
1

Web Development
with Django Cookbook
Second Edition

Over 90 practical recipes to help you create scalable
websites using the Django 1.8 framework

Aidas Bendoraitis

BIRMINGHAM - MUMBAI

Web Development with Django Cookbook
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Second Edition: January 2016

Production reference: 1220116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-677-5

www.packtpub.com

www.packtpub.com

Credits

Author
Aidas Bendoraitis

Reviewers
Patrick Chan

Jake Kronika

Jorge Armin Garcia Lopez

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Nadeem N. Bagban

Content Development Editors
Arwa Manasawala

Sumeet Sawant

Technical Editor
Bharat Patil

Copy Editor
Vibha Shukla

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Aidas Bendoraitis has been professionally working with web technologies for over a
decade. Over the past nine years at a Berlin-based company, studio 38 pure communication
GmbH, he has developed a number of small-scale and large-scale Django projects—mostly
in the cultural area—together with a creative team. At the moment, he is also working as a
software architect at a London-based mobile startup, Hype.

Aidas regularly attends meetups of Django User Group Berlin, occasionally visits Django
and Python conferences, and writes a weblog about Django: http://djangotricks.
blogspot.com/.

I would like to thank my wife, Sofja, for her support and patience while
I was writing this book, even during late evenings and weekends. I would
also like to thank studio 38 pure communication GmbH and namely
Reinhard Knobelspies for introducing Django to me nine years ago. Finally,
I would like to thank Vilnius University in Lithuania for teaching the main
programming concepts, without which I wouldn't be working in the positions
I currently have.

http://djangotricks.blogspot.com/
http://djangotricks.blogspot.com/

About the Reviewers

Patrick Chan is a device and configuration management SME (subject matter expert),
working in the telecommunication industry. His experience in Python has been instrumental in
developing build systems that have not only increased developer productivity, but would also
ensure operational reliability by automating software releases.

Jake Kronika is a passionate full-stack developer with over 20 years of experience.
Jake's career grew alongside the evolution of the web development space. Starting with
GeoCities and Angelfire, his skills have gradually expanded from simple HTML and copy and
paste scripts to encapsulate a deep understanding of CSS. JavaScript skills that span core
ECMAScript standards as well as numerous client-side libraries and powerful frameworks,
such as Node.js and AngularJS; scripting languages including Python and PHP; and various
databases, MySQL and PostgreSQL among them.

Jake is currently senior software engineer with CDK Global Digital Marketing wing and a PHP
developer with Webkey LLC. Outside these roles, Jake also operates a sole proprietorship
through which he provides services spanning the full spectrum of web administration, design,
and development.

In addition to his professional career experience, Jake has acted as a reviewer for numerous
other Packt titles, such as Django JavaScript Integration: AJAX and jQuery (2011), jQuery
UI 1.8: The User Interface Library for jQuery (2011), jQuery Tools UI Library (2012), and
Developing Responsive Web Applications with AJAX and jQuery (2014).

I would like to thank my family for their ongoing love and support.

Jorge Armin Garcia Lopez is a very passionate information security consultant from
Mexico with more than seven years of experience in computer security, penetration testing,
intrusion detection/prevention, malware analysis, and incident response. He is the head of
GCS-CERT. He is also a security researcher at Cipher Storm Ltd and is the cofounder and CEO
of the most important security conference in Mexico, called BugCON. He holds important
security industry certifications such as OSCP, GCIA, and GPEN.

He loves reviewing code and books about information security and programming languages.
He has worked on the books Penetration Testing with Backbox, Penetration Testing with
the Bash Shell, Learning OpenStack Networking (Neutron), Django Essentials, and Getting
Started with Django, all by Packt Publishing.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

i

Table of Contents
Preface v
Chapter 1: Getting Started with Django 1.8 1

Introduction 2
Working with a virtual environment 2
Creating a project file structure 4
Handling project dependencies with pip 7
Making your code compatible with both Python 2.7 and Python 3 9
Including external dependencies in your project 12
Configuring settings for development, testing, staging,
and production environments 14
Defining relative paths in the settings 16
Creating and including local settings 17
Setting up STATIC_URL dynamically for Subversion users 19
Setting up STATIC_URL dynamically for Git users 20
Setting UTF-8 as the default encoding for MySQL configuration 22
Setting the Subversion ignore property 23
Creating the Git ignore file 26
Deleting Python-compiled files 28
Respecting the import order in Python files 29
Creating app configuration 30
Defining overwritable app settings 33

Chapter 2: Database Structure 35
Introduction 35
Using model mixins 36
Creating a model mixin with URL-related methods 37
Creating a model mixin to handle creation and modification dates 40
Creating a model mixin to take care of meta tags 42
Creating a model mixin to handle generic relations 45

ii

Table of Contents

Handling multilingual fields 50
Using migrations 56
Switching from South migrations to Django migrations 58
Changing a foreign key to the many-to-many field 59

Chapter 3: Forms and Views 63
Introduction 63
Passing HttpRequest to the form 64
Utilizing the save method of the form 66
Uploading images 68
Creating a form layout with django-crispy-forms 74
Downloading authorized files 79
Filtering object lists 83
Managing paginated lists 91
Composing class-based views 95
Generating PDF documents 98
Implementing a multilingual search with Haystack 105

Chapter 4: Templates and JavaScript 115
Introduction 115
Arranging the base.html template 116
Including JavaScript settings 119
Using HTML5 data attributes 122
Opening object details in a modal dialog 127
Implementing a continuous scroll 132
Implementing the Like widget 134
Uploading images by Ajax 141

Chapter 5: Custom Template Filters and Tags 151
Introduction 151
Following conventions for your own template filters and tags 152
Creating a template filter to show how many days have passed
since a post was published 153
Creating a template filter to extract the first media object 155
Creating a template filter to humanize URLs 157
Creating a template tag to include a template if it exists 158
Creating a template tag to load a QuerySet in a template 162
Creating a template tag to parse content as a template 166
Creating a template tag to modify request query parameters 169

Chapter 6: Model Administration 175
Introduction 175
Customizing columns on the change list page 175
Creating admin actions 180

iii

Table of Contents

Developing change list filters 185
Customizing default admin settings 188
Inserting a map into a change form 192

Chapter 7: Django CMS 205
Introduction 205
Creating templates for Django CMS 206
Structuring the page menu 210
Converting an app to a CMS app 214
Attaching your own navigation 216
Writing your own CMS plugin 219
Adding new fields to the CMS page 224

Chapter 8: Hierarchical Structures 231
Introduction 231
Creating hierarchical categories 233
Creating a category administration interface with django-mptt-admin 236
Creating a category administration interface with django-mptt-tree-editor 240
Rendering categories in a template 243
Using a single selection field to choose a category in forms 245
Using a checkbox list to choose multiple categories in forms 247

Chapter 9: Data Import and Export 253
Introduction 253
Importing data from a local CSV file 253
Importing data from a local Excel file 256
Importing data from an external JSON file 259
Importing data from an external XML file 264
Creating filterable RSS feeds 269
Using Tastypie to create API 274
Using Django REST framework to create API 278

Chapter 10: Bells and Whistles 285
Introduction 285
Using the Django shell 286
Using database query expressions 289
Monkey-patching the slugify() function for better
internationalization support 295
Toggling the Debug Toolbar 298
Using ThreadLocalMiddleware 301
Caching the method return value 304
Using Memcached to cache Django views 306
Using signals to notify administrators about new entries 308
Checking for missing settings 310

iv

Table of Contents

Chapter 11: Testing and Deployment 313
Introduction 313
Testing pages with Selenium 314
Testing views with mock 319
Testing API created using Django REST framework 323
Releasing a reusable Django app 329
Getting detailed error reporting via e-mail 333
Deploying on Apache with mod_wsgi 335
Setting up cron jobs for regular tasks 342
Creating and using the Fabric deployment script 345

Index 357

v

Preface
Django framework is relatively easy to learn and it solves many web-related questions, such as
project structure, database object-relational mapping, templating, form validation, sessions,
authentication, security, cookie management, internationalization, basic administration,
interface to access data from scripts, and so on. Django is based on the Python programming
language, where the code is clear and easy to read. Also, Django has a lot of third-party
modules that can be used in conjunction with your own apps. Django has an established and
vibrant community, where you can find source code, get help, and contribute.

Web Development with Django Cookbook - Second Edition will guide you through all the
web development process with Django 1.8 framework. You will get started with the virtual
environment and configuration of the project. Then, you will learn how to define the database
structure with reusable components. The book will move on to the forms and views to enter
and list the data. Then, you will continue with responsive templates and JavaScript to create
the best user experience. After this, you will find out how to tweak administration in order to
make the website editors happy. You will also learn how to integrate your own functionality
in Django CMS. The next step will be to learn how to use hierarchical structures. You will
find out that collecting data from different sources and providing data to others in different
formats isn't as difficult as you thought. Then, you'll be introduced to some programming and
debugging tricks. Finally, you will be shown how to test and deploy the project to a remote
dedicated server.

In contrast to other Django books, this book will deal not only with the code of the framework
itself, but also with some important third-party modules that are necessary for fully-equipped
web development. Also, the book gives examples of rich user interfaces using Bootstrap
frontend framework and jQuery JavaScript library.

What this book covers
Chapter 1, Getting Started with Django 1.8, guides you through the basic configuration that
is necessary to start any Django project. It will cover topics such as the virtual environment,
version control, and project settings.

Preface

vi

Chapter 2, Database Structure, teaches how to write reusable pieces of code to use in your
models. When you create a new app, the first thing to do is to define your models. Also, you
will be asked how to manage the database schema changes using Django migrations.

Chapter 3, Forms and Views, shows you some patterns used to create the views and forms for
your data.

Chapter 4, Templates and JavaScript, covers practical examples of using templates and
JavaScript together. We will bring together templates and JavaScript as information is always
presented to the user by rendered templates and in modern website, JavaScript is a must for
a rich user experience.

Chapter 5, Custom Template Filters and Tags, explains how to create and use your own
template filters and tags. As you will see, the default Django template system can be
extended to match template developers' needs.

Chapter 6, Model Administration, guides you through extending the default administration
with your own functionality as the Django framework comes with a handy pre-built model
administration.

Chapter 7, Django CMS, deals with the best practices of using Django CMS, which is the most
popular open source content management system made with Django, and adapting it to your
project's requirements.

Chapter 8, Hierarchical Structures, shows that whenever you need to create a tree-like
structure in Django, the django-mptt module comes in handy. This chapter shows you how
to use it and set administration for hierarchical structures.

Chapter 9, Data Import and Export, demonstrates how to transfer data from and to different
formats, as well as retrieve it from and provide it to different sources. This chapter deals with
the management commands for data import and also APIs for data export.

Chapter 10, Bells and Whistles, shows some additional snippets and tricks useful in everyday
web development and debugging.

Chapter 11, Testing and Deployment, teaches how to test your project and deploy it on the
remote server.

