the $profile variable shows
one of these. Note that just because $profile has a value, it doesn't mean that the
file exists. The following screenshot shows the profile:

To find the other three locations, we need to look at properties that have been added
to the $profile variable. Since the property names all include the word Host, they
are easy to isolate, as shown in the following screenshot:

The two AllHosts values point to scripts that will run no matter what host is running.
The CurrentHost values point to profile scripts that are specific to the current host.
Note that you can see PowerShellISE in the path of the output, so these will only run
in the ISE. Since the code to change colors is different between the console and the ISE,
either of the CurrentHost profiles would be an appropriate choice. Depending on
whether you wanted the customizations to be present for all users, or just for yourself,
would determine which of the two CurrentHost profiles you used.

Error message content
The content of the error messages is not particularly surprising. It contains the
following items:

• The command (cmdlet, function, or script) where the error occurs
• The text of the error message
• The location of the error (line and column)
• The source code of the line where the error occurs (underlined to show

the error)
• The category and full type name of the error

Chapter 7

[135]

Although all of this information is expected, it is completely wasted if you don't read
it. Reading it doesn't help, either, unless you look at the code where the error is and
the error message itself to try to determine what is causing the problem. For instance,
a common error message is that a property being referenced doesn't exist on the
object in question. There are several reasons that might lead to that particular error,
and some are listed as follows:

• Misspelling the name of the property
• Misspelling the name of the variable that has the property
• Using the wrong variable
• The variable isn't the expected type

Spending the time to analyze the error, and probably eliminating most of them, is
definitely worth the effort. In this case, the first three should be simple to validate
(for example, check the spelling and match the variable name). The fourth is a little
trickier to determine. If you recall from Chapter 1, PowerShell Primer, the Get-Member
cmdlet outputs the types of the objects that are piped to it, so it is often the first
cmdlet that we turn to. Our attempt would look something like what is shown in the
following screenshot:

Reactive Practices – Traditional Debugging

[136]

With this information in hand, we proceed with the information that our variable
holds a Boolean value. The problem is that we're misusing Get-Member here. The
purpose of Get-Member is to list the members of the distinct types of objects that it
receives from the pipeline or the –InputObject parameter. By using the pipeline we
have obscured the value of the variable. Using the –InputObject parameter gives us
a different answer altogether, as shown in the following screenshot:

Here, we see that the variable actually contains an array of objects. We can see this as
well by calling the GetType() method of the variable:

Chapter 7

[137]

To see the individual objects, we can check the count and index the items separately.
What we will find is that $var is an array of a $null and $true value, as shown in
the following screenshot:

The reason this is important is that when you are troubleshooting, knowing the types
and values of variables is of the utmost importance. Using the pipeline to provide
the input to Get-Member hid the value because the pipeline unrolls arrays and Get-
Member saw a $null and a Boolean value. There's no object corresponding to $null, so
it wasn't represented in the output. Given that it's possible to accidentally output more
objects from a function than intended, this kind of investigation is something that you
will probably be doing a lot, especially when the errors don't seem to make sense.

Using Set-PSDebug
We already met the Set-PSDebug cmdlet in Chapter 5, Proactive PowerShell, where we
learned that the –Strict switch can be used to ensure that references to variables
that haven't been assigned will cause an error. In the context of debugging, the
Set-PSDebug cmdlet gives a very simple debugging experience at the command
line using the –Trace parameter and the –Step switch. Let's use a simple script to
illustrate this:

foreach ($i in 1..10){
 write-host $i
}

Reactive Practices – Traditional Debugging

[138]

While there should be no confusion over what this script will do when executed,
watch what happens when we run Set-PSDebug –Trace 1 and then run the script:

I've truncated the output, but it should be clear that the PowerShell engine is
outputting debug messages (like we could with Write-Debug) for each line that is
executed. The output shown is from the ISE, but the cmdlet works in the console as
well, although the formatting is slightly different:

Chapter 7

[139]

Changing the value of the trace parameter to 2 gives a more detailed result, as shown
in the following screenshot:

Now we see the (implied) assignment to the $i loop variable, as well as some
bookkeeping done by PowerShell with the $foreach variable. Function calls, and
calls to scripts, would also be called out by this trace level.

The final option with Set-PSDebug is the –Step switch. This switch causes the
execution of code to be interrupted. Here, I've run the code with the –Step switch
and clicked on the Yes button one time:

Reactive Practices – Traditional Debugging

[140]

An interesting option with –Step is the ability to suspend. By suspending, a nested
shell is started. Nested shells are essentially a new PowerShell instance running
inside the current instance. You have access to all of the variables and functions
from the outer shell and can investigate or modify the state of the system including
changing variable values, importing modules, or whatever you wish. Once you
are done, the exit keyword causes the nested shell to end and you are back at the
Set-PSDebug prompt at the same line of code that you suspended. Once the –Trace
parameter or –Step switch have been used, the –Off switch causes the Set-PSDebug
cmdlet to stop outputting Debug statements and prompting at each line.

The Set-PSDebug cmdlet with the –Trace parameter and –Step switch applies to
whatever code is running so you can't use them to set breakpoints. On the other
hand, there is no reason that the Set-PSDebug cmdlet can't be included in a script.
Setting the trace level to 1 or 2 before a critical section of code, and turning it off with
the –Off switch, would allow you to get this level of debugging information for that
section of code without needing to manually step through all of the code up until
that point.

Debugging in the console
The Set-PSDebug cmdlet gives a good amount of detail, but getting to a particular
point in the code requires you to add Set-PSDebug statements in the code (which
you might not be able to do) or step through all of the code up until that point.
Fortunately, there is another set of cmdlets that allows interactive debugging, the
PSBreakPoint cmdlets:

• Set-PSBreakPoint

• Remove-PSBreakPoint

• Get-PSBreakPoint

• Enable-PSBreakPoint

• Disable-PSBreakPoint

With Set-PSBreakpoint, it is easy to create a breakpoint to cause the execution to
be suspended when a certain line is reached using the –Line parameter. One caveat
is that the parameter sets including the –Line parameter, also include a mandatory
script parameter that refers to a file on disk. This isn't much of a barrier in the console
since we would generally be working with a script file.

Chapter 7

[141]

Here's another sample script:

Write-Host "Script starting"
Foreach ($i in 1..10){
 Write-Host $i
 Write-Host "Inside the loop"
}

With that script in .\, issuing Set-PSBreakPoint –Line 4 –Script .\Set-
PSBreakPointExample1.ps1 will cause the execution to stop if line 4 is reached.
Note that the Set-PSBreakPoint cmdlet outputs an object that we could store if
we needed to refer to it later, as shown in the following screenshot:

When we execute the code, it stops at the specified line, as shown in the
following screenshot:

Then, when a breakpoint is encountered, a nested shell is created exactly like what
is used with Set-PSDebug –Step when the Suspend option is chosen. If we use the
Get-PSBreakPoint cmdlet to see what breakpoints exist, and use Format-List *
to show us all of the properties, we can see that there's a HitCount property on the
breakpoint object that tells us how many times the breakpoint has been hit. The
prompt also changes to indicate that you are now in debug mode. There are several
commands you can enter at the prompt to control the debugging, as shown in the
following table:

Command Action
S,stepInto Step to the next statement
V,stepOver Step to the next statement in this scope (that is, don't

step into function calls)
O,stepOut Step out of the current function or script
C,Continue Continue executing the script or function

Reactive Practices – Traditional Debugging

[142]

Command Action
K,Get-PSCallstack Display the current call stack
L,List Show the source code for the current script or function
Q,quit Exit the debugger
<enter> Repeat the last command
?,h Display a list of possible commands

Troubleshooting tip
If you have customized your prompt function (that is, redefined it),
you won't get an indication that you're in debug mode in the prompt.
You will still get a message indicating that you're in debug mode.

There is a –Column parameter that can be used in conjunction with the –Line
parameter to indicate that the breakpoint is only active if the execution hits the
code in a particular column. This can be useful if code includes long pipelines.

Troubleshooting Tip
If your code is formatted so that each segment of a pipeline is
on a separate code line, the –Column parameter is not needed.