What you need for this book
To develop with Django 1.8, you will need Python 2.7 or Python 3.4, the Pillow library for
image manipulation, the MySQL database and MySQLdb bindings or PostgreSQL database,
virtualenv to keep each project's Python modules separated, and Git or Subversion for
version control.

All other specific requirements are separately mentioned in each recipe.

Preface

vii

Who this book is for
If you have created websites with Django, but you want to sharpen your knowledge and learn
some good approach for how to treat different aspects of web development, this book is for
you. It is intended for intermediate and professional Django users who need to build projects
that are multilingual, functional on devices of different screen sizes, and that scale over time.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "If you
just have one or two settings, you can use the following pattern in your models.py file."

A block of code is set as follows:

magazine/__init__.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
default_app_config = "magazine.apps.MagazineAppConfig"

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

magazine/__init__.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
default_app_config = "magazine.apps.MagazineAppConfig"

Any command-line input or output is written as follows:

(myproject_env)$ python

>>> import sys

>>> sys.path

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "For example, we added a
phone icon to the Phone field and an @ sign for the Email field".

Preface

viii

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

ix

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support

1

Getting Started with
Django 1.8

In this chapter, we will cover the following topics:

 f Working with a virtual environment

 f Creating a project file structure

 f Handling project dependencies with pip

 f Making your code compatible with both Python 2.7 and Python 3

 f Including external dependencies in your project

 f Configuring settings for development, testing, staging, and production environments

 f Defining relative paths in the settings

 f Creating and including local settings

 f Setting up STATIC_URL dynamically for Subversion users

 f Setting up STATIC_URL dynamically for Git users

 f Setting UTF-8 as the default encoding for MySQL configuration

 f Setting the Subversion ignore property

 f Creating a Git ignore file

 f Deleting Python-compiled files

 f Respecting the import order in Python files

 f Creating app configuration

 f Defining overwritable app settings

1

Getting Started with Django 1.8

2

Introduction
In this chapter, we will see a few good practices when starting a new project with Django 1.8
on Python 2.7 or Python 3. Some of the tricks introduced here are the best ways to deal with
the project layout, settings, and configurations. However, for some tricks, you might have to
find some alternatives online or in other books about Django. Feel free to evaluate and choose
the best bits and pieces for yourself while digging deep into the Django world.

I am assuming that you are already familiar with the basics of Django, Subversion and Git
version control, MySQL and PostgreSQL databases, and command-line usage. Also, I am
assuming that you are probably using a Unix-based operating system, such as Mac OS X or
Linux. It makes more sense to develop with Django on Unix-based platforms as the websites
will most likely be published on a Linux server, therefore, you can establish routines that work
the same while developing as well as deploying. If you are locally working with Django on
Windows, the routines are similar; however, they are not always the same.

Working with a virtual environment
It is very likely that you will develop multiple Django projects on your computer. Some modules
such as Python Imaging Library (or Pillow) and MySQLdb, can be installed once and then
shared for all projects. Other modules such as Django, third-party Python libraries, and
Django apps, will need to be kept isolated from each other. The virtualenv tool is a utility that
separates all the Python projects in their own realms. In this recipe, we will see how to use it.

Getting ready
To manage Python packages, you will need pip. It is included in your Python installation if
you are using Python 2.7.9 or Python 3.4+. If you are using another version of Python, install
pip by executing the installation instructions at http://pip.readthedocs.org/en/
stable/installing/. Let's install the shared Python modules Pillow and MySQLdb, and
the virtualenv utility, using the following commands:

$ sudo pip install Pillow

$ sudo pip install MySQL-python

$ sudo pip install virtualenv

http://pip.readthedocs.org/en/stable/installing/
http://pip.readthedocs.org/en/stable/installing/

Chapter 1

3

How to do it…
Once you have your prerequisites installed, create a directory where all your Django projects
will be stored, for example, virtualenvs under your home directory. Perform the following
steps after creating the directory:

1. Go to the newly created directory and create a virtual environment that uses the
shared system site packages:
$ cd ~/virtualenvs

$ mkdir myproject_env

$ cd myproject_env

$ virtualenv --system-site-packages .

New python executable in ./bin/python

Installing setuptools………….done.

Installing pip……………done.

2. To use your newly created virtual environment, you need to execute the activation
script in your current shell. This can be done with the following command:
$ source bin/activate

You can also use the following command one for the same (note the space between
the dot and bin):
$. bin/activate

3. You will see that the prompt of the command-line tool gets a prefix of the project
name, as follows:
(myproject_env)$

4. To get out of the virtual environment, type the following command:
$ deactivate

How it works…
When you create a virtual environment, a few specific directories (bin, build, include, and
lib) are created in order to store a copy of the Python installation and some shared Python
paths are defined. When the virtual environment is activated, whatever you have installed
with pip or easy_install will be put in and used by the site packages of the virtual
environment, and not the global site packages of your Python installation.

To install Django 1.8 in your virtual environment, type the following command:

(myproject_env)$ pip install Django==1.8

Getting Started with Django 1.8

4

See also
 f The Creating a project file structure recipe

 f The Deploying on Apache with mod_wsgi recipe in Chapter 11, Testing and Deployment

Creating a project file structure
A consistent file structure for your projects makes you well-organized and more productive.
When you have the basic workflow defined, you can get in the business logic quicker and
create awesome projects.

Getting ready
If you haven't done this yet, create a virtualenvs directory, where you will keep all your
virtual environments (read about this in the Working with a virtual environment recipe).
This can be created under your home directory.

Then, create a directory for your project's environment, for example, myproject_env. Start
the virtual environment in it. I would suggest adding the commands directory for local bash
scripts that are related to the project, the db_backups directory for database dumps, and the
project directory for your Django project. Also, install Django in your virtual environment.

How to do it…
Follow these steps in order to create a file structure for your project:

1. With the virtual environment activated, go to the project directory and start a new
Django project as follows:
(myproject_env)$ django-admin.py startproject myproject

For clarity, we will rename the newly created directory as django-myproject. This
is the directory that you will put under version control, therefore, it will have the .git,
.svn, or similar directories.

Chapter 1

5

2. In the django-myproject directory, create a README.md file to describe your
project to the new developers. You can also put the pip requirements with the
Django version and include other external dependencies (read about this in the
Handling project dependencies with pip recipe). Also, this directory will contain your
project's Python package named myproject; Django apps (I recommend having
an app called utils for different functionalities that are shared throughout the
project); a locale directory for your project translations if it is multilingual; a Fabric
deployment script named fabfile.py, as suggested in the Creating and using the
Fabric deployment script recipe in Chapter 11, Testing and Deployment; and the
externals directory for external dependencies that are included in this project if
you decide not to use pip requirements.

3. In your project's Python package, myproject, create the media directory for project
uploads, the site_static directory for project-specific static files, the static
directory for collected static files, the tmp directory for the upload procedure, and the
templates directory for project templates. Also, the myproject directory should
contain your project settings, the settings.py and conf directories (read about
this in the Configuring settings for development, testing, staging, and production
environments recipe), as well as the urls.py URL configuration.

4. In your site_static directory, create the site directory as a namespace for site-
specific static files. Then, separate the separated static files in directories in it. For
instance, scss for Sass files (optional), css for the generated minified Cascading
Style Sheets, img for styling images and logos, js for JavaScript, and any third-party
module combining all types of files such as the tinymce rich-text editor. Besides the
site directory, the site_static directory might also contain overwritten static
directories of third-party apps, for example, cms overwriting static files from Django
CMS. To generate the CSS files from Sass and minify the JavaScript files, you can use
the CodeKit or Prepros applications with a graphical user interface.

5. Put your templates that are separated by the apps in your templates directory. If a
template file represents a page (for example, change_item.html or item_list.
html), then directly put it in the app's template directory. If the template is included
in another template (for example, similar_items.html), put it in the includes
subdirectory. Also, your templates directory can contain a directory called utils for
globally reusable snippets, such as pagination, language chooser, and others.

Getting Started with Django 1.8

6

How it works…
The whole file structure for a complete project in a virtual environment will look similar to
the following:

Chapter 1

7

See also
 f The Handling project dependencies with pip recipe

 f The Including external dependencies in your project recipe

 f The Configuring settings for development, testing, staging, and production
environments recipe

 f The Deploying on Apache with mod_wsgi recipe in Chapter 11, Testing and Deployment

 f The Creating and using the Fabric deployment script recipe in Chapter 11, Testing
and Deployment

Handling project dependencies with pip
The pip is the most convenient tool to install and manage Python packages. Besides installing
the packages one by one, it is possible to define a list of packages that you want to install and
pass it to the tool so that it deals with the list automatically.

You will need to have at least two different instances of your project: the development
environment, where you create new features, and the public website environment that is
usually called the production environment in a hosted server. Additionally, there might be
development environments for other developers. Also, you may have a testing and staging
environment in order to test the project locally and in a public website-like situation.

For good maintainability, you should be able to install the required Python modules for
development, testing, staging, and production environments. Some of the modules will be
shared and some of them will be specific. In this recipe, we will see how to organize the
project dependencies and manage them with pip.

Getting ready
Before using this recipe, you need to have pip installed and a virtual environment activated.
For more information on how to do this, read the Working with a virtual environment recipe.

How to do it…
Execute the following steps one by one to prepare pip requirements for your Django project:

1. Let's go to your Django project that you have under version control and create the
requirements directory with these text files: base.txt for shared modules, dev.
txt for development environment, test.txt for testing environment, staging.
txt for staging environment, and prod.txt for production.

Getting Started with Django 1.8

8

2. Edit base.txt and add the Python modules that are shared in all environments, line
by line, for example:
base.txt

Django==1.8

djangorestframework

-e git://github.com/omab/python-social-auth.
git@6b1e301c79#egg=python-social-auth

3. If the requirements of a specific environment are the same as in the base.txt, add the
line including the base.txt in the requirements file of that environment, for example:
prod.txt
-r base.txt

4. If there are specific requirements for an environment, add them as shown in the
following:
dev.txt
-r base.txt
django-debug-toolbar
selenium

5. Now, you can run the following command in order to install all the required
dependencies for development environment (or analogous command for other
environments), as follows:
(myproject_env)$ pip install -r requirements/dev.txt

How it works…
The preceding command downloads and installs all your project dependencies from
requirements/base.txt and requirements/dev.txt in your virtual environment. As
you can see, you can specify a version of the module that you need for the Django framework
and even directly install from a specific commit at the Git repository for the python-social-
auth in our example. In practice, installing from a specific commit would rarely be useful, for
instance, only when having third-party dependencies in your project with specific functionality
that are not supported in the recent versions anymore.

When you have many dependencies in your project, it is good practice to stick to specific
versions of the Python modules as you can then be sure that when you deploy your project
or give it to a new developer, the integrity doesn't get broken and all the modules function
without conflicts.

If you have already manually installed the project requirements with pip one by one, you
can generate the requirements/base.txt file using the following command:

(myproject_env)$ pip freeze > requirements/base.txt

Chapter 1

9

There's more…
If you want to keep things simple and are sure that, for all environments, you will be using the
same dependencies, you can use just one file for your requirements named requirements.
txt, by definition:

(myproject_env)$ pip freeze > requirements.txt

To install the modules in a new environment simply call the following command:

(myproject_env)$ pip install -r requirements.txt

If you need to install a Python library from other version control
system or local path, you can learn more about pip from the official
documentation at http://pip.readthedocs.org/en/
latest/reference/pip_install.html.

See also
 f The Working with a virtual environment recipe

 f The Including external dependencies in your project recipe

 f The Configuring settings for development, testing, staging, and production
environments recipe

Making your code compatible with both
Python 2.7 and Python 3

Since version 1.7, Django can be used with Python 2.7 and Python 3. In this recipe, we will
take a look at the operations to make your code compatible with both the Python versions.

Getting ready
When creating a new Django project or upgrading an old existing project, consider following
the rules given in this recipe.

http://pip.readthedocs.org/en/latest/reference/pip_install.html
http://pip.readthedocs.org/en/latest/reference/pip_install.html

Getting Started with Django 1.8

10

How to do it…
Making your code compatible with both Python versions consists of the following steps:

1. At the top of each module, add from __future__ import unicode_literals
and then use usual quotes without a u prefix for Unicode strings and a b prefix for
bytestrings.

2. To ensure that a value is bytestring, use the django.utils.encoding.smart_
bytes function. To ensure that a value is Unicode, use the django.utils.
encoding.smart_text or django.utils.encoding.force_text function.

3. For your models, instead of the __unicode__ method, use the __str__ method
and add the python_2_unicode_compatible decorator, as follows:
models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.utils.encoding import \
 python_2_unicode_compatible

@python_2_unicode_compatible
class NewsArticle(models.Model):
 title = models.CharField(_("Title"), max_length=200)
 content = models.TextField(_("Content"))

 def __str__(self):
 return self.title

 class Meta:
 verbose_name = _("News Article")
 verbose_name_plural = _("News Articles")

4. To iterate through dictionaries, use iteritems(), iterkeys(), and
itervalues() from django.utils.six. Take a look at the following:
from django.utils.six import iteritems
d = {"imported": 25, "skipped": 12, "deleted": 3}
for k, v in iteritems(d):
 print("{0}: {1}".format(k, v))

5. When you capture exceptions, use the as keyword, as follows:
try:
 article = NewsArticle.objects.get(slug="hello-world")
except NewsArticle.DoesNotExist as exc:

Chapter 1

11

 pass
except NewsArticle.MultipleObjectsReturned as exc:
 pass

6. To check the type of a value, use django.utils.six, as shown in the following:
from django.utils import six
isinstance(val, six.string_types) # previously basestring
isinstance(val, six.text_type) # previously unicode
isinstance(val, bytes) # previously str
isinstance(val, six.integer_types) # previously (int, long)

7. Instead of xrange, use range from django.utils.six.moves, as follows:
from django.utils.six.moves import range
for i in range(1, 11):
 print(i)

8. To check whether the current version is Python 2 or Python 3, you can use the
following conditions:
from django.utils import six
if six.PY2:
 print("This is Python 2")
if six.PY3:
 print("This is Python 3")

How it works…
All strings in Django projects should be considered as Unicode strings. Only the input of
HttpRequest and output of HttpResponse is usually in the UTF-8 encoded bytestring.

Many functions and methods in Python 3 now return the iterators instead of lists, which make
the language more efficient. To make the code compatible with both the Python versions, you
can use the six library that is bundled in Django.

Read more about writing compatible code in the official Django documentation at
https://docs.djangoproject.com/en/1.8/topics/python3/.

Downloading the example code
You can download the example code files for all Packt books that you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register in order to have the files e-mailed directly to you.

https://docs.djangoproject.com/en/1.8/topics/python3/
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Getting Started with Django 1.8

12

Including external dependencies in your
project

Sometimes, it is better to include external dependencies in your project. This ensures that
whenever a developer upgrades third-party modules, all the other developers will receive
the upgraded version in the next update from the version control system (Git, Subversion,
or others).

Also, it is better to have external dependencies included in your project when the libraries are
taken from unofficial sources, that is, somewhere other than Python Package Index (PyPI), or
different version control systems.

Getting ready
Start with a virtual environment with a Django project in it.

How to do it…
Execute the following steps one by one:

1. If you haven't done this already, create an externals directory under your Django
project django-myproject directory. Then, create the libs and apps directories
under it.

The libs directory is for the Python modules that are required by your project, for
example, boto, Requests, Twython, Whoosh, and so on. The apps directory is for
third-party Django apps, for example, django-cms, django-haystack, django-storages,
and so on.

I highly recommend that you create the README.txt files in
the libs and apps directories, where you mention what each
module is for, what the used version or revision is, and where it is
taken from.

Chapter 1

13

2. The directory structure should look something similar to the following:

3. The next step is to put the external libraries and apps under the Python path so that
they are recognized as if they were installed. This can be done by adding the following
code in the settings:
settings.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import os
import sys

BASE_DIR = os.path.abspath(os.path.join(
 os.path.dirname(__file__), ".."
))

EXTERNAL_LIBS_PATH = os.path.join(
 BASE_DIR, "externals", "libs"
)
EXTERNAL_APPS_PATH = os.path.join(
 BASE_DIR, "externals", "apps"
)
sys.path = ["", EXTERNAL_LIBS_PATH, EXTERNAL_APPS_PATH] + \
 sys.path

How it works…
A module is meant to be under the Python path if you can run Python and import that module.
One of the ways to put a module under the Python path is to modify the sys.path variable
before importing a module that is in an unusual location. The value of sys.path is a list of
directories starting with an empty string for the current directory, followed by the directories in
the virtual environment, and finally the globally shared directories of the Python installation.
You can see the value of sys.path in the Python shell, as follows:

(myproject_env)$ python

>>> import sys

>>> sys.path

Getting Started with Django 1.8

14

When trying to import a module, Python searches for the module in this list and returns the
first result that is found.

Therefore, we first define the BASE_DIR variable, which is the absolute path to one level
higher than the settings.py file. Then, we define the EXTERNAL_LIBS_PATH and
EXTERNAL_APPS_PATH variables, which are relative to BASE_DIR. Lastly, we modify the
sys.path property, adding new paths to the beginning of the list. Note that we also add an
empty string as the first path to search, which means that the current directory of any module
should always be checked first before checking other Python paths.

This way of including external libraries doesn't work cross-platform with the
Python packages that have C language bindings, for example, lxml. For
such dependencies, I would recommend using the pip requirements that
were introduced in the Handling project dependencies with pip recipe.

See also
 f The Creating a project file structure recipe

 f The Handling project dependencies with pip recipe

 f The Defining relative paths in the settings recipe

 f The Using the Django shell recipe in Chapter 10, Bells and Whistles

Configuring settings for development,
testing, staging, and production
environments

As noted earlier, you will be creating new features in the development environment, test
them in the testing environment, then put the website to a staging server to let other people
to try the new features, and lastly, the website will be deployed to the production server for
public access. Each of these environments can have specific settings and you will see how to
organize them in this recipe.

Getting ready
In a Django project, we'll create settings for each environment: development, testing, staging,
and production.

Chapter 1

15

How to do it…
Follow these steps to configure project settings:

1. In myproject directory, create a conf Python module with the following files:
__init__.py, base.py for shared settings, dev.py for development settings,
test.py for testing settings, staging.py for staging settings, and prod.py for
production settings.

2. Put all your shared settings in conf/base.py.

3. If the settings of an environment are the same as the shared settings, then just
import everything from base.py there, as follows:
myproject/conf/prod.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from .base import *

4. Apply the settings that you want to attach or overwrite for your specific environment in
the other files, for example, the development environment settings should go to dev.
py as shown in the following:
myproject/conf/dev.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from .base import *
EMAIL_BACKEND = \
 "django.core.mail.backends.console.EmailBackend"

5. At the beginning of the myproject/settings.py, import the configurations from
one of the environment settings and then additionally attach specific or sensitive
configurations such as DATABASES or API keys that shouldn't be under version
control, as follows:
myproject/settings.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from .conf.dev import *

DATABASES = {
 "default": {
 "ENGINE": "django.db.backends.mysql",
 "NAME": "myproject",
 "USER": "root",
 "PASSWORD": "root",
 }
}

Getting Started with Django 1.8

16

6. Create a settings.py.sample file that should contain all the sensitive settings
that are necessary for a project to run; however, with empty values set.

How it works…
By default, the Django management commands use the settings from myproject/
settings.py. Using the method that is defined in this recipe, we can keep all the required
non-sensitive settings for all environments under version control in the conf directory.
Whereas, the settings.py file itself would be ignored by version control and will only
contain the settings that are necessary for the current development, testing, staging, or
production environments.

See also
 f The Creating and including local settings recipe

 f The Defining relative paths in the settings recipe

 f The Setting the Subversion ignore property recipe

 f The Creating a Git ignore file recipe

Defining relative paths in the settings
Django requires you to define different file paths in the settings, such as the root of your
media, the root of your static files, the path to templates, the path to translation files, and so
on. For each developer of your project, the paths may differ as the virtual environment can
be set up anywhere and the user might be working on Mac OS X, Linux, or Windows. Anyway,
there is a way to define these paths that are relative to your Django project directory.

Getting ready
To start with, open settings.py.

How to do it…
Modify your path-related settings accordingly instead of hardcoding the paths to your local
directories, as follows:

settings.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import os

BASE_DIR = os.path.abspath(

Chapter 1

17

 os.path.join(os.path.dirname(__file__), "..")
)

MEDIA_ROOT = os.path.join(BASE_DIR, "myproject", "media")

STATIC_ROOT = os.path.join(BASE_DIR, "myproject", "static")

STATICFILES_DIRS = (
 os.path.join(BASE_DIR, "myproject", "site_static"),
)

TEMPLATE_DIRS = (
 os.path.join(BASE_DIR, "myproject", "templates"),
)

LOCALE_PATHS = (
 os.path.join(BASE_DIR, "locale"),
)

FILE_UPLOAD_TEMP_DIR = os.path.join(
 BASE_DIR, "myproject", "tmp"
)

How it works…
At first, we define BASE_DIR, which is an absolute path to one level higher than the
settings.py file. Then, we set all the paths relative to BASE_DIR using the os.path.join
function.

See also
 f The Including external dependencies in your project recipe

Creating and including local settings
Configuration doesn't necessarily need to be complex. If you want to keep things simple,
you can work with two settings files: settings.py for common configuration and
local_settings.py for sensitive settings that shouldn't be under version control.

Getting Started with Django 1.8

18

Getting ready
Most of the settings for different environments will be shared and saved in version control.
However, there will be some settings that are specific to the environment of the project instance,
for example, database or e-mail settings. We will put them in the local_settings.py file.