A second way to use Set-PSBreakpoint is to cause the execution to be stopped
when a variable is accessed. Since the focus with a variable breakpoint is not on a
line of code, a script file is not required. The –variable parameter takes a list of
variable names (without $) to be watched. The –Mode parameter allows us to specify
what kind of variable activity triggers the breakpoint. The possible values are Read,
Write (the default), and ReadWrite. With this example code, let's see what a variable
breakpoint shows us:

write-host "Script starting"
foreach ($i in 1..10){
 write-host $i
 write-host "Inside the loop"
}

Chapter 7

[143]

The execution is suspended as soon as the variable is referenced, as shown in the
following screenshot:

Setting a breakpoint on a variable can be very useful in troubleshooting, especially
if a variable ends up with an unexpected value. A final way to set a breakpoint
instructs the engine to stop when a particular command (function or cmdlet) is
executed. This could be useful if you wanted to know where a built-in or binary
cmdlet was being called. Since you wouldn't have the source code, a line-level
breakpoint would not be possible. For example, if you knew that Get-CIMInstance
was referenced at several points in a script, but didn't know which one was being
called, you could issue the following command:

Set-PSBreakPoint –command get-CIMInstance

Reactive Practices – Traditional Debugging

[144]

Then, when the script runs, anytime the get-CIMInstance cmdlet is invoked the
script execution will stop at that point. Here are the results of that breakpoint using
the Get-DiskSpace function we wrote in Chapter 6, Preparing the Scripting Environment:

At this point, we could use the debug mode options to display the source code
around where the breakpoint was set using the List or L command:

Chapter 7

[145]

To summarize, there are four different types of breakpoints that can be set using the
Set-PSBreakPoint cmdlet:

• Line breakpoints (with the –line parameter)
• Column breakpoints (with the –line and –column parameters)
• Variable breakpoints (with the –variable parameter)
• Command breakpoints (with the –command parameter)

Debugging in the ISE
We've already discussed the use of Set-PSDebug in the ISE, so we know that we can
use the –Trace and –Step parameters to get extra output and control options as
the script runs in the ISE. As simple as using Set-PSDebug is, debugging in the ISE
using the GUI is probably used more often than in the console. This is due to the
simple point-and-click operation of the ISE. As in most development environments,
a breakpoint can be set on a line of code by right-clicking on a line and selecting
Toggle Breakpoint from the context menu:

Reactive Practices – Traditional Debugging

[146]

When a breakpoint has been set, the line will be highlighted in red, as shown in the
following screenshot:

When a breakpoint is reached in the ISE, the script containing the breakpoint
is loaded in the ISE if it isn't already loaded, and the cursor is placed at the
position of the breakpoint. The current line is highlighted yellow, as shown
in the following screenshot:

Chapter 7

[147]

Once a breakpoint has been reached, the ISE has some additional features to help
guide the debugging session. First, the Step Into (F11) command in the Debug
menu will execute the current statement. If the current statement is a function
call, execution will step into the function. Using the Step Over (F10) command,
the next statement is also executed, but if it is a function call it will be considered
a single statement and will not step into the function. Finally, the Run/Continue
(F5) command will cause the execution to continue from the current line without
breaking (until a breakpoint is reached, of course), and the Stop Debugger (Shift +
F5) command will halt the execution of the current script. The following screenshot
shows the list of features in the Debug menu:

Event logs
If you've ever spent time troubleshooting a Windows system, you have probably
dealt with event logs. Windows writes the details of several kinds of activities into
two different kinds of logs. The first is called classic because this type of log has
been present since the early days of Windows. The classic logs called Application,
Security, Setup, and System are found on all systems. There can also be a classic log
called Forwarded Events if you have subscribed to events from a remote computer.
There may be other classic logs present on your system depending on what software,
roles, and features you have installed.

Reactive Practices – Traditional Debugging

[148]

The following screenshot shows the features of the classic log:

The newer type of event logs are an XML-based system introduced in Windows
Vista and have the (not very helpful) name of Windows Event Log technology. We
will call them WEL for short since Windows Event Log sounds like it could refer to
either type of log. These WEL event logs are listed in a section called Applications
and Services Logs. Each WEL log can have a subtype of a log called Admin,
Operational, Analytic, and Debug. Here is a view of Event Viewer displaying a few
of the hundreds of WEL logs on a computer:

Chapter 7

[149]

Listing event logs
PowerShell Version 1.0 only included cmdlet support for classic event logs. The
Get-EventLog cmdlet includes a –List switch that causes it to list the classic event
logs present on a computer. There is also a –ComputerName parameter that allows the
cmdlet to target a list of computers. The output of Get-EventLog –list will look
similar to this:

PowerShell Version 2.0 introduced the Get-WinEvent cmdlet, which is able to
access both classic and WEL logs. It is also capable of reading the files generated by
Event Tracing for Windows (ETW) which can, for instance, be recorded with the
Performance Monitor application. The parameter to get the list of logs using Get-
WinEvent is called –ListLog, and unlike with Get-EventLog, –ListLog is not a
switch. The –ListLog takes an array of strings, so in order to get a complete list of
logs on a system with Get-WinEvent, you would issue the Get-WinEvent –listlog
* command. On my system, the output starts:

Reactive Practices – Traditional Debugging

[150]

I have truncated the output because it runs for several pages. To see just how
many logs are shown, we can use the Measure-Object cmdlet, as shown in
the following screenshot:

You might also see errors corresponding to logs that don't exist on your system. I
get an error on this machine about the Microsoft-Windows-DxpTaskRingtone/
Analytic log, which does not have a valid path set. For what it's worth, I get an
error trying to view the log using Event Viewer as well.

Reading event logs
Although both Get-EventLog and Get-WinEvent allow you to read event logs,
Get-EventLog can only work with the classic logs. To get entries from a classic log
using Get-EventLog, you will use the –LogName parameter to specify which log to
read and you will generally include one or more parameters to narrow down which
log messages are required. Some of the more useful filtering parameters for
Get-EventLog are:

Parameter Meaning
-Index The numerical index of the log entry
-EntryType Includes Error, Information, FailureAudit,

SuccessAudit, and Warning
-Message Filter by the contents of the message (allows wildcards)

-Source Include messages written to the log by certain sources
-Before and –After Filter based on the time the message was written

-Newest Only retrieve the latest log entries
-UserName Include messages associated with certain usernames

For instance, to read the most recent five entries in the Application event log, you
would use the following command:

Get-EventLog -LogName Application -newest 5

Chapter 7

[151]

The results are as expected:

Reading event logs with Get-WinEvent uses a –LogName parameter to indicate which
log we want to look at, but now we have the option of listing more than one event
log and are allowed to use wildcards. Given the large number of logs accessible by
using Get-WinEvent, that flexibility is important. The filtering parameters for
Get-WinEvent are given as follows:

Parameter Purpose
–FilterXPath Uses an XPath expression to filter the log entries
–FilterHashTable Uses a hashtable of keys and values to filter the log entries
–FilterXML Uses a structured XML query to filter the log entries
–MaxEvents Limits the number of entries returned
–Oldest (switch) Forces retrieval of oldest entries first instead of the default

(newest first)

The first thing to note is that there aren't parameters to filter by specific properties of
the entries. One reason for this is the large number of properties exposed by the new
log format. The –FilterXPath, –FilterXML, and –FilterHashTable parameters
allow us to filter by multiple properties at the same time. The second thing to note
is that the –LogName parameter is not in the same parameter set as any of these
three filtering parameters, so the name of the log will have to be specified in in the
hashtable, XPath, or XML query.

For instance, finding the most recent five events in the System event log with
EventID of 6013 (uptime messages) could be achieved with the –FilterHashTable
parameter using the following command:

Get-WinEvent -FilterHashtable @{LogName='System';Id=6013} -MaxEvents 5

Reactive Practices – Traditional Debugging

[152]

It is important to realize that there have been some terminology changes between
some of the parameter names. For instance, with Get-EventLog you can only limit
the number of events with the –Newest parameter. With Get-WinEvent, you can
use –MaxEvents to find the most recent events, or add the –Oldest switch to find the
earliest events. Also, some of the parameters for Get-EventLog have corresponding
entries in the –FilterHashtable parameter for Get-WinEvent with different names.
The following table lists such parameters:

Get-EventLog parameter Get-WinEvent Hashtable entry
–Source Provider

–EventID InstanceID

It should be clear that there is quite a difference in using the Get-EventLog and
Get-WinEvent cmdlets. Deciding which to use in a given situation can be tricky.
Since Get-EventLog only works with classic logs, that might be the deciding factor
if you need to work with a log that's in the newer WEL format. On the other hand,
if you need to work with a classic log, you might find the filtering options provided
by Get-EventLog to be more convenient. Remembering the filter left principle from
Chapter 3, PowerShell Practices, the greater range of filtering parameters for Get-
WinEvent will probably tip the balance if you are querying event logs on multiple
machines or reading very large event logs. Whatever your situation, try to do some
experiments to see which cmdlet gives you the best balance of performance and ease
of use. Only you can decide what the correct choice is.

Writing to event logs
Writing to classic event logs is accomplished via the Write-Eventlog cmdlet. Each
entry in a classic log has an associated source that is a required item when trying to
write an entry. A very simple example using an existing log and source is as follows:

Write-EventLog -LogName Application -Source msiInstaller
 -message "hello, world" -EventId 0

Here, we've used the msiInstaller source and a dummy value of 0 for EventID.
Event IDs correspond to resources in a .dll file, so we have some options for how
to proceed:

• Simply use 0 (or some other constant) for all of our messages
• Create a convention that maps values to messages
• Create our own .dll file to contain message resources

Chapter 7

[153]

Since the first two will both show errors in Event Viewer as there's not a resource for
all of the event IDs we would be using, and the third option is beyond the scope of
this book, I will choose to use 0 for all of my entries.

Another issue with this sample is that we used the value of msiInstaller
even though we are clearly not an installer. We really should use a different source
to distinguish our events from any others. Unfortunately, an attempt to do this fails,
as shown in the following screenshot:

To overcome this error we need to use the New-EventLog cmdlet. The obvious use
case for New-EventLog is to create a completely new classic event log. It can also
be used to add a new source (or sources) to an existing event log, as shown in the
following screenshot:

Once we've added the new source to the existing event log, the Write-EventLog
cmdlet is able to use that source. Creating a custom event log with New-EventLog
uses the same syntax as we used to create the new source. Also, we can add more
than one source at the same time, which is convenient, as shown in the following
code snippet:

New-EventLog -LogName PowerShelTroubleShooting -Source
 Script,Text,Chapters,Images

Note that the event log won't show up in the results of Get-EventLog, Get-WinEvent,
or in Event Viewer until an entry has been written to the log.