How to do it…
To use local settings in your project, perform the following steps:

1. At the end of settings.py, add a version of local_settings.py that claims to
be in the same directory, as follows:
settings.py
… put this at the end of the file …
try:
 execfile(os.path.join(
 os.path.dirname(__file__), "local_settings.py"
))
except IOError:
 pass

2. Create local_settings.py and put your environment-specific settings there, as
shown in the following:
local_settings.py
DATABASES = {
 "default": {
 "ENGINE": "django.db.backends.mysql",
 "NAME": "myproject",
 "USER": "root",
 "PASSWORD": "root",
 }
}

EMAIL_BACKEND = \
 "django.core.mail.backends.console.EmailBackend"

INSTALLED_APPS += (
 "debug_toolbar",
)

Chapter 1

19

How it works…
As you can see, the local settings are not normally imported, they are rather included and
executed in the settings.py file itself. This allows you to not only create or overwrite the
existing settings, but also adjust the tuples or lists from the settings.py file. For example,
we add debug_toolbar to INSTALLED_APPS here in order to be able to debug the SQL
queries, template context variables, and so on.

See also
 f The Creating a project file structure recipe

 f The Toggling the Debug Toolbar recipe in Chapter 10, Bells and Whistles

Setting up STATIC_URL dynamically for
Subversion users

If you set STATIC_URL to a static value, then each time you update a CSS file, JavaScript file,
or image, you will need to clear the browser cache in order to see the changes. There is a trick
to work around clearing the browser's cache. It is to have the revision number of the version
control system shown in STATIC_URL. Whenever the code is updated, the visitor's browser
will force the loading of all-new static files.

This recipe shows how to put a revision number in STATIC_URL for subversion users.

Getting ready
Make sure that your project is under the subversion version control and you have BASE_DIR
defined in your settings, as shown in the Defining relative paths in the settings recipe.

Then, create the utils module in your Django project, and also create a file called misc.py
there.

How to do it…
The procedure to put the revision number in the STATIC_URL setting consists of the following
two steps:

1. Insert the following content:
utils/misc.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals

Getting Started with Django 1.8

20

import subprocess

def get_media_svn_revision(absolute_path):
 repo_dir = absolute_path
 svn_revision = subprocess.Popen(
 'svn info | grep "Revision" | awk \'{print $2}\'',
 stdout=subprocess.PIPE, stderr=subprocess.PIPE,
 shell=True, cwd=repo_dir, universal_newlines=True)
 rev = svn_revision.communicate()[0].partition('\n')[0]
 return rev

2. Then, modify the settings.py file and add the following lines:
settings.py
… somewhere after BASE_DIR definition …
from utils.misc import get_media_svn_revision
STATIC_URL = "/static/%s/" % get_media_svn_revision(BASE_DIR)

How it works…
The get_media_svn_revision() function takes the absolute_path directory as a
parameter and calls the svn info shell command in that directory to find out the current
revision. We pass BASE_DIR to the function as we are sure that it is under version control.
Then, the revision is parsed, returned, and included in the STATIC_URL definition.

See also
 f The Setting up STATIC_URL dynamically for Git users recipe

 f The Setting the Subversion ignore property recipe

Setting up STATIC_URL dynamically for Git
users

If you don't want to refresh the browser cache each time you change your CSS and JavaScript
files, or while styling images, you need to set STATIC_URL dynamically with a varying path
component. With the dynamically changing URL, whenever the code is updated, the visitor's
browser will force loading of all-new uncached static files. In this recipe, we will set a dynamic
path for STATIC_URL when you use the Git version control system.

Getting ready
Make sure that your project is under the Git version control and you have BASE_DIR defined
in your settings, as shown in the Defining relative paths in the settings recipe.

Chapter 1

21

If you haven't done it yet, create the utils module in your Django project. Also, create a
misc.py file there.

How to do it…
The procedure to put the Git timestamp in the STATIC_URL setting consists of the following
two steps:

1. Add the following content to the misc.py file placed in utils/:
utils/misc.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import subprocess
from datetime import datetime

def get_git_changeset(absolute_path):
 repo_dir = absolute_path
 git_show = subprocess.Popen(
 'git show --pretty=format:%ct --quiet HEAD',
 stdout=subprocess.PIPE, stderr=subprocess.PIPE,
 shell=True, cwd=repo_dir, universal_newlines=True,
)
 timestamp = git_show.communicate()[0].partition('\n')[0]
 try:
 timestamp = \
 datetime.utcfromtimestamp(int(timestamp))
 except ValueError:
 return ""
 changeset = timestamp.strftime('%Y%m%d%H%M%S')
 return changeset

2. Then, import the newly created get_git_changeset() function in the settings and
use it for the STATIC_URL path, as follows:
settings.py
… somewhere after BASE_DIR definition …
from utils.misc import get_git_changeset
STATIC_URL = "/static/%s/" % get_git_changeset(BASE_DIR)

Getting Started with Django 1.8

22

How it works…
The get_git_changeset() function takes the absolute_path directory as a parameter
and calls the git show shell command with the parameters to show the Unix timestamp of
the HEAD revision in the directory. As stated in the previous recipe, we pass BASE_DIR to the
function as we are sure that it is under version control. The timestamp is parsed; converted to
a string consisting of year, month, day, hour, minutes, and seconds; returned; and included in
the definition of STATIC_URL.

See also
 f The Setting up STATIC_URL dynamically for Subversion users recipe

 f The Creating the Git ignore file recipe

Setting UTF-8 as the default encoding for
MySQL configuration

MySQL is the most popular open source database. In this recipe, I will tell you how to set
UTF-8 as the default encoding for it. Note that if you don't set this encoding in the database
configuration, you might get into a situation where LATIN1 is used by default with your UTF-8
encoded data. This will lead to database errors whenever symbols such as € are used. Also,
this recipe will save you from the difficulties of converting the database data from LATIN1 to
UTF-8, especially when you have some tables encoded in LATIN1 and others in UTF-8.

Getting ready
Make sure that the MySQL database management system and the MySQLdb Python module
are installed and you are using the MySQL engine in your project's settings.

How to do it…
Open the /etc/mysql/my.cnf MySQL configuration file in your favorite editor and ensure
that the following settings are set in the sections: [client], [mysql], and [mysqld],
as follows:

/etc/mysql/my.cnf
[client]
default-character-set = utf8

[mysql]

Chapter 1

23

default-character-set = utf8

[mysqld]
collation-server = utf8_unicode_ci
init-connect = 'SET NAMES utf8'
character-set-server = utf8

If any of the sections don't exist, create them in the file. Then, restart MySQL in your
command-line tool, as follows:

$ /etc/init.d/mysql restart

How it works…
Now, whenever you create a new MySQL database, the databases and all their tables will be
set in UTF-8 encoding by default.

Don't forget to set this in all computers where your project is developed or published.

Setting the Subversion ignore property
If you are using Subversion for version control, you will need to keep most of the projects in
the repository; however, some files and directories should only stay locally and not be tracked.

Getting ready
Make sure that your Django project is under the Subversion version control.

How to do it…
Open your command-line tool and set your default editor as nano, vi, vim or any other that
you prefer, as follows:

$ export EDITOR=nano

If you don't have a preference, I would recommend using nano,
which is very intuitive and a simple text editor for the terminal.

Then, go to your project directory and type the following command:

$ svn propedit svn:ignore myproject

Getting Started with Django 1.8

24

This will open a temporary file in the editor, where you need to put the following file and
directory patterns for Subversion to ignore:

Project files and directories
local_settings.py
static
media
tmp

Byte-compiled / optimized / DLL files
__pycache__
*.py[cod]
*$py.class

C extensions
*.so

PyInstaller
*.manifest
*.spec

Installer logs
pip-log.txt
pip-delete-this-directory.txt

Unit test / coverage reports
htmlcov
.tox
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover

Translations
*.pot

Django stuff:
*.log

PyBuilder
target

Chapter 1

25

Save the file and exit the editor. For every other Python package in your project, you will
need to ignore several files and directories too. Just go to a directory and type the following
command:

$ svn propedit svn:ignore .

Then, put this in the temporary file, save it, and close the editor, as follows:

Byte-compiled / optimized / DLL files
__pycache__
*.py[cod]
*$py.class

C extensions
*.so

PyInstaller
*.manifest
*.spec

Installer logs
pip-log.txt
pip-delete-this-directory.txt

Unit test / coverage reports
htmlcov
.tox
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover

Translations
*.pot

Django stuff:
*.log

PyBuilder
target

Getting Started with Django 1.8

26

How it works…
In Subversion, you need to define the ignore properties for each directory of your project.
Mainly, we don't want to track the Python-compiled files, for instance, *.pyc. We also want to
ignore local_settings.py that is specific for each environment, static that replicates
collected static files from different apps, media that contains uploaded files and changes
together with the database, and tmp that is temporarily used for file uploads.

If you keep all your settings in a conf Python package
as described in the Configuring settings for development,
testing, staging, and production environments recipe, add
settings.py to the ignored files too.

See also
 f The Creating and including local settings recipe

 f The Creating the Git ignore file recipe

Creating the Git ignore file
If you are using Git—the most popular distributed version control system—ignoring some files
and folders from version control is much easier than with Subversion.

Getting ready
Make sure that your Django project is under the Git version control.

How to do it…
Using your favorite text editor, create a .gitignore file at the root of your Django project and
put these files and directories there, as follows:

.gitignore
Project files and directories
/myproject/local_settings.py
/myproject/static/
/myproject/tmp/
/myproject/media/

Byte-compiled / optimized / DLL files
__pycache__/

Chapter 1

27

*.py[cod]
*$py.class

C extensions
*.so

PyInstaller
*.manifest
*.spec

Installer logs
pip-log.txt
pip-delete-this-directory.txt

Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover

Translations
*.pot

Django stuff:
*.log

Sphinx documentation
docs/_build/

PyBuilder
target/

How it works…
The .gitignore file specifies the paths that should intentionally be untracked by the
Git version control system. The .gitignore file that we created in this recipe will ignore
the Python-compiled files, local settings, collected static files, temporary directory for
uploads, and media directory with the uploaded files.

Getting Started with Django 1.8

28

If you keep all your settings in a conf Python package as described in
the Configuring settings for development, testing, staging, and production
environments recipe, add settings.py to the ignored files too.

See also
 f The Setting the Subversion ignore property recipe

Deleting Python-compiled files
When you run your project for the first time, Python compiles all your *.py code in
bytecode-compiled files, *.pyc, which are used later for execution.

Normally, when you change the *.py files, *.pyc is recompiled; however, sometimes
when switching branches or moving the directories, you need to clean up the compiled
files manually.

Getting ready
Use your favorite editor and edit or create a .bash_profile file in your home directory.

How to do it…
Add this alias at the end of .bash_profile, as follows:

~/.bash_profile
alias delpyc="find . -name \"*.pyc\" -delete"

Now, to clean the Python-compiled files, go to your project directory and type the following
command in the command line:

$ delpyc

How it works…
At first, we create a Unix alias that searches for the *.pyc files and deletes them in the
current directory and its children. The .bash_profile file is executed when you start
a new session in the command-line tool.