The PSDiagnostics module
PowerShell Version 2.0 is shipped with a new module called PSDiagnostics, which
has some interesting capabilities. One drawback to the PSDiagnostics module is
that it contains no documentation of any kind except for a single comment at the
beginning of the .psm1 file, as shown in the following screenshot:

Reactive Practices – Traditional Debugging

[154]

ETW provides, among other things, the capability to trace system and application
activity and write the triggered events to a logfile. The simplest functions in the
module are the Enable-PSTrace and Disable-PSTrace functions that turn the
Analytic and Debug logs for the Microsoft/Windows/PowerShell log on (or off).
Since the functions eventually call the command-line wevutil.exe application that
requires input, you will want to use the –Force switch if you are running the ISE
since it doesn't handle console input well. Enabling these logs will clear them if they
already exist, so make sure that's what you want to do.

There are similar functions that start and stop a tracing session involving
WS-Man (Enable-WSManTrace and Disable-WSManTrace) or that involve both
WS-Man and PowerShell (Enable-PSWSManCombinedTrace and Disable-
PSWSManCombinedTrace). Note that the verbs are inconsistent: Enable-PSTrace
simply enables the logfiles, it does not start a tracing session, but the other two
enabling cmdlets start tracing sessions.

WS-Man is the protocol implemented by WinRM and is the basis for the CIM
cmdlets. PowerShell remoting is also based on WinRM, so troubleshooting issues
involving CIM and remoting will definitely benefit from using the combined trace
that is generated by Enable-PSWSManCombinedTrace. A thorough walk-through of
this functionality can be found at the following links:

• http://windowsitpro.com/blog/troubleshooting-winrm-and-
powershell-remoting-part-1

• http://windowsitpro.com/blog/tools-troubleshooting-powershell-
remoting-and-winrm-part-2

Using –confirm and –whatif
We've already covered what the–confirm and –whatif risk mitigation parameters
do. We've also seen how it's not difficult to include support for these parameters in
your functions. It is now time to think about how to use them in a troubleshooting
session. We will focus on –whatif, but the discussion applies to –confirm in exactly
the same way. Obviously, if you are trying to troubleshoot a single function that
includes support for –whatif, you can add –whatif to be sure that any system
changes that the function would have made are skipped, while finding out what
those would have been. This ability is incredibly beneficial to testing because we
don't need to worry about the negative effects of running the code.

http://windowsitpro.com/blog/troubleshooting-winrm-and-powershell-remoting-part-1
http://windowsitpro.com/blog/troubleshooting-winrm-and-powershell-remoting-part-1
http://windowsitpro.com/blog/tools-troubleshooting-powershell-remoting-and-winrm-part-2
http://windowsitpro.com/blog/tools-troubleshooting-powershell-remoting-and-winrm-part-2

Chapter 7

[155]

The way that the risk mitigation parameters (as well as the output preference
parameters) work is something like the following. If you specify –whatif in a
function call, as the function enters scope, the $whatifpreference variable is set to
$true. The $PSCmdlet.ShouldProcess function uses the value of this variable to
know whether it should output the string representing the task that would have been
performed and return $false (skipping the task) or if it should return $true.

Besides calling a function and specifying the –whatif switch, there are a couple
of other ways to activate the functionality. First, you can explicitly set the
$whatifpreference variable to $true and reset it to its original state after the end
of the code you want to be able to avoid running. The following code snippet is an
example of –whatif:

function update-MyProcess{
[CmdletBinding(SupportsShouldProcess=$true)]
Param()

 # do something "safe"
 # do something "safe"
 write-host "whatif=$whatifpreference"
 $whatifpreference=$true
 write-host "whatif=$whatifpreference"
 # do something I don't want to do at this time
 $whatifpreference=$PSBoundParameters.ContainsKey('Whatif')
 write-host "whatif=$whatifpreference"
}

I used the $PSBoundParameters hashtable to check whether –whatif was specified
on the command line in order to set the value back. Another approach would be to
store the original value in a variable.

A final way to force the whatif functionality is to use the
$PSDefaultParameterValues hashtable to set the whatif parameter to $true for the
functions where you want –whatif to always be applied. For instance, if you want to
be sure never to run the restart-computer cmdlet, you could run this command:

$PSDefaultParameterValues['restart-computer:whatif']=$True

The key to the $PSDefaultParameterValues hashtable is the name of the cmdlet
(wildcards are allowed) followed by a colon (:) and the name of the parameter. The
value associated with the key will be supplied for the parameter for that function or
set of functions if no value is explicitly passed. So it would not keep the Restart-
Computer –whatif:$false command from executing, but that kind of thing is not
likely to happen.

Reactive Practices – Traditional Debugging

[156]

Reducing input set
It's often easy when debugging, or trying to understand what has happened in a
script, to be overwhelmed by the sheer volume of output. One simple strategy to help
troubleshoot a script is to reduce the number of objects or input being considered in
the script in order to be able to focus more clearly on what is being done.

The first way I do this is to only consider a data point or set of points that I
understand really well. So instead of having the script pull in all of the servers from a
CSV file, I might use a smaller CSV file or use a different parameter to have it look at
a specific server. For instance, consider the following script:

function generate-bigreport{
[CmdletBinding()]
Param([Parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [Alias('CN','MachineName')]
 [string[]]$computerName=$env:ComputerName)
 #do lots of interesting and complicated stuff here
}

Instead of piping in all of the computers in my active directory, I would run the
function with a constant input using a known computer name. For instance, consider
the following script:

'TESTSRV01' | generate-bigreport

By doing this, I have accomplished several things. First of all, I should know exactly
what the output will look like. If I don't, data points for a single computer might
not be very hard to validate manually. Secondly, the execution of the script will
undoubtedly be much quicker than if I had run it against hundreds of computers.
Thirdly, if I do need to step through the code in the debugger, I won't have to trace
through several iterations to get to the end of the function.

If the issue I'm troubleshooting in a script involves the interaction between data
points, you can try using pairs or other sets of known computer names (or whatever
kind of input is required). Using a CSV file for these types of input might be natural.
For example, the following screenshot shows the contents of TestComputers.csv:

Chapter 7

[157]

With that, we can run the function in the preceding screenshot using the
following script:

Import-csv .\TestComputers.csv | generate-bigreport

If, you are thinking that this is just common sense, remember that some
administrators have never done any kind of programming. While this kind of
thought process comes naturally to some people, it is generally learned as part
of training in programming. Administrators aren't always wired the same way
as developers (which is a good thing) and might need a nudge in areas where
developers wouldn't necessarily.

If the function gathers its input internally, it might be possible to make slight changes
(with the original source checked into source control, right?) in order to shorten the
process. As an example, if we had a function called get-computer that returned all
of the computers we managed, the code in a function might look like this:

function generate-bigreport{
 [Array]$computers=get-computer
 #do lots of interesting and complicated stuff here
}

Changing the assignment statement to be a pipeline with some filtering can have the
same effect as limiting the input. The following script shows some possible options:

[Array]$computers=get-computer | select -first 1 #or 2
[Array]$computers=get-computer | where ComputerName -in
 'TESTSERV01','TESTSERV02'

Using select-object –first n on the output of a function is useful at times as
well, when the output is lengthy. In this case, we would need to include enough
output to be able to tell whether the function seems to be working properly, but
not so much that it would not be practical to check each output object.

Reactive Practices – Traditional Debugging

[158]

Using Tee-Object to see intermediate
results
Debugging long pipelines can be tricky. While it is possible to split a pipeline
over several source lines in order to set a breakpoint on a particular segment of a
pipeline, it is often the cumulative results of the pipeline that are important. In cases
where the end result is not what is expected, it can be helpful to be able to see what
the intermediate results are in the pipeline. For instance, consider the following
(incorrect) code to find the largest items in a folder structure:

#find largest 5 items in the directory tree
dir -recurse |
 sort-object Length |
 select-object -last 5

Since the output is incorrect, we can insert Tee-Object commands into the pipeline
to save the intermediate results (after dir and after sort) into variables or files
for our convenience. First, let's look at how to get the results into files using the
following code:

#find largest 5 items in the directory tree
dir -recurse |
 tee-object -FilePath c:\temp\files.txt |
 sort-object Length |
 tee-object -FilePath c:\temp\sortedFiles.txt |
 select-object -last 5

The Tee-Object cmdlet with the –FilePath parameter works in a similar way to
Out-File, in that it takes all of the objects coming in from the pipeline and outputs
them to a text file. However, unlike Out-File, it also writes those same objects
back to the pipeline for the next pipeline element to process. Saving the output to
variables is easy as well, with one step that's important to remember. The following
code shows the use of the Tee-Object cmdlet:

#find largest 5 items in the directory tree
dir -recurse |
 tee-object –Variable Files |
 sort-object Length |
 tee-object –Variable SortedFiles |
 select-object -last 5

Chapter 7

[159]

The thing to remember when specifying variables in Tee-Object is that you only
want the name of the variable (that is, without the dollar sign ($)). If you include
the dollar sign, the objects will be placed in a variable whose name is the value
of the variable. If those variables have not been set, the Tee-Object cmdlet will
fail because the –Variable parameter is $null. This common error is illustrated
in the following screenshot:

The correct –Variable parameter would be ServiceList (without the $), as shown
in the following screenshot:

Replacing the foreach loop with the
foreach-object cmdlet
When you write a function to process a file, a typical approach might look like this:

function process-file{
param($filename)

 $contents=get-content $filename
 foreach($line in $contents){
 # do something interesting
 }
}

Reactive Practices – Traditional Debugging

[160]

This pattern works well for small files, but for really large files this kind of
processing will perform very badly and possibly crash with an out of memory
exception. For instance, running this function against a 500 MB text file on my laptop
took over five seconds despite the fact that the loop doesn't actually do anything.
To determine the time it takes to run, we can use the measure-command cmdlet, as
shown in the following screenshot:

Note that the result is a Timespan object and the TotalSeconds object has the
value we are looking for. You might not have any large files handy, so I wrote the
following quick function to create large text files that are approximately the size you
ask for:

function new-bigfile{
param([string]$path,
 [int]$sizeInMB)
 if(test-path $path){
 remove-item $path
 }
 new-item -ItemType File -Path $path | out-null
 $line='A'*78
 $page="$line`r`n"*1280000
 1..($sizeInMB/100) | foreach {$page | out-file $path -Append
 -Encoding ascii}
}

The code works by creating a large string using string multiplication, which can
be handy in situations like this. It then writes the string to the file the appropriate
number of times that are necessary. The files come out pretty close to the requested
size if the size is over 100 MB, but they are not exact. Fortunately, we aren't really
concerned about the exact size, but rather just that the files are very large.

Chapter 7

[161]

A better approach would be to utilize the streaming functionality of the pipeline and
use the ForEach-Object cmdlet instead of reading the contents into a variable. Since
objects are output from Get-Content as they are being read, processing them one
at a time allows us to process the file without ever reading it all into memory at one
time. An example that is similar to the previous code is this:

function process-file2{
param($filename)
 get-content $filename | foreach-object{
 $line=$_
 # do something interesting
 }
}

Note that since we're using the ForEach-Object cmdlet instead of the foreach loop
we have to use the $_ automatic variable to refer to the current object. By assigning
that immediately to a variable, we can use exactly the same code as we would
have in the foreach loop example (in place of the #do something interesting
comment). In PowerShell Version 4.0, we could use the –PipelineVariable
common parameter to simplify this code. As with all parameters where you supply
the name of a variable, you don't use the dollar sign:

function process-file3{
param($filename)
 get-content $filename -PipelineVariable line | foreach-object{
 # do something interesting
 }
}

With either of these constructions, I have been able to process files of any length
without any noticeable memory usage. One way to measure memory usage (without
simply watching the process monitor) is to use the Get-Process cmdlet to find the
current process and report on the WorkingSet64 property. It is important to use the
64-bit version rather than the WorkingSet property or its alias: WS. A function to get
the current shell's memory usage looks like this:

function get-shellmemory{
 (get-process -id $pid| select -expand WorkingSet64)/1MB
}
new-alias mem get-shellmemory

Reactive Practices – Traditional Debugging

[162]

I've included an alias (mem) for this function to make it quicker to call on the
command line. I try to avoid using aliases in scripts as a practice because they can
make code harder to understand, but for command line use, aliases really are a
time-saver. Here's an example of using get-shellmemory via its alias, mem:

This shows that although the function processed a 500 MB file, it only used a little
over 3 MB of memory in doing so. Combining the function to determine memory
usage with measure-command gives us a general purpose function to measure time
and memory usage:

function get-performance{
param([scriptblock]$block);
 $pre_mem=get-shellmemory
 $elapsedTime=measure-command -Expression $block
 $post_mem=get-shellmemory
 write-output "the process took $($elapsedTime.TotalSeconds)
seconds"
 write-output "the process used $($post_mem - $pre_mem) megabytes
of memory"
}
new-alias perf get-performance

One thing to note about measuring memory this way is that since the PowerShell
host is a .NET process that is garbage-collected, it is possible that a garbage-collection
operation has occurred during the time the process is running. If that happens, the
process may end up using less memory than it was when it started. Because of this,
memory usage statistics are only guidelines, not absolute indicators. Adding an
explicit call to the garbage collector to tell it to collect will make it less likely that
the memory readings will be unusual, but the situation is in the hands of the .NET
framework, not ours.

You will find that the memory used by a particular function will vary quite a bit, but
the general performance characteristics are the important thing. In this section, we're
concerned about whether the memory usage grows proportionally with the size
of the input file. Using the first version of the code that used the foreach loop, the
memory use did grow with the size of the input file, which limits the usefulness of
that technique.

Chapter 7

[163]

For reference, a summary of the performance on my computer using the foreach
loop and the ForEach-Object cmdlet is given in the following table:

Input size Loop time Loop memory Cmdlet time Cmdlet memory
100 MB 1.1s 158 MB 1.5s 1.5 MB
500 MB 6.1s 979 MB 8.7s 12.9 MB
1 GB 38.5s 1987 MB 16.7s 7.4 MB
2 GB Failed 51.2s 8.6 MB
4 GB Failed 132s 12.7 MB

While these specific numbers are highly dependent on the specific hardware and
software configuration on my computer, the takeaway is that by using the ForEach-
Object cmdlet you can avoid the high memory usage that is involved in reading
large files into memory.

Although the discussion here has been around the get-content cmdlet, the same
is true about any cmdlet that returns objects in a streaming fashion. For example,
Import-CSV can have exactly the same performance characteristics as Get-Content.
The following code is a typical approach to reading CSV files, which works very well
for small files:

function process-CSVfile{
param($filename)
 $objects=import-CSV $filename
 foreach($object in $objects){
 # do something interesting
 }
}

To see the performance, we will need some large CSV files to work with. Here's a
simple function that creates CSV files with approximately the right size that will be
appropriate to test. Note that the multipliers used in the function were determined
using trial and error, but they give a reasonable 10-column CSV file that is close to
the requested size:

function new-bigCSVfile{
param([string]$path,
 [int]$sizeInMB)
 if(test-path $path){
 remove-item $path
 }
 new-item -ItemType File -Path $path | out-null
 $header="Column1"

Reactive Practices – Traditional Debugging

[164]

 2..10 | foreach {$header+=",Column$_"}
 $header+="`r`n"
 $header | out-file $path -encoding Ascii
 $page=$header*12500

 1..($sizeInMB) | foreach {$page | out-file $path -
 Append -Encoding ascii}
}

Rewriting the process-CSVfile function to use the streaming property of the
pipeline looks similar to the rewritten get-content example, as follows:

function process-CSVfile2{
param($filename)
 import-CSV $filename |
 foreach-object -pipelinevariable object{
 # do something interesting
 }
}

Now that we have the Get-Performance function, we can easily construct a table of
results for the two implementations:

Input size Loop time Loop memory Cmdlet time Cmdlet memory
10 MB 9.4s 278 MB 20.9s 4.1 MB
50 MB 62.4s 1335 MB 116.4s 10.3 MB
100 MB 165.5s 2529 MB 361.0s 21.5 MB
200 MB Failed 761.8s 25.8 MB

It's clear to see that trying to load the entire file into memory is not a scalable
operation. In this case, the memory usage is even higher and the times much slower
than with get-content. It would be simple to construct poorly executing examples
with cmdlets such as Get-EventLog and Get-WinEvent, and replacing the foreach
loop with the ForEach-Object cmdlet will have the same kinds of results in these as
well. Having tools like the Get-Performance and Get-ShellMemory functions can
be a great help to diagnosing memory scaling problems like this. Another thing to
note is that using the pipeline is slower than using the loop, so if you know that the
input file sizes are small the loop might be a better choice.

Chapter 7

[165]

Further reading
For more information on the topics covered in this chapter, you can go through the
following references:

• get-help get-host

• get-help about_profiles

• get-help get-member

• get-help set-psdebug

• get-help about_prompts

• get-help get-eventlog

• get-help get-winevent

• get-help measure-object

• get-help write-eventlog

• get-help new-eventlog

• get-help about_commonparameters

• get-help about_preference_variables

• get-help about_functions_advanced

• get-help about_parameters_default_values

• get-help import-csv

• get-help select-object

• get-help tee-object

• get-help measure-command

• get-help foreach-object

• get-help about_foreach

• get-help get-content

• get-help new-alias

Reactive Practices – Traditional Debugging

[166]

Summary
This chapter has focused on things that you can do when running the program,
including traditional debugging in both the ISE and the console. We spent some time
looking at error messages and how to make them more readable in order to help us
take the time to look carefully at all of the information contained in them. We also
looked at a couple of issues involving large input sets, namely, how to more easily
debug a process by reducing the input and also how to alleviate memory issues with
large file input by effectively using the pipeline.

In the next chapter, we will explore some things to look out for in your code that
might indicate an opportunity to clean the code up in some way. Some of these red
flags, known as code smells, are common among programming languages, but some
are very specific to PowerShell code.