Chapter 1

29

See also
 f The Setting the Subversion ignore property recipe

 f The Creating the Git ignore file recipe

Respecting the import order in Python files
When you create the Python modules, it is good practice to stay consistent with the structure
in the files. This makes it easier for other developers and yourself to read the code. This recipe
will show you how to structure your imports.

Getting ready
Create a virtual environment and a Django project in it.

How to do it…
Use the following structure in a Python file that you create. Just after the first line that defines
UTF-8 as the default Python file encoding, put the imports categorized in sections, as follows:

-*- coding: UTF-8 -*-
System libraries
from __future__ import unicode_literals
import os
import re
from datetime import datetime

Third-party libraries
import boto
from PIL import Image

Django modules
from django.db import models
from django.conf import settings

Django apps
from cms.models import Page

Current-app modules
from . import app_settings

Getting Started with Django 1.8

30

How it works…
We have five main categories for the imports, as follows:

 f System libraries for packages in the default installation of Python

 f Third-party libraries for the additionally installed Python packages

 f Django modules for different modules from the Django framework

 f Django apps for third-party and local apps

 f Current-app modules for relative imports from the current app

There's more…
When coding in Python and Django, use the official style guide for Python code, PEP 8. You
can find it at https://www.python.org/dev/peps/pep-0008/.

See also
 f The Handling project dependencies with pip recipe

 f The Including external dependencies in your project recipe

Creating app configuration
When developing a website with Django, you create one module for the project itself and
then, multiple Python modules called applications or apps that combine the different
modular functionalities and usually consist of models, views, forms, URL configurations,
management commands, migrations, signals, tests, and so on. The Django framework has
application registry, where all apps and models are collected and later used for configuration
and introspection. Since Django 1.7, meta information about apps can be saved in the
AppConfig instance for each used app. Let's create a sample magazine app to take a look
at how to use the app configuration there.

Getting ready
Either create your Django app manually or using this command in your virtual environment
(learn how to use virtual environments in the Working with a virtual environment recipe),
as follows:

(myproject_env)$ django-admin.py startapp magazine

https://www.python.org/dev/peps/pep-0008/

Chapter 1

31

Add some NewsArticle model to models.py, create administration for the model
in admin.py, and put "magazine" in INSTALLED_APPS in the settings. If you are
not yet familiar with these tasks, study the official Django tutorial at https://docs.
djangoproject.com/en/1.8/intro/tutorial01/.

How to do it…
Follow these steps to create and use the app configuration:

1. First of all, create the apps.py file and put this content in it, as follows:
magazine/apps.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.apps import AppConfig
from django.utils.translation import ugettext_lazy as _

class MagazineAppConfig(AppConfig):
 name = "magazine"
 verbose_name = _("Magazine")

 def ready(self):
 from . import signals

2. Then, edit the __init__.py file of the app and put the following content:
magazine/__init__.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
default_app_config = "magazine.apps.MagazineAppConfig"

3. Lastly, let's create a signals.py file and add some signal handlers there:
magazine/signals.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db.models.signals import post_save, post_delete
from django.dispatch import receiver
from django.conf import settings
from .models import NewsArticle

@receiver(post_save, sender=NewsArticle)
def news_save_handler(sender, **kwargs):
 if settings.DEBUG:
 print("%s saved." % kwargs['instance'])

@receiver(post_delete, sender=NewsArticle)

https://docs.djangoproject.com/en/1.8/intro/tutorial01/
https://docs.djangoproject.com/en/1.8/intro/tutorial01/

Getting Started with Django 1.8

32

def news_delete_handler(sender, **kwargs):
 if settings.DEBUG:
 print("%s deleted." % kwargs['instance'])

How it works…
When you run an HTTP server or invoke a management command, django.setup() is
called. It loads the settings, sets up logging, and initializes app registry. The app registry is
initialized in three steps, as shown in the following:

 f Django imports the configurations for each item from INSTALLED_APPS in
the settings. These items can point to app names or configuration directly, for
example,"magazine" or "magazine.apps.NewsAppConfig".

 f Django tries to import models.py from each app in INSTALLED_APPS and collect
all the models.

 f Finally, Django runs the ready() method for each app configuration. This method
is a correct place to register signal handlers, if you have any. The ready() method
is optional.

 f In our example, the MagazineAppConfig class sets the configuration for the
magazine app. The name parameter defines the name of the current app. The
verbose_name parameter is used in the Django model administration, where
models are presented and grouped by apps. The ready() method imports and
activates the signal handlers that, when in DEBUG mode, print in the terminal
that a NewsArticle was saved or deleted.

There is more…
After calling django.setup(), you can load the app configurations and models from the
registry as follows:

>>> from django.apps import apps as django_apps

>>> magazine_app_config = django_apps.get_app_config("magazine")

>>> magazine_app_config

<MagazineAppConfig: magazine>

>>> magazine_app_config.models_module

<module 'magazine.models' from 'magazine/models.pyc'>

NewsArticle = django_apps.get_model("magazine", "NewsArticle")

You can read more about app configuration in the official Django documentation at
https://docs.djangoproject.com/en/1.8/ref/applications/

https://docs.djangoproject.com/en/1.8/ref/applications/

Chapter 1

33

See also
 f The Working with a virtual environment recipe

 f The Defining overwritable app settings recipe

 f Chapter 6, Model Administration

Defining overwritable app settings
This recipe will show you how to define settings for your app that can be then overwritten
in your project's settings.py or local_settings.py file. This is useful especially for
reusable apps.

Getting ready
Either create your Django app manually or using the following command:

(myproject_env)$ django-admin.py startapp myapp1

How to do it…
If you just have one or two settings, you can use the following pattern in your models.py
file. If the settings are extensive and you want to have them organized better, create an
app_settings.py file in the app and put the settings in the following way:

models.py or app_settings.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.conf import settings
from django.utils.translation import ugettext_lazy as _

SETTING1 = getattr(settings, "MYAPP1_SETTING1", u"default value")
MEANING_OF_LIFE = getattr(settings, "MYAPP1_MEANING_OF_LIFE", 42)
STATUS_CHOICES = getattr(settings, "MYAPP1_STATUS_CHOICES", (
 ("draft", _("Draft")),
 ("published", _("Published")),
 ("not_listed", _("Not Listed")),
))

Getting Started with Django 1.8

34

Then, you can use the app settings in models.py, as follows:

models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _

from .app_settings import STATUS_CHOICES

class NewsArticle(models.Model):
 # …
 status = models.CharField(_("Status"),
 max_length=20, choices=STATUS_CHOICES
)

If you want to overwrite the STATUS_CHOICES setting for just one project, you simply open
settings.py and add the following:

settings.py
…
from django.utils.translation import ugettext_lazy as _
MYAPP1_STATUS_CHOICES = (
 ("imported", _("Imported")),
 ("draft", _("Draft")),
 ("published", _("Published")),
 ("not_listed", _("Not Listed")),
 ("expired", _("Expired")),
)

How it works…
The getattr(object, attribute_name[, default_value]) Python function tries
to get the attribute_name attribute from object and returns default_value if it is not
found. In this case, different settings are tried in order to be taken from the Django project
settings module, and if they are not found, the default values are assigned.

35

2
Database Structure

In this chapter, we will cover the following topics:

 f Using model mixins

 f Creating a model mixin with URL-related methods

 f Creating a model mixin to handle creation and modification dates

 f Creating a model mixin to take care of meta tags

 f Creating a model mixin to handle generic relations

 f Handling multilingual fields

 f Using migrations

 f Switching from South migrations to Django migrations

 f Changing a foreign key to the many-to-many field

Introduction
When you start a new app, the first thing to do is create the models that represent your
database structure. We are assuming that you have previously created Django apps or at
least, you have read and understood the official Django tutorial. In this chapter, we will see a
few interesting techniques that make your database structure consistent throughout different
apps in your project. Then, we will see how to create custom model fields in order to handle
internationalization of your data in the database. At the end of the chapter, we will see how to
use migrations to change your database structure in the process of development.

Database Structure

36

Using model mixins
In object-oriented languages, such as Python, a mixin class can be viewed as an interface
with implemented features. When a model extends a mixin, it implements the interface and
includes all its fields, properties, and methods. Mixins in Django models can be used when
you want to reuse the generic functionalities in different models multiple times.

Getting ready
First, you will need to create reusable mixins. Some typical examples of mixins are given later
in this chapter. A good place to keep your model mixins is in the utils module.

If you create a reusable app that you will share with others,
keep the model mixins in the reusable app, for example, in
the base.py file.

How to do it…
Open the models.py file of any Django app, where you want to use the mixins and type the
following code:

demo_app/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.utils.encoding import python_2_unicode_compatible
from utils.models import UrlMixin
from utils.models import CreationModificationMixin
from utils.models import MetaTagsMixin

@python_2_unicode_compatible
class Idea(UrlMixin, CreationModificationMixin, MetaTagsMixin):
 title = models.CharField(_("Title"), max_length=200)
 content = models.TextField(_("Content"))

 class Meta:
 verbose_name = _("Idea")
 verbose_name_plural = _("Ideas")

 def __str__(self):
 return self.title

Chapter 2

37

How it works…
Django model inheritance supports three types of inheritance: abstract base classes,
multi-table inheritance, and proxy models. Model mixins are abstract model classes
with specified fields, properties, and methods. When you create a model such as
Idea, as shown in the preceding example, it inherits all the features from UrlMixin,
CreationModificationMixin, and MetaTagsMixin. All the fields of the abstract classes
are saved in the same database table as the fields of the extending model. In the following
recipes, you will learn how to define your model mixins.

Note that we are using the @python_2_unicode_compatible decorator for our Idea model.
As you might remember from the Making your code compatible with both Python 2.7 and
Python 3 recipe in Chapter 1, Getting Started with Django 1.8, it's purpose is to make the
__str__() method compatible with Unicode for both the following Python versions: 2.7 and 3.

There's more…
To learn more about the different types of model inheritance, refer to the official Django
documentation available at https://docs.djangoproject.com/en/1.8/topics/db/
models/#model-inheritance.

See also
 f The Making your code compatible with both Python 2.7 and Python 3 recipe in

Chapter 1, Getting Started with Django 1.8

 f The Creating a model mixin with URL-related methods recipe

 f The Creating a model mixin to handle creation and modification dates recipe

 f The Creating a model mixin to take care of meta tags recipe

Creating a model mixin with URL-related
methods

For every model that has its own page, it is good practice to define the get_absolute_
url() method. This method can be used in templates and also in the Django admin site to
preview the saved object. However, get_absolute_url() is ambiguous as it returns the
URL path instead of the full URL. In this recipe, we will see how to create a model mixin that
allows you to define either the URL path or the full URL by default, generate the other out of
the box, and take care of the get_absolute_url() method that is being set.

https://docs.djangoproject.com/en/1.8/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/1.8/topics/db/models/#model-inheritance

Database Structure

38

Getting ready
If you haven't done it yet, create the utils package to save your mixins. Then, create the
models.py file in the utils package (alternatively, if you create a reusable app, put the
mixins in the base.py file in your app).