PowerShell Code Smells
No code is ever perfect, and we must realize that throughout the act of writing code
we will be making choices continually. As we mature as developers or scripters,
we become more confident in our choices and will tend to make decisions that are
more well-informed and lead to better, more stable solutions. As we look back
on scripts that we wrote in the past, we will almost certainly find opportunities
for improvement. Depending on the source, we might also find the same kinds of
issues in code that we obtain from other sources such as the Internet. In this chapter,
we will consider some of the things to look for in code that might indicate some
improvements may be applicable. In particular, we will discuss the following:

• What are code smells?
• Language-agnostic code smells
• Why are there PowerShell-specific code smells?
• Missing Param() statements
• Homegrown common parameters
• Unapproved verbs
• Accumulating output objects
• Sequences of assignment statements
• Using untyped or [object] parameters
• Static analysis tools (ScriptCop and Script Analyzer)

PowerShell Code Smells

[168]

Code smells
A code smell is a feature of code that indicates something may need to be rewritten.
Just as a smell in the refrigerator or pantry gives us a clue that something may have
gone bad, a code smell tells us that the code may not be written as well as it perhaps
should have been. Code smells are not errors as such, in that they don't mean the
code functions incorrectly. Instead, they are indicators that the code might not be
as flexible or easy to maintain as it could be, or even that it doesn't take advantage
of language features that would make the code easier to understand and perform
better. As I mentioned in the introduction to the chapter, all coding involves choices,
and the choice to address a code smell is not always cut-and-dry. It may be that the
code in question has needed no maintenance and is used infrequently, resulting in
a questionable return on investment for fixing the code. It may be that the design of
the code was specifically non-standard for some reason, whether that was a business
requirement or other requirement.

Another source of code smells is the continual progress of language releases. For
example, programs that were written in C# 1.0 wouldn't have been able to take
advantage of features added to the language in later versions. Similarly, scripts
written in PowerShell 1.0 may have included code to implement features added to
the PowerShell language in more recent versions. When we view or review old code,
we might find that they "smell old."

Code smells, best practices, antipatterns, and
technical debt
Three other code-related observations are best practices, antipatterns, and technical
debt. A best practice is an industry standard, recognized pattern that has been shown to
be the best way to accomplish something in code. Examples of a best practice are using
meaningful variable names and making code modular. An antipattern is a common
way of performing an operation or structuring code that is likely to cause problems,
especially where there is a best practice or set of best practices that are applicable. A
typical antipattern is to construct an SQL statement which includes user input using
string concatenation rather than using parameterized SQL statements. Technical debt is
a term that describes the effort needed to change an implementation into what would
be considered a proper, complete implementation. Technical debt can include outdated
frameworks or language versions, poorly documented code, tightly-coupled modules,
and a number of other things. Code smells, best practices, and antipatterns are clearly
similar and their meanings overlap quite a bit. Debt is a good metaphor because the
longer the debt is unaddressed, the larger the debt becomes, similar to how interest
accumulates. The following list introduces the idea of each observation:

• Best practices are how the industry says it should be done

Chapter 8

[169]

• Antipatterns are how it should not be done
• Code smells say that it might be wrong
• Technical debt is how hard it will be to fix

Language-agnostic code smells
Some things look wrong no matter what language they're written in. For instance, if
you have 200 lines of code in a block, it's always going to be a sign that some effort
might pay off in terms of rewriting it using smaller, more modular code. Also, if you
see several blocks of code that are identical, or even very similar, it will probably be
worthwhile from a maintenance standpoint to factor that code out into a function.
Some other code smells that are very common are:

• A very large parameter list
• Overly short identifiers
• Extremely long identifiers
• Deeply-nested loops or conditionals
• Multiple-personality functions (that is, functions that do more than one thing)

One thing that is worthwhile to point out is that these are all somewhat subjective.
For instance, what is a large parameter list? Some PowerShell cmdlets have dozens
of parameters. Do they smell? Everyone will have their own perception of when that
line has been crossed. Even when a usage isn't excessive, the fact that the question is
asked may lead to useful refactoring or rewriting.

PowerShell-specific code smells
As you have learned throughout this book, PowerShell is an interesting creation. It is
a powerful scripting language that can be used to write complex solutions as well as
short and quick scripts. The language design is also somewhat unique because of the
PowerShell pipeline, which is a central feature. Finally, the scope of the PowerShell
language has grown tremendously over the course of the last seven or eight years,
so code that was written early on will probably look primitive in light of the latest
version. Here some of the large changes to the language and environment that have
occurred in the various PowerShell versions:

• Introduced in Version 1.0:
 ° Functions, filters, scripts, and pipeline

PowerShell Code Smells

[170]

• Introduced in Version 2.0:
 ° Modules
 ° PowerShell remoting
 ° PowerShell ISE
 ° Advanced functions
 ° Background jobs
 ° Eventing

• Introduced in Version 3.0:
 ° Workflows
 ° Scheduled jobs
 ° CIM cmdlets
 ° Updateable help
 ° Simplified Where-Object syntax

• Introduced in Version 4.0:
 ° Desired state configuration
 ° The PipelineVariable parameter
 ° The $PSItem automatic variable
 ° The .Where() and .ForEach() methods

Missing Param() statements
Parameters to functions in PowerShell can be defined in two ways: either as a
list following the name of the function or in a Param() statement. In Version 1.0
of PowerShell, there was no compelling reason to use a Param() statement in a
function, although Param() statements were required to define parameters to scripts
and scriptblocks. Since most programming languages use a parameter list following
the function name, it was natural at that time to skip the use of Param() statements
in functions. With the introduction of advanced functions in PowerShell Version 2.0,
there was suddenly a reason to use a Param() statement, as the CmdletBinding()
attribute binds to the Param() statement. That is, in order to include the
CmdletBinding() attribute, you needed to include a Param() statement.

Chapter 8

[171]

It is not necessary that all functions be advanced functions, but the effort required
to make the change is trivial compared to the advantages. Common parameters,
parameter checking, validation, and risk mitigation support are straightforward
implementations given an advanced function. The only change required to make
an advanced function is to replace the following code snippet:

function Get-Something($thing){
#get the thing
}

It should be replaced with:

function Get-Something{
[CmdletBinding()]
Param($thing)
#get the thing
}

When I see functions like the first code snippet, missing a Param() statement, my
first thought is that the code was written back in the days of PowerShell Version 1.0.
The process of moving the list of parameters into a Param() statement and (usually)
adding the CmdletBinding() attribute is straightforward and almost always correct.
Be aware that if you are using the $args automatic variable, the code will need to
be rewritten to be an advanced function, as $args lists the undeclared parameters
passed in and advanced functions do not allow undeclared parameters. An option
to replace $args would be to use the ValueFromRemainingArguments parameter.
Consider a case where the original function looked like this:

function Get-Args{
$args
}

The rewritten function could look like this:

function Get-Args2{
[CmdletBinding()]
Param([Parameter(ValueFromRemainingArguments=$true)]
 $myargs)
$myargs
}

PowerShell Code Smells

[172]

Homegrown common parameters
Also in the time of PowerShell Version 1.0, the only way to get native support for
common parameters (for example, –Verbose and –ErrorAction) was to write
a cmdlet using managed code. Since scripters, in general, are not C# or VB.NET
programmers, there was a tendency at that time to manually implement the common
parameters. For instance, it wasn't uncommon to find code like this:

function Get-Stuff{
Param($stuffID,[switch]$help)

 if($help){
 write-host "Usage: get-stuff [-stuffID] ID"
 write-host "Retrieves a list of stuff which matches"
 write-host "the given stuffID"
 return
 }
 #get the stuff
}

This was not an unapproved method in fact. Here is a blog post from Jeffery Snover
advocating implementing the –whatif, –Confirm, and –Verbose parameters in script:

http://blogs.msdn.com/b/powershell/archive/2007/02/25/supporting-
whatif-confirm-verbose-in-scripts.aspx#10555359

The post even contains a note explaining how important this method is:

Mr. Snover made a very good point, which was crucial during the early days of
PowerShell, about the goal of script cmdlets being as powerful as cmdlets written in
managed code. He also did a great job of illustrating how to use [ref] parameters in
PowerShell. I certainly won't contradict the creator of PowerShell, whereas this was
clearly a promoted practice in Version 1.0 of PowerShell, it has become a code smell
starting with Version 2.0.

With the language changes introduced in PowerShell 2.0, we know that we can use
[CmdletBinding()] by itself to allow access to the common parameters. We have
also seen that adding SupportsShouldProcess=$true to the CmdletBinding()
attribute gives us the additional risk mitigation parameters of –Whatif and –
Confirm. Finally, we know that help in a function should be created using
comment-based help.

http://blogs.msdn.com/b/powershell/archive/2007/02/25/supporting-whatif-confirm-verbose-in-scripts.aspx#10555359
http://blogs.msdn.com/b/powershell/archive/2007/02/25/supporting-whatif-confirm-verbose-in-scripts.aspx#10555359

Chapter 8

[173]

You might ask yourself what the risk of implementing your own parameters is or
what problems might arise from this practice. There are a few good principles that
should be mentioned:

• Code that you can omit is code that you don't have to troubleshoot
• Code written by the PowerShell team is documented and maintained

by Microsoft
• Delivered code is always available on a given machine

With these principles in mind, it should be clear that you shouldn't try to implement
features of PowerShell yourself. In instances where a feature you have implemented
is added to the PowerShell language, you should consider refactoring to use the
delivered feature instead.

Unapproved verbs
In Chapter 1, PowerShell Primer, and Chapter 4, PowerShell Professionalism, we discussed
the approved list of verbs and how the module system will issue a warning when
a module exports a function with an unapproved verb. We saw that there was a
switch called –DisableNameChecking that suppressed the warning. Not seeing the
warning is acceptable if we don't have access to the source code (as is the case with
the SQLPS module discussed in Chapter 4, PowerShell Professionalism), but in our
own code we are able to be more careful. In situations where we are creating a new
module, consideration can be made for what functions are performed. By consulting
the list of approved verbs provided by Get-Verb, we should have no issues creating
an appropriately named set of functions.

The instance where we are bound to run into an issue, as is the case with most of
the code smells we are discussing, is where we find code that is already in use and
that violates this principle. Given a well-organized codebase, it is possible that we
could simply rename the offending functions throughout every script in which they
appear. In reality, however, there is a risk involved in this kind of operation. What
if there was a file that was missed, or if a server was offline for maintenance that
contained scripts that use the functions? In these situations, a different approach is
usually preferable.

The solution to this problem is to rename the function with a proper verb in the
module and create an alias for the function that has the original name. For instance,
this code uses the unapproved verb "perform":

function perform-operation{
 #legacy code
}

PowerShell Code Smells

[174]

The replacement for this function would look something like this:

function invoke-operation{
 #legacy code
}
new-alias -name perform-operation -value invoke-operation
Export-ModuleMember -Alias perform-operation

The function now uses the approved verb "invoke", and we have created an alias
with the original name, perform-operation so that existing code will be able to
access the function. It is crucial that an Export-ModuleMember function call be added
to the module to export the alias, as aliases are not exported from a module by
default. Assuming that this was the only improperly named function in the module,
the module will now import with no warnings.

Accumulating output objects
In Chapter 7, Reactive Practices – Traditional Debugging, we spent a lot of time
discussing replacing the foreach keyword (loop) with the ForEach-Object cmdlet.
In that section, we were concerned with reading a large amount of data from a file
into memory rather than processing it one line at a time. In this section, we will
consider the converse, that is, functions that accumulate the objects they are going to
output in a container such as an array.

The pipeline is a very powerful and unique feature of the PowerShell language.
Executing the cmdlets in the pipeline at the same time as input is available to them,
instead of running them sequentially, allows PowerShell scripts to deal with huge
amounts of data without incurring a heavy memory footprint. However, we need to
be careful if we are going to take advantage of this. Consider the following somewhat
contrived function to retrieve the list of services running on a list of computers:

function get-RunningServices{
Param([string[]]$computerName)

 $RunningServices=@()
 foreach($computer in $computername){
 $RunningServices+=
 [array](get-service -ComputerName $computer |
 where Status -eq 'Running')
 }
 return $RunningServices
}

Chapter 8

[175]

While a list of services is probably not going to become a memory issue unless we
are processing a list of thousands of computers, it is clear that there is no need to
hold these objects in memory. Another consideration is that as written, no objects
will be available downstream in the pipeline until all of the computers have been
processed. If the pipeline contains select-object –first 5, for instance, the code
will waste a lot of time retrieving services from every computer rather than stopping
after the first five service objects have been emitted. Rewriting the function to take
advantage of the pipeline could look like this:

function get-RunningServices2{
Param([string[]]$computerName)

 foreach($computer in $computername){
 get-service -ComputerName $computer |
 where Status -eq 'Running'
 }
}

It is instructive to note that the rewriting here only involved removing code. As
mentioned in the Homegrown common parameters section, code that you can omit is
code that you don't have to troubleshoot. So in addition to performing much faster
and working with downstream cmdlets, it should require less troubleshooting.

Sequences of assignment statements
As I have mentioned several times, scripting in PowerShell is somewhat different
than programming in other languages. A programmer who isn't comfortable with
the pipeline might easily fall into the trap of writing code in a style that matches
the imperative programming language that he is most familiar with. For instance,
filtering and sorting a list of files in a directory could easily be seen as a sequence
of operations, as follows:

1. Get the list of files.
2. Filter the list of files to match the given criteria.
3. Sort the remaining list of files.

This thought process could lead to a PowerShell script that looks like this:

function get-sortedFilteredList{
Param($folder,$extension)

 $files = dir $folder
 $matchingFiles = where-object -InputObject $files -
 FilterScript {$_.Extension -eq $extension}

PowerShell Code Smells

[176]

 $sortedMatches = sort-object -InputObject $matchingFiles -
 Property Name

 return $sortedMatches
}

While this is a correct solution to the problem in some senses, it is certainly
not how the problem would be solved in idiomatic PowerShell. A more typical
solution would look like this:

function get-sortedFilteredList2{
Param($folder,$extension)
 dir $folder |
 where-object {$_.Extension -eq $extension} |
 sort-object -Property Name
}

The PowerShell-style solution is not only shorter, but also contains no local variables
(which is worth noting). Because it doesn't contain any variables, it is much less
likely that there will be a problem with a typo of a variable name or a type mismatch
in an assignment statement. Again, by removing code we have less to worry about.

There are times when a pipeline needs to be broken up for readability purposes, and
it's also possible that in a complex pipeline, it might be preferable to have discrete
steps in order to simplify debugging. In general though, using pipelines will allow
you to code more quickly and with fewer errors.

Using untyped or [object] parameters
When writing a function with flexibility in mind, we might be tempted to omit a
type on a parameter in order to allow the user to supply different kinds of objects as
arguments. PowerShell definitely allows for this, and in PowerShell Version 1.0 this
was a common practice. With PowerShell Version 2.0, and with the introduction of
advanced functions and parameter sets, we have a better option.

Recall that PowerShell doesn't allow the overloading of functions, where multiple
function definitions exist with distinct signatures. If it did, some built-in cmdlets
would have over a dozen different definitions. Instead, the concept of parameter
sets, or mutually exclusive sets of parameters, is provided. Each parameter set
corresponds to a usage pattern of the function or cmdlet. For instance, the help for
Rename-Item shows two parameter sets:

• Using a standard path
• Using a literal path

Chapter 8

[177]

The following screenshot shows the name, synopsis, and syntax of Rename-Item:

Trying to determine which parameters are unique to each parameter set can be very
frustrating. Looking at the command in the show-command window in the ISE gives
a graphical view of the two parameter sets, each represented in a tab. I find this to
be a good way of trying to figure out what the parameter sets mean. The following
screenshot shows the two parameter sets of Rename-Item:

PowerShell Code Smells

[178]

We can also find the parameter sets programmatically by inspecting the command
metadata, as shown in the following script:

get-command rename-item|
 select-object -expand ParameterSets |
 select-object Name

As expected, the results match the labels on the tabs in the show-command example,
as shown in the following screenshot:

Using parameter sets gives the user an idea of how the function is intended to be
used. In this case, the –Path and –LiteralPath parameters are supplying the same
information (a location), but in slightly different ways.

Compare this to the following parameter declarations from a function in an open
source project. I'm not picking on the developer because it's a project that I've been
associated with for a long time.

function Get-SqlDatabase
{
 param(
 [Parameter(Position=0, Mandatory=$true)] $sqlserver,
 [Parameter(Position=1, Mandatory=$false)] [string]$dbname,
 [Parameter(Position=2, Mandatory=$false)] [switch]$force
)

Because the $sqlserver parameter is declared as mandatory, you have to pass it in.
Unfortunately, there is no guidance on what type of object is expected to be supplied,
as is the case with the $dbname and $force parameters. Inspecting the body of the
function gives us some insight into how the $sqlserver parameter is used:

 switch ($sqlserver.GetType().Name)
 {
 'String' { $server = Get-SqlServer $sqlserver }
 'Server' { $server = $sqlserver }
 default { throw 'Get-SqlDatabase:Param `$sqlserver must be a
String or Server object.' }
 }

Chapter 8

[179]

From this we can see that we're expected to supply either a string or a Server object,
and that anything else will cause an exception to be thrown. We're missing a few
good opportunities here by using parameter sets and specifically-typed parameters:

• We don't get any guidance when we use Get-Help on what type of objects
to pass

• We can't tell from the parameter list that there are two different ways to call
the function

• We bypass PowerShell's extensive type-conversion facilities
• The error message is not a standard error message and is not localized

In this case, the server class ([Microsoft.SqlServer.Management.Smo.Server])
contains a constructor that takes a single string argument naming the server, so
one option we would have is to simply use the default parameter set (that is, not
specify any parameter sets) and specify that the parameter is of this specific type.
If a string was passed, the engine would instantiate a Server object using the
string and the function would have had a correctly-typed object. However, this
code is using a separate function (get-sqlserver) to convert from a string to a
Server object, so we will need to use parameter sets to reproduce the functionality.
We need to create a $sqlserverName parameter and assign the $sqlserver and
$sqlserverName parameters to different parameter sets. Then, in the function body,
we check $PSCmdlet.ParameterSetName to determine whether a server name was
passed rather than a server object and call the conversion function, as shown in the
following code snippet:

function Get-SqlDatabase
{
 param(
 [Parameter(Position=0, Mandatory=$true,ParameterSet='Server')]
 $sqlserver,
 [Parameter(Position=0,
 Mandatory=$true,ParameterSet='ServerName')] $sqlserverName,
 [Parameter(Position=1,
 Mandatory=$false,ParameterSet='ServerName')]
 [string]$dbname,
 [Parameter(Position=2, Mandatory=$false)] [switch]$force
)

if ($PsCmdlet.ParameterSetName -eq 'ServerName'){
 $sqlserver=get-sqlserver $sqlserverName
}

PowerShell Code Smells

[180]

With that change, we have changed the function so that we can leverage
PowerShell's parameter handling capabilities to give type guidance,
type checking, and documentation in the form of a more useful help display.