How to do it…
Execute the following steps one by one:

1. Add the following content to the models.py file of your utils package:
utils/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import urlparse
from django.db import models
from django.contrib.sites.models import Site
from django.conf import settings

class UrlMixin(models.Model):
 """
 A replacement for get_absolute_url()
 Models extending this mixin should have
 either get_url or get_url_path implemented.
 """
 class Meta:
 abstract = True

 def get_url(self):
 if hasattr(self.get_url_path, "dont_recurse"):
 raise NotImplementedError
 try:
 path = self.get_url_path()
 except NotImplementedError:
 raise
 website_url = getattr(
 settings, "DEFAULT_WEBSITE_URL",
 "http://127.0.0.1:8000"
)
 return website_url + path
 get_url.dont_recurse = True

 def get_url_path(self):

Chapter 2

39

 if hasattr(self.get_url, "dont_recurse"):
 raise NotImplementedError
 try:
 url = self.get_url()
 except NotImplementedError:
 raise
 bits = urlparse.urlparse(url)
 return urlparse.urlunparse(("", "") + bits[2:])
 get_url_path.dont_recurse = True

 def get_absolute_url(self):
 return self.get_url_path()

2. To use the mixin in your app, import it from the utils package, inherit the mixin in
your model class, and define the get_url_path() method as follows:
demo_app/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.core.urlresolvers import reverse
from django.utils.encoding import \
 python_2_unicode_compatible

from utils.models import UrlMixin

@python_2_unicode_compatible
class Idea(UrlMixin):
 title = models.CharField(_("Title"), max_length=200)

 # …

 get_url_path(self):
 return reverse("idea_details", kwargs={
 "idea_id": str(self.pk),
 })

3. If you check this code in the staging or production environment or run a local server
with a different IP or port than the defaults, set DEFAULT_WEBSITE_URL in your
local settings (without the trailing slash), as follows:
settings.py
…
DEFAULT_WEBSITE_URL = "http://www.example.com"

Database Structure

40

How it works…
The UrlMixin class is an abstract model that has three methods: get_url(), get_url_
path(), and get_absolute_url(). The get_url() or get_url_path() methods are
expected to be overwritten in the extended model class, for example, Idea. You can define
get_url(), which is the full URL of the object, and then get_url_path() will strip it to
the path. You can also define get_url_path(), which is the absolute path of the object,
and then get_url() will prepend the website URL to the beginning of the path. The get_
absolute_url() method will mimic the get_url_path() method.

The rule of thumb is to always overwrite the get_url_
path() method.

In the templates, use {{ idea.title }}</
a> when you need a link of an object in the same website. Use <a href="{{ idea.get_
url }}">{{ idea.title }} for the links in e-mails, RSS feeds, or APIs.

The default get_absolute_url() method will be used in the Django model administration
for the View on site functionality and might also be used by some third-party Django apps.

See also
 f The Using model mixins recipe

 f The Creating a model mixin to handle creation and modification dates recipe

 f The Creating a model mixin to take care of meta tags recipe

 f The Creating a model mixin to handle generic relations recipe

Creating a model mixin to handle creation
and modification dates

It is a common behavior to have timestamps in your models for the creation and modification
of your model instances. In this recipe, we will see how to create a simple model mixin that
saves the creation and modification dates and times for your model. Using such a mixin will
ensure that all the models use the same field names for the timestamps and have the
same behavior.

Getting ready
If you haven't done this yet, create the utils package to save your mixins. Then, create the
models.py file in the utils package.

Chapter 2

41

How to do it…
Open the models.py file of your utils package and insert the following content there:

utils/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.utils.timezone import now as timezone_now

class CreationModificationDateMixin(models.Model):
 """
 Abstract base class with a creation and modification
 date and time
 """

 created = models.DateTimeField(
 _("creation date and time"),
 editable=False,
)

 modified = models.DateTimeField(
 _("modification date and time"),
 null=True,
 editable=False,
)

 def save(self, *args, **kwargs):
 if not self.pk:
 self.created = timezone_now()
 else:
 # To ensure that we have a creation data always,
 # we add this one
 if not self.created:
 self.created = timezone_now()

 self.modified = timezone_now()

 super(CreationModificationDateMixin, self).\
 save(*args, **kwargs)
 save.alters_data = True

 class Meta:
 abstract = True

Database Structure

42

How it works…
The CreationModificationDateMixin class is an abstract model, which means that
extending model classes will create all the fields in the same database table, that is, there will
be no one-to-one relationships that make the table difficult to handle. This mixin has two date-
time fields and the save() method that will be called when saving the extended model. The
save() method checks whether the model has no primary key, which is the case of a new
not-yet-saved instance. In this case, it sets the creation date to the current date and time. If
the primary key exists, the modification date is set to the current date and time.

Alternatively, instead of the save() method, you can use the auto_now_add and auto_
now attributes for the created and modified fields, which will add creation and modification
timestamps automatically.

See also
 f The Using model mixins recipe

 f The Creating a model mixin to take care of meta tags recipe

 f The Creating a model mixin to handle generic relations recipe

Creating a model mixin to take care of meta
tags

If you want to optimize your site for search engines, you need to not only set the semantic
markup for each page but also the appropriate meta tags. For maximum flexibility, you need
to have a way to define specific meta tags for each object, which has its own page on your
website. In this recipe, we will see how to create a model mixin for the fields and methods
related to the meta tags.

Getting ready
As seen in the previous recipes, make sure that you have the utils package for your mixins.
Open the models.py file from this package in your favorite editor.

How to do it…
Put the following content in the models.py file:

utils/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models

Chapter 2

43

from django.utils.translation import ugettext_lazy as _
from django.template.defaultfilters import escape
from django.utils.safestring import mark_safe

class MetaTagsMixin(models.Model):
 """
 Abstract base class for meta tags in the <head> section
 """
 meta_keywords = models.CharField(
 _("Keywords"),
 max_length=255,
 blank=True,
 help_text=_("Separate keywords by comma."),
)
 meta_description = models.CharField(
 _("Description"),
 max_length=255,
 blank=True,
)
 meta_author = models.CharField(
 _("Author"),
 max_length=255,
 blank=True,
)
 meta_copyright = models.CharField(
 _("Copyright"),
 max_length=255,
 blank=True,
)

 class Meta:
 abstract = True

 def get_meta_keywords(self):
 tag = ""
 if self.meta_keywords:
 tag = '<meta name="keywords" content="%s" />\n' %\
 escape(self.meta_keywords)
 return mark_safe(tag)

 def get_meta_description(self):
 tag = ""
 if self.meta_description:
 tag = '<meta name="description" content="%s" />\n' %\

Database Structure

44

 escape(self.meta_description)
 return mark_safe(tag)

 def get_meta_author(self):
 tag = ""
 if self.meta_author:
 tag = '<meta name="author" content="%s" />\n' %\
 escape(self.meta_author)
 return mark_safe(tag)

 def get_meta_copyright(self):
 tag = ""
 if self.meta_copyright:
 tag = '<meta name="copyright" content="%s" />\n' %\
 escape(self.meta_copyright)
 return mark_safe(tag)

 def get_meta_tags(self):
 return mark_safe("".join((
 self.get_meta_keywords(),
 self.get_meta_description(),
 self.get_meta_author(),
 self.get_meta_copyright(),
)))

How it works…
This mixin adds four fields to the model that extends from it: meta_keywords, meta_
description, meta_author, and meta_copyright. The methods to render the meta
tags in HTML are also added.

If you use this mixin in a model such as Idea, which is shown in the first recipe of this
chapter, then you can put the following in the HEAD section of your detail page template
to render all the meta tags:

{{ idea.get_meta_tags }}

You can also render a specific meta tag using the following line:

{{ idea.get_meta_description }}

As you may have noticed from the code snippet, the rendered meta tags are marked as safe,
that is, they are not escaped and we don't need to use the safe template filter. Only the
values that come from the database are escaped in order to guarantee that the final HTML
is well-formed.

Chapter 2

45

See also
 f The Using model mixins recipe

 f The Creating a model mixin to handle creation and modification dates recipe

 f The Creating a model mixin to handle generic relations recipe

Creating a model mixin to handle generic
relations

Besides normal database relationships such as a foreign-key relationship or many-to-many
relationship, Django has a mechanism to relate a model to an instance of any other model.
This concept is called generic relations. For each generic relation, there is a content type of
the related model that is saved as well as the ID of the instance of this model.

In this recipe, we will see how to generalize the creation of generic relations in the model mixins.

Getting ready
For this recipe to work, you need to have the contenttypes app installed. It should be in the
INSTALLED_APPS directory by default, as shown in the following:

settings.py
INSTALLED_APPS = (
 # …
 "django.contrib.contenttypes",
)

Again, make sure that you have the utils package for your model mixins already created.

How to do it…
1. Open the models.py file in the utils package in a text editor and insert the

following content there:
utils/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.contrib.contenttypes.models import ContentType
from django.contrib.contenttypes import generic

Database Structure

46

from django.core.exceptions import FieldError

def object_relation_mixin_factory(
 prefix=None,
 prefix_verbose=None,
 add_related_name=False,
 limit_content_type_choices_to={},
 limit_object_choices_to={},
 is_required=False,
):
 """
 returns a mixin class for generic foreign keys using
 "Content type - object Id" with dynamic field names.
 This function is just a class generator

 Parameters:
 prefix : a prefix, which is added in front of the
 fields
 prefix_verbose : a verbose name of the prefix, used
 to
 generate a title for the field
 column
 of the content object in the Admin.
 add_related_name : a boolean value indicating, that a
 related name for the generated
 content
 type foreign key should be added.
 This
 value should be true, if you use
 more
 than one ObjectRelationMixin in
 your model.