Using parameter sets is a powerful technique that gives a lot of control over the way
parameters are passed into a function. Giving up this control by using [object] or
untyped parameters inevitably leads to more code and frustrated users.

Static analysis tools – ScriptCop and
Script Analyzer
This chapter has focused on things that we can see when we look at code in a code
review situation. Such observations are necessarily somewhat subjective and open
to disagreement. Another approach to the problem of analyzing code is to use a
static analysis tool. Static analysis tools read the source code and apply a set of rules
to determine places that the rules are broken. A report from such a tool gives very
quick input into the quality of the code.

Some languages have a long history of static analysis tools. The C language, for
example, has lint. If you're using C#, you have probably heard of StyleCop and
FxCop. PowerShell has two static analysis tools: ScriptCop and Script Analyzer.

ScriptCop
ScriptCop is a tool created by Start-Automating.com in 2011 and can be found at
http://scriptcop.start-automating.com. It can be used to test a function or
module either online, through a web form, or through a cmdlet interface. ScriptCop
defines a number of rules that can be tested as well as groups of rules, which it calls
patrols. The web form is simple to use: copy the code into the form, select the rules or
patrols to execute, and optionally a rule to exclude, and click on the Test Command
button, as shown in the following screenshot:

http://scriptcop.start-automating.com

Chapter 8

[181]

Here, I am passing in a simple function and running the Test-Documentation patrol
against it. As expected, this example turns up a number of problems:

PowerShell Code Smells

[182]

The cmdlet interface is through a module called ScriptCop that defines the rules
as functions and also exports a function called Test-Command. We can easily
use this function to reproduce the result we got on the website, as shown in
the following screenshot:

ScriptCop defines a number of rules (currently 14 for functions and 3 for modules)
and includes source code for them. The rules are advanced functions that inspect
the command metadata and a list of tokens provided by the PowerShell parser.

There are a number of really strong points for ScriptCop. First, the large number
of rules means that the analysis is more thorough. Second, the fact that rules and
patrols are written in PowerShell means that you can write your own, or you
can customize the delivered rules and patrols to match your preferences. Third,
ScriptCop has a PowerShell interface, so it could be applied automatically to a library
of functions and modules.

Script Analyzer
Script Analyzer is a recent arrival in the PowerShell world, showing up on TechNet in
May 2014 along with the Script Browser. Script Analyzer is a PowerShell ISE add-on,
that is, a graphical pane that can be installed into ISE and can interact with the ISE. The
download link for the Script Browser and Script Analyzer is http://www.microsoft.
com/en-us/download/details.aspx?id=42525. The download is an installer, which
includes a note about execution policies as well as this interesting page:

http://www.microsoft.com/en-us/download/details.aspx?id=42525
http://www.microsoft.com/en-us/download/details.aspx?id=42525

Chapter 8

[183]

After the installation is complete, starting the ISE shows two new add-ons, as shown
in the following screenshot:

The Script Browser gives an interesting searchable interface to the TechNet PowerShell
gallery, but we're interested in the Script Analyzer tab. It features a button labeled
Scan Script, a gear button for options, and a grid for results. Typing the same
function we used in the ScriptCop section into the ISE and pressing the scan button,
unfortunately, doesn't give us any results, as shown in the following screenshot:

PowerShell Code Smells

[184]

Clicking on the gear to see the options shows us the reason for this, namely that there
aren't many rules implemented by the analyzer at this point.

Looking through the rules, we can create a more complex example function that
triggers some of the rules, as shown in the following screenshot:

The tool caught three of the rules, but apparently missed the positional argument in
line 5. It is good to note that on the options page there is a link to suggest new rules.
The forum that the link points to already has 14 suggestions for rules, so there's hope
that the script analyzer will mature into a more detailed tool. The same forum can be
used to report bugs, as I have for the positional parameter being missed in the script
as illustrated in the preceding screenshot.

Chapter 8

[185]

The installation procedure asked about modifying the ISE profile, so let's take a
look at those changes. First, the ISE profile is called Microsoft.PowerShellISE_
profile.ps1 and is found in the WindowsPowerShell folder under the MyDocuments
folder. Looking in that file, we find the following lines:

The code simply pulls in the .dll files associated with the add-on and then uses the
$psISE variable to add the add-ons to the interface and make them visible. Once
they are installed, we can also turn them on and off with the Add-Ons menu, as
shown in the following screenshot:

Further reading
For more information on the topics covered in this chapter, take a look at the
following references:

• Code smells at http://en.wikipedia.org/wiki/Code_smell
• Antipatterns at http://en.wikipedia.org/wiki/Anti-pattern

http://en.wikipedia.org/wiki/Code_smell
http://en.wikipedia.org/wiki/Anti-pattern

PowerShell Code Smells

[186]

• Best practices at http://en.wikipedia.org/wiki/Best_practice
• Technical debt at http://en.wikipedia.org/wiki/Technical_debt
• get-help about_parameters

• get-help out-gridview

• get-help about_functions_cmdletbindingattribute

• get-help get-verb

• get-help export-modulemember

• get-help about_pipelines

• get-help about_functions_advanced_parameters

• ScriptCop at http://scriptcop.start-automating.com
• Script Browser and Script Analyzer at http://www.microsoft.com/en-us/

download/details.aspx?id=42525

Summary
In this chapter, we examined the concept of code smells, which are related to best
practices and antipatterns. We looked at several code smells that are found in most
programming languages and then looked in-depth at code smells that are specific to
PowerShell scripts due to the unique nature of PowerShell. Finally, we examined the
state of static script analysis in PowerShell, reviewing the functionality of ScriptCop
and the Script Analyzer add-on.

http://en.wikipedia.org/wiki/Best_practice
http://en.wikipedia.org/wiki/Technical_debt
http://scriptcop.start-automating.com
http://www.microsoft.com/en-us/download/details.aspx?id=42525
http://www.microsoft.com/en-us/download/details.aspx?id=42525

Index
Symbols
-confirm

using 154, 155
–ErrorAction parameter

Continue 41
Stop 41
Inquire 41
Ignore 41
SilentlyContinue 41
Suspend 41

[object] parameter
using 176-179

#REQUIRES statements
-Modules option 104
-PSSnapIn option 104
-RunAsAdministrator option 104
-ShellID option 104
-Version option 104

-whatif
using 154, 155

A
antipatterns

about 168
URL 185

assignment statements
sequencing 175, 176

B
behavior-driven development (BDD) 78
best practices

about 168
URL 186

C
caption property 111
catch and release 89
catch statement 39
CmdletBinding()

about 90
parameter support 91, 92

cmdlet, naming convention 64, 65
cmdlets

about 8, 9
error behavior 88
Get-Command cmdlet 10
Get-Help cmdlet 11, 12
Get-Member cmdlet 13
verb list, URL 23

code 69, 70
code smells

about 168
language-agnostic code smells 169
PowerShell-specific code smells 169, 170
URL 185

color, error message
issue 130, 131

comment-based help 49-53
Common Information Model (CIM) 109
console

debugging in 140-145
console colors, error message

changing 131, 132
content, error message 134-137

D
debugging

in console 140-145
in ISE 145-147

[188]

DebugPreference variable 56
disk

availability, validating 116-118
dogfooding

URL 82
downstream versions

Test-NetConnection, writing in 120, 121

E
ErrorActionPreference variable 56
error handling

about 85
catch and release 89
cmdlet, error behavior 88
catch statement 39
finally statement 39
guidelines 86
non-terminating errors 40-42
techniques 86, 87
terminating error 40
trap statement 37, 38
try statement 39

error messages
color, issue 130, 131
console colors, changing 131, 132
content 134-137
ISE colors, changing 132-134
PowerShell profiles 134
reading 130

event logs
about 147, 148
listing 149, 150
reading 150-152
writing to 152, 153

Event Tracing for Windows (ETW) 149

F
filter left 45, 46
finally statement 39
foreach loop

replacing, with foreach-object
cmdlet 159-164

format right 47-49
formatting codes

URL 42

fully-qualified domain names (FQDN) 74
function naming 64, 65
function output 29-32
functions 13, 14

G
Get-Command cmdlet 10
Get-EventLog, filtering parameters

-Before and -After 150
-EntryType 150
-Index 150
-Message 150
-Newest 150
-Source 150
-UserName 150

Get-Help cmdlet 11, 12
Get-Member cmdlet 13
Get-Service cmdlet 88
Get-Verb cmdlet 8
Get-WinEvent, filtering parameters

-FilterHashTable 151
-FilterXML 151
-FilterXPath 151
-MaxEvents 151
-Oldest (switch) 151