 The model fields are created like this:

 <<prefix>>_content_type : Field name for the "content
 type"
 <<prefix>>_object_id : Field name for the "object
 Id"
 <<prefix>>_content_object : Field name for the "content
 object"

 """
 p = ""

Chapter 2

47

 if prefix:
 p = "%s_" % prefix

 content_type_field = "%scontent_type" % p
 object_id_field = "%sobject_id" % p
 content_object_field = "%scontent_object" % p

 class TheClass(models.Model):
 class Meta:
 abstract = True

 if add_related_name:
 if not prefix:
 raise FieldError("if add_related_name is set to
 True,"
 "a prefix must be given")
 related_name = prefix
 else:
 related_name = None

 optional = not is_required

 ct_verbose_name = (
 _("%s's type (model)") % prefix_verbose
 if prefix_verbose
 else _("Related object's type (model)")
)

 content_type = models.ForeignKey(
 ContentType,
 verbose_name=ct_verbose_name,
 related_name=related_name,
 blank=optional,
 null=optional,
 help_text=_("Please select the type (model) for the
 relation, you want to build."),
 limit_choices_to=limit_content_type_choices_to,
)

 fk_verbose_name = (prefix_verbose or _("Related
 object"))

Database Structure

48

 object_id = models.CharField(
 fk_verbose_name,
 blank=optional,
 null=False,
 help_text=_("Please enter the ID of the related
 object."),
 max_length=255,
 default="", # for south migrations
)
 object_id.limit_choices_to = limit_object_choices_to
 # can be retrieved by
 # MyModel._meta.get_field("object_id").limit_choices_to

 content_object = generic.GenericForeignKey(
 ct_field=content_type_field,
 fk_field=object_id_field,
)

 TheClass.add_to_class(content_type_field, content_type)
 TheClass.add_to_class(object_id_field, object_id)
 TheClass.add_to_class(content_object_field,
 content_object)

 return TheClass

2. The following is an example of how to use two generic relationships in your app (put
this code in demo_app/models.py), as shown in the following:
demo_app/models.py
-*- coding: UTF-8 -*-
from __future__ import nicode_literals
from django.db import models
from utils.models import object_relation_mixin_factory
from django.utils.encoding import python_2_unicode_compatible

FavoriteObjectMixin = object_relation_mixin_factory(
 is_required=True,
)

OwnerMixin = object_relation_mixin_factory(
 prefix="owner",
 prefix_verbose=_("Owner"),
 add_related_name=True,
 limit_content_type_choices_to={
 'model__in': ('user', 'institution')
 },

Chapter 2

49

 is_required=True,
)

@python_2_unicode_compatible
class Like(FavoriteObjectMixin, OwnerMixin):
 class Meta:
 verbose_name = _("Like")
 verbose_name_plural = _("Likes")

 def __str__(self):
 return _("%(owner)s likes %(obj)s") % {
 "owner": self.owner_content_object,
 "obj": self.content_object,
 }

How it works…
As you can see, this snippet is more complex than the previous ones. The object_
relation_mixin_factory object is not a mixin itself; it is a function that generates a
model mixin, that is, an abstract model class to extend from. The dynamically created mixin
adds the content_type and object_id fields and the content_object generic foreign
key that points to the related instance.

Why couldn't we just define a simple model mixin with these three attributes? A dynamically
generated abstract class allows us to have prefixes for each field name; therefore, we can
have more than one generic relation in the same model. For example, the Like model, which
was shown previously, will have the content_type, object_id, and content_object
fields for the favorite object and owner_content_type, owner_object_id, and owner_
content_object for the one (user or institution) who liked the object.

The object_relation_mixin_factory() function adds a possibility to limit the content
type choices by the limit_content_type_choices_to parameter. The preceding
example limits the choices for owner_content_type only to the content types of the User
and Institution models. Also, there is the limit_object_choices_to parameter that
can be used by custom form validation to limit the generic relations only to specific objects, for
example, the objects with published status.

See also
 f The Creating a model mixin with URL-related methods recipe

 f The Creating a model mixin to handle creation and modification dates recipe

 f The Creating a model mixin to take care of meta tags recipe

 f The Implementing the Like widget recipe in Chapter 4, Templates and JavaScript

Database Structure

50

Handling multilingual fields
Django uses the internationalization mechanism to translate verbose strings in the code
and templates. However, it's up to the developer to decide how to implement the multilingual
content in the models. There are several third-party modules that handle translatable model
fields; however, I prefer the simple solution that will be introduced to you in this recipe.

The advantages of the approach that you will learn about are as follows:

 f It is straightforward to define multilingual fields in the database

 f It is simple to use the multilingual fields in database queries

 f You can use contributed administration to edit models with the multilingual fields
without additional modifications

 f If you need it, you can easily show all the translations of an object in the
same template

 f You can use database migrations to add or remove languages

Getting ready
Do you have the utils package created? You will now need a new fields.py file for the
custom model fields there.

How to do it…
Execute the following steps to define the multilingual character field and multilingual text field:

1. Open the fields.py file and create the multilingual character field as follows:
utils/fields.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.conf import settings
from django.db import models
from django.utils.translation import get_language
from django.utils.translation import string_concat

class MultilingualCharField(models.CharField):

 def __init__(self, verbose_name=None, **kwargs):

 self._blank = kwargs.get("blank", False)

Chapter 2

51

 self._editable = kwargs.get("editable", True)

 super(MultilingualCharField, self).\
 __init__(verbose_name, **kwargs)

 def contribute_to_class(self, cls, name,
 virtual_only=False):
 # generate language specific fields dynamically
 if not cls._meta.abstract:
 for lang_code, lang_name in settings.LANGUAGES:
 if lang_code == settings.LANGUAGE_CODE:
 _blank = self._blank
 else:
 _blank = True

 localized_field = models.CharField(
 string_concat(self.verbose_name,
 " (%s)" % lang_code),
 name=self.name,
 primary_key=self.primary_key,
 max_length=self.max_length,
 unique=self.unique,
 blank=_blank,
 null=False,
 # we ignore the null argument!
 db_index=self.db_index,
 rel=self.rel,
 default=self.default or "",
 editable=self._editable,
 serialize=self.serialize,
 choices=self.choices,
 help_text=self.help_text,
 db_column=None,
 db_tablespace=self.db_tablespace
)
 localized_field.contribute_to_class(
 cls,
 "%s_%s" % (name, lang_code),
)

 def translated_value(self):
 language = get_language()
 val = self.__dict__["%s_%s" % (name, language)]
 if not val:

Database Structure

52

 val = self.__dict__["%s_%s" % \
 (name, settings.LANGUAGE_CODE)]
 return val

 setattr(cls, name, property(translated_value))

2. In the same file, add an analogous multilingual text field. The differing parts are
highlighted in the following code:
class MultilingualTextField(models.TextField):

 def __init__(self, verbose_name=None, **kwargs):

 self._blank = kwargs.get("blank", False)
 self._editable = kwargs.get("editable", True)

 super(MultilingualTextField, self).\
 __init__(verbose_name, **kwargs)

 def contribute_to_class(self, cls, name,
 virtual_only=False):
 # generate language specific fields dynamically
 if not cls._meta.abstract:
 for lang_code, lang_name in settings.LANGUAGES:
 if lang_code == settings.LANGUAGE_CODE:
 _blank = self._blank
 else:
 _blank = True

 localized_field = models.TextField(
 string_concat(self.verbose_name,
 " (%s)" % lang_code),
 name=self.name,
 primary_key=self.primary_key,
 max_length=self.max_length,
 unique=self.unique,
 blank=_blank,
 null=False,
 # we ignore the null argument!
 db_index=self.db_index,
 rel=self.rel,
 default=self.default or "",
 editable=self._editable,
 serialize=self.serialize,
 choices=self.choices,

Chapter 2

53

 help_text=self.help_text,
 db_column=None,
 db_tablespace=self.db_tablespace
)
 localized_field.contribute_to_class(
 cls,
 "%s_%s" % (name, lang_code),
)

 def translated_value(self):
 language = get_language()
 val = self.__dict__["%s_%s" % (name, language)]
 if not val:
 val = self.__dict__["%s_%s" % \
 (name, settings.LANGUAGE_CODE)]
 return val

 setattr(cls, name, property(translated_value))

Now, we'll consider an example of how to use the multilingual fields in your app, as shown in
the following:

1. First, set multiple languages in your settings:
myproject/settings.py
-*- coding: UTF-8 -*-
…
LANGUAGE_CODE = "en"

LANGUAGES = (
 ("en", "English"),
 ("de", "Deutsch"),
 ("fr", "Français"),
 ("lt", "Lietuvi kalba"),
)

2. Then, create the multilingual fields for your model, as follows:
demo_app/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.utils.encoding import \
 python_2_unicode_compatible

from utils.fields import MultilingualCharField

Database Structure

54

from utils.fields import MultilingualTextField

@python_2_unicode_compatible
class Idea(models.Model):
 title = MultilingualCharField(
 _("Title"),
 max_length=200,
)
 description = MultilingualTextField(
 _("Description"),
 blank=True,
)

 class Meta:
 verbose_name = _("Idea")
 verbose_name_plural = _("Ideas")

 def __str__(self):
 return self.title

How it works…
The example of Idea will create a model that is similar to the following:

class Idea(models.Model):
 title_en = models.CharField(
 _("Title (en)"),
 max_length=200,
)
 title_de = models.CharField(
 _("Title (de)"),
 max_length=200,
 blank=True,
)
 title_fr = models.CharField(
 _("Title (fr)"),
 max_length=200,
 blank=True,
)
 title_lt = models.CharField(
 _("Title (lt)"),
 max_length=200,
 blank=True,
)

Chapter 2

55

 description_en = models.TextField(
 _("Description (en)"),
 blank=True,
)
 description_de = models.TextField(
 _("Description (de)"),
 blank=True,
)
 description_fr = models.TextField(
 _("Description (fr)"),
 blank=True,
)
 description_lt = models.TextField(
 _("Description (lt)"),
 blank=True,
)

In addition to this, there will be two properties: title and description that will return the
title and description in the currently active language.

The MultilingualCharField and MultilingualTextField fields will juggle the
model fields dynamically, depending on your LANGUAGES setting. They will overwrite the
contribute_to_class() method that is used when the Django framework creates
the model classes. The multilingual fields dynamically add character or text fields for each
language of the project. Also, the properties are created in order to return the translated value
of the currently active language or the main language by default.

For example, you can have the following in the template:

<h1>{{ idea.title }}</h1>
<div>{{ idea.description|urlize|linebreaks }}</div>

This will show the text in English, German, French, or Lithuanian, depending on the currently
selected language. However, it will fall back to English if the translation doesn't exist.

Here is another example. If you want to have your QuerySet ordered by the translated titles
in the view, you can define it as follows:

qs = Idea.objects.order_by("title_%s" % request.LANGUAGE_CODE)

Database Structure

56

Using migrations
It is not true that once you have created your database structure, it won't change in the future.
As development happens iteratively, you can get updates on the business requirements in the
development process and you will need to perform database schema changes along the way.
With the Django migrations, you don't need to change the database tables and fields manually,
as most of it is done automatically using the command-line interface.

Getting ready
Activate your virtual environment in the command-line tool.

How to do it…
To create the database migrations, take a look at the following steps:

1. When you create models in your new demo_app app, you need to create an initial
migration that will create the database tables for your app. This can be done using
the following command:
(myproject_env)$ python manage.py makemigrations demo_app

2. The first time that you want to create all the tables for your project, run the following
command:
(myproject_env)$ python manage.py migrate

It executes the usual database synchronization for all apps that have no database
migrations, and in addition to this, it migrates all apps that have the migrations set.
Also, run this command when you want to execute the new migrations for all your apps.

3. If you want to execute the migrations for a specific app, run the following command:
(myproject_env)$ python manage.py migrate demo_app

4. If you make some changes in the database schema, you have to create a migration
for that schema. For example, if we add a new subtitle field to the Idea model, we
can create the migration using the following command:
(myproject_env)$ python manage.py makemigrations --name \

subtitle_added demo_app

5. To create a data migration that modifies the data in the database table, we can use
the following command:
(myproject_env)$ python manage.py makemigrations --empty \
--name populate_subtitle demo_app

Chapter 2

57

This creates a skeleton data migration, which you need to modify and add data
manipulation to it before applying.