Get-WMIObject cmdlet 88
grave accent 26

H
helper functions 68
here-strings 26
host. See Write-Host

I
ICMP connectivity

testing 122, 123
input set

reducing 156, 157
Integrated Scripting

Environment (ISE)
about 26, 59
debugging in 145-147

intermediate results
viewing, Tee-Object used 158, 159

[189]

ISE colors, error message
changing 132-134

L
language-agnostic code smells 169

M
Measure-Command cmdlet 46
memory

availability, validating 116-118
mocking

URL 82
modularization

about 67
process 70, 71
process, breaking into subtasks 67, 68
single responsibility principle 69
URL 82

module naming 66
modules 21, 22
Monad Manifesto

URL 22

N
naming conventions

about 63
cmdlet 64, 65
function naming 64, 65
module naming 66
parameter naming 65, 66
URL 82
variable naming 67

network connectivity
validating 119
working 124

network connectivity, validating
ICMP connectivity, testing 122, 123
implementation, prior to 123, 124
telnet used 119
Test-NetConnection used 120
UDP connectivity, testing 122, 123

non-terminating error 40-42

O
operating system properties

validating 109, 110
version 111-113
working 114
workstation/server version 110

operating system version 111-113
output objects

accumulating 174, 175

P
parameter naming 65, 66
parameters

about 172, 173
blog post, URL 172
name, validating 93, 94
value, validating 94, 95

parameter type transformation
about 102-104
URL 107

Param() statements
about 90
missing 170, 171

Pester
about 78, 79
mocking with 80-82
URL 82

pipelines
about 15-19
and function execution 99, 101
input 96-99
processing 32-36

PowerShell. See also Windows PowerShell
PowerShell

error handling 37
pipeline, processing 32-36
strings 25, 26
string substitution 26-28
testing 77, 78
version control, using with 73

PowerShell profiles, error message 134

[190]

PowerShell-specific code smells 169, 170
process

about 70, 71
breaking, into subtasks 67, 68

ProgressPreference variable 56
PSDiagnostics module 153, 154
PSDrives 55
PSProviders 55

S
Script Analyzer

about 182-185
URL 182, 186

Script Browser
URL 182, 186

scriptblock 20
ScriptCop

about 180-182
URL 180, 186

script cmdlets 90
scripts 14, 15
service status

validating 115
Set-PSDebug

about 105, 106
using 137-140

Set-StrictMode 105-107
single responsibility principle 69
sorting

about 19, 20
directory 18

SQLPS 68
static analysis tools

about 180
Script Analyzer 182-185
ScriptCop 180-182

strings, PowerShell
about 25, 26
double-quoted strings, special characters 29
escaping in 29
substitution 26-28

subtasks
process, breaking into 67, 68

SupportsShouldProcess
about 92
parameter name validation 93, 94

T
Team Foundation Services (TFS) 73
technical debt

about 168
URL 186

Tee-Object
used, for viewing intermediate

results 158, 159
telnet

URL 127
used, for validating network

connectivity 119
terminating error 37-40
Test Driven Development (TDD) 73
Test-NetConnection

used, for validating network
connectivity 120

writing, in downstream versions 120, 121
trap statement 37
try statement 39

U
UDP connectivity

testing 122, 123
unit testing

about 73, 74
rolling 74-77
URL 82

untyped parameter
using 176-179

V
variable naming 67
variables 20, 21
VerbosePreference variable 56
verbs

unapproved 173, 174
URL 9

version control
about 71, 72
using, with PowerShell 73

W
WarningPreference variable 56

[191]

Web Services Management (WSMAN) 110
Windows Management Instrumentation

(WMI) 109
Windows PowerShell

about 7, 8
cmdlets 8
functions 13, 14
modules 21, 22
pipelines 15-17
scripts 14, 15
variables 20, 21

workstation/server version,
operating system properties 110

Write-* cmdlets 53-57
Write-Debug 58
Write-Error 58
Write-Host 53
Write-Output 54, 57
Write-Progress 59
Write-Verbose 57
Write-Warning 58

Thank you for buying
PowerShell Troubleshooting Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Windows PowerShell 4.0 for .NET
Developers
ISBN: 978-1-84968-876-5 Paperback: 140 pages

A fast-paced PowerShell guide, enabling you
to efficiently administer and maintain your
development environment

1. Enables developers to start adopting Windows
PowerShell in their own application to extend
its capabilities and manageability.

2. Introduces beginners to the basics, progressing
on to advanced level topics and techniques
for professional PowerShell scripting and
programming.

Citrix® XenDesktop® 7 Cookbook
ISBN: 978-1-78217-746-3 Paperback: 410 pages

Over 35 recipes to help you implement a fully
featured XenDesktop® 7 architecture with a rich
and powerful VDI experience

1. Implement the XenDesktop® 7 architecture and
its satellite components.

2. Learn how to publish desktops and
applications to the end-user devices,
optimizing their performance and increasing
the general security.

3. Designed in a manner which will allow you
to progress gradually from one chapter to
another or to implement a single component
only referring to the specific topic.

Please check www.PacktPub.com for information on our titles

Citrix® XenApp® 6.5 Expert
Cookbook
ISBN: 978-1-84968-522-1 Paperback: 420 pages

Over 125 recipes that enable you to configure,
administer, and troubleshoot a XenApp®
infrastructure for effective application virtualization

1. Create installation scripts for Citrix® XenApp®,
License Servers, Web Interface, and StoreFront.

2. Use PowerShell scripts to configure and
administer the XenApp's® infrastructure
components.

3. Discover Citrix® and community-written tools
to maintain a Citrix® XenApp® infrastructure.

PowerShell 3.0 Advanced
Administration Handbook
ISBN: 978-1-84968-642-6 Paperback: 370 pages

A fast-paced PowerShell guide with real-world
scenarios and detailed solutions

1. Discover and understand the concept of
Windows PowerShell 3.0.

2. Learn the advanced topics and techniques
for a professional PowerShell scripting.

3. Explore the secret of building custom
PowerShell snap-ins and modules.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: PowerShell Primer
	Introduction
	Cmdlets
	The big three cmdlets

	Functions
	Scripts
	Pipelines
	How pipelines change the game
	What's the fuss about sorting?

	Variables
	Modules
	Further reading
	Summary

	Chapter 2: PowerShell Peculiarities
	PowerShell strings
	String substitution
	How string substitution goes wrong
	Escaping in PowerShell strings

	Function output
	Pipeline processing
	PowerShell error handling
	The trap statement
	try, catch, and finally statements
	Non-terminating errors

	Further reading
	Summary

	Chapter 3: PowerShell Practices
	Filter left
	Format right
	Comment-based help
	Using Write-* cmdlets
	Write-Host
	Output – the correct way
	What about the other Write-* cmdlets?
	Which Write should I use?
	Write-Verbose
	Write-Debug
	Write-Warning
	Write-Error
	Write-Progress

	Further reading
	Summary

	Chapter 4: PowerShell Professionalism
	Naming conventions
	Cmdlet and function naming
	Parameter naming
	Module naming
	Variable naming

	Modularization
	Breaking a process into subtasks
	Helper functions
	Single responsibility principle
	Don't repeat code
	Understanding the process

	Version control
	Using version control with PowerShell

	Unit testing
	Rolling your own unit tests
	Why is PowerShell testing difficult?
	An introduction to Pester
	Mocking with Pester

	Further reading
	Summary

	Chapter 5: Proactive PowerShell
	Error handling
	Error-handling guidelines
	Error-handling techniques
	Investigating cmdlet error behavior
	Catch and release

	CmdletBinding()
	Common parameter support

	SupportsShouldProcess
	Parameter name validation

	Parameter value validation
	Pipeline input
	Pipelines and function execution
	Parameter type transformation
	#REQUIRES statements
	Set-StrictMode and Set-PSDebug -strict
	Further reading
	Summary

	Chapter 6: Preparing the Scripting Environment
	Validating operating system properties
	Workstation/server version
	Operating system version
	Putting it all together

	Validating service status
	Validating disk and memory availability
	Validating network connectivity
	Using telnet
	Using Test-NetConnection
	Writing Test-NetConnection in downstream versions
	Testing UDP and ICMP connectivity
	Validating connectivity prior to implementation
	Putting it all together

	Further reading
	Summary

	Chapter 7: Reactive Practices – Traditional Debugging
	Reading error messages
	The color problem
	Changing console colors
	Changing ISE colors
	PowerShell profiles
	Error message content

	Using Set-PSDebug
	Debugging in the console
	Debugging in the ISE
	Event logs
	Listing event logs
	Reading event logs
	Writing to event logs

	The PSDiagnostics module
	Using –confirm and –whatif
	Reducing input set
	Using Tee-Object to see intermediate results
	Replacing the foreach loop with the foreach-object cmdlet
	Further reading
	Summary

	Chapter 8: PowerShell Code Smells
	Code smells
	Code smells, best practices, antipatterns, and technical debt

	Language-agnostic code smells
	PowerShell-specific code smells
	Missing Param() statements
	Homegrown common parameters
	Unapproved verbs
	Accumulating output objects
	Sequences of assignment statements
	Using untyped or [object] parameters
	Static analysis tools – ScriptCop and Script Analyzer
	ScriptCop
	Script Analyzer

	Further reading
	Summary

	Index