6. To list all the available applied and unapplied migrations, run the following command:
(myproject_env)$ python manage.py migrate --list

The applied migrations will be listed with a [X] prefix.

7. To list all the available migrations for a specific app, run the following command:
(myproject_env)$ python manage.py migrate --list demo_app

How it works…
Django migrations are instruction files for the database migration mechanism. The instruction
files inform us which database tables to create or remove; which fields to add or remove; and
which data to insert, update, or delete.

There are two types of migrations in Django. One is schema migration and the other is data
migration. Schema migration should be created when you add new models, or add or remove
fields. Data migration should be used when you want to fill the database with some values
or massively delete values from the database. Data migrations should be created using a
command in the command-line tool and then programmed in the migration file. Migrations
for each app are saved in their migrations directories. The first migration will be usually
called 0001_initial.py, and the other migrations in our example app will be called 0002_
subtitle_added.py and 0003_populate_subtitle.py. Each migration gets a number
prefix that is automatically incremented. For each migration that is executed, there is an entry
that is saved in the django_migrations database table.

It is possible to migrate back and forth by specifying the number of the migration to which we
want to migrate to, as shown in the following:

(myproject_env)$ python manage.py migrate demo_app 0002

If you want to undo all the migrations for a specific app, you can do so using the following
command:

(myproject_env)$ python manage.py migrate demo_app zero

Do not commit your migrations to version control until you have
tested the forward and backward migration process and you are
sure that they will work well in other development and public
website environments.

Database Structure

58

See also
 f The Handling project dependencies with pip and Including external dependencies in

your project recipes in Chapter 1, Getting Started with Django 1.8

 f The Changing a foreign key to the many-to-many field recipe

Switching from South migrations to Django
migrations

If you, like me, have been using Django since before database migrations existed in the
core functionality, that is, before Django 1.7; you have, more than likely, used third-party
South migrations before. In this recipe, you will learn how to switch your project from South
migrations to Django migrations.

Getting ready
Make sure that all apps and their South migrations are up to date.

How to do it…
Execute the following steps:

1. Migrate all your apps to the latest South migrations, as follows:
(myproject_env)$ python manage.py migrate

2. Remove south from INSTALLED_APPS in the settings.

3. For each app with South migrations, delete the migration files and only leave the
migrations directories.

4. Create new migration files with the following command:
(my_project)$ python manage.py makemigrations

5. Fake the initial Django migrations as the database schema has already been
set correctly:
(my_project)$ python manage.py migrate --fake-initial

6. If you have any circular foreign keys in the apps (that is, two models in different apps
pointing to each other with a foreign key or many-to-many relation), separately apply
the fake initial migrations to these apps:
(my_project)$ python manage.py migrate --fake-initial demo_app

Chapter 2

59

How it works…
There is no conflict in the database when switching to the new way of dealing with
the database schema changes as the South migration history is saved in the south_
migrationhistory database table; whereas, the Django migration history is saved in the
django_migrations database table. The only problem are the migration files that have
different syntax and, therefore, the South migrations need to be completely replaced with the
Django migrations.

Therefore, at first, we delete the South migration files. Then, the makemigrations command
recognizes the empty migrations directories and creates new initial Django migrations for
each app. Once these migrations are faked, the further Django migrations can be created
and applied.

See also
 f The Using migrations recipe

 f The Changing a foreign key to the many-to-many field recipe

Changing a foreign key to the many-to-many
field

This recipe is a practical example of how to change a many-to-one relation to many-to-many
relation, while preserving the already existing data. We will use both schema and data
migrations for this situation.

Getting ready
Let's consider that you have the Idea model with a foreign key pointing to the Category
model, as follows:

demo_app/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.utils.encoding import python_2_unicode_compatible

@python_2_unicode_compatible
class Category(models.Model):

Database Structure

60

 title = models.CharField(_("Title"), max_length=200)

 def __str__(self):
 return self.title

@python_2_unicode_compatible
class Idea(models.Model):
 title = model.CharField(_("Title"), max_length=200)
 category = models.ForeignKey(Category,
 verbose_name=_("Category"), null=True, blank=True)

 def __str__(self):
 return self.title

The initial migration should be created and executed using the following commands:

(myproject_env)$ python manage.py makemigrations demo_app

(myproject_env)$ python manage.py migrate demo_app

How to do it…
The following steps will teach you how to switch from a foreign key relation to many-to-many
relation, while preserving the already existing data:

1. Add a new many-to-many field called categories, as follows:
demo_app/models.py
@python_2_unicode_compatible
class Idea(models.Model):
 title = model.CharField(_("Title"), max_length=200)
 category = models.ForeignKey(Category,
 verbose_name=_("Category"),
 null=True,
 blank=True,
)
 categories = models.ManyToManyField(Category,
 verbose_name=_("Categories"),
 blank=True,
 related_name="ideas",
)

2. Create and run a schema migration in order to add the new field to the database, as
shown in the following:
(myproject_env)$ python manage.py makemigrations demo_app \

--name categories_added

(myproject_env)$ python manage.py migrate demo_app

Chapter 2

61

3. Create a data migration to copy categories from the foreign key to the many-to-many
field, as follows:
(myproject_env)$ python manage.py makemigrations --empty \

--name copy_categories demo_app

4. Open the newly created migration file (demo_app/migrations/0003_copy_
categories.py) and define the forward migration instructions, as shown in
the following:
demo_app/migrations/0003_copy_categories.py
-*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.db import models, migrations

def copy_categories(apps, schema_editor):
 Idea = apps.get_model("demo_app", "Idea")
 for idea in Idea.objects.all():
 if idea.category:
 idea.categories.add(idea.category)

class Migration(migrations.Migration):

 dependencies = [
 ('demo_app', '0002_categories_added'),
]

 operations = [
 migrations.RunPython(copy_categories),
]

5. Run the following data migration:
(myproject_env)$ python manage.py migrate demo_app

6. Delete the foreign key field category in the models.py file:
demo_app/models.py
@python_2_unicode_compatible
class Idea(models.Model):
 title = model.CharField(_("Title"), max_length=200)
 categories = models.ManyToManyField(Category,
 verbose_name=_("Categories"),
 blank=True,
 related_name="ideas",
)

Database Structure

62

7. Create and run a schema migration in order to delete the categories field from the
database table, as follows:
(myproject_env)$ python manage.py schemamigration \

--name delete_category demo_app

(myproject_env)$ python manage.py migrate demo_app

How it works…
At first, we add a new many-to-many field to the Idea model. Then, we copy the existing
relations from a foreign key relation to the many-to-many relation. Lastly, we remove the
foreign key relation.

See also
 f The Using migrations recipe

 f The Switching from South migrations to Django migrations recipe

63

3
Forms and Views

In this chapter, we will cover the following topics:

 f Passing HttpRequest to the form

 f Utilizing the save method of the form

 f Uploading images

 f Creating form layout with django-crispy-forms

 f Downloading authorized files

 f Filtering object lists

 f Managing paginated lists

 f Composing class-based views

 f Generating PDF documents

 f Implementing a multilingual search with Haystack

Introduction
When the database structure is defined in the models, we need some views to let the users
enter data or show the data to the people. In this chapter, we will focus on the views managing
forms, the list view, and views generating an alternative output than HTML. For the simplest
examples, we will leave the creation of URL rules and templates up to you.

Forms and Views

64

Passing HttpRequest to the form
The first argument of every Django view is the HttpRequest object that is usually named
request. It contains metadata about the request. For example, current language code,
current user, current cookies, and current session. By default, the forms that are used in the
views accept the GET or POST parameters, files, initial data, and other parameters; however,
not the HttpRequest object. In some cases, it is useful to additionally pass HttpRequest
to the form, especially when you want to filter out the choices of form fields using the request
data or handle saving something such as the current user or IP in the form.

In this recipe, we will see an example of a form where a person can choose a user and
write a message to them. We will pass the HttpRequest object to the form in order
to exclude the current user from the recipient choices; we don't want anybody to write
a message to themselves.

Getting ready
Let's create a new app called email_messages and put it in INSTALLED_APPS in the
settings. This app will have no models, just forms and views.

How to do it…
To complete this recipe, execute the following steps:

1. Add a new forms.py file with the message form containing two fields: the recipient
selection and message text. Also, this form will have an initialization method,
which will accept the request object and then, modify QuerySet for the recipient's
selection field:
email_messages/forms.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django import forms
from django.utils.translation import ugettext_lazy as _
from django.contrib.auth.models import User

class MessageForm(forms.Form):
 recipient = forms.ModelChoiceField(
 label=_("Recipient"),
 queryset=User.objects.all(),
 required=True,
)
 message = forms.CharField(
 label=_("Message"),

Chapter 3

65

 widget=forms.Textarea,
 required=True,
)

 def __init__(self, request, *args, **kwargs):
 super(MessageForm, self).__init__(*args, **kwargs)
 self.request = request
 self.fields["recipient"].queryset = \
 self.fields["recipient"].queryset.\
 exclude(pk=request.user.pk)

2. Then, create views.py with the message_to_user() view in order to handle the
form. As you can see, the request object is passed as the first parameter to the form,
as follows:
email_messages/views.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.contrib.auth.decorators import login_required
from django.shortcuts import render, redirect

from .forms import MessageForm

@login_required
def message_to_user(request):
 if request.method == "POST":
 form = MessageForm(request, data=request.POST)
 if form.is_valid():
 # do something with the form
 return redirect("message_to_user_done")
 else:
 form = MessageForm(request)

 return render(request,
 "email_messages/message_to_user.html",
 {"form": form}
)

Forms and Views

66

How it works…
In the initialization method, we have the self variable that represents the instance of the
form itself, we also have the newly added request variable, and then we have the rest of
the positional arguments (*args) and named arguments (**kwargs). We call the super()
initialization method passing all the positional and named arguments to it so that the form is
properly initiated. We will then assign the request variable to a new request attribute of the
form for later access in other methods of the form. Then, we modify the queryset attribute of
the recipient's selection field, excluding the current user from the request.

In the view, we will pass the HttpRequest object as the first argument in both situations:
when the form is posted, as well as when it is loaded for the first time.

See also
 f The Utilizing the save method of the form recipe

Utilizing the save method of the form
To make your views clean and simple, it is good practice to move the handling of the form
data to the form itself whenever possible and makes sense. The common practice is to have a
save() method that will save the data, perform search, or do some other smart actions. We
will extend the form that is defined in the previous recipe with the save() method, which will
send an e-mail to the selected recipient.

Getting ready
We will build upon the example that is defined in the Passing HttpRequest to the form recipe.

How to do it…
To complete this recipe, execute the following two steps:

1. From Django, import the function in order to send an e-mail. Then, add the save()
method to MessageForm. It will try to send an e-mail to the selected recipient and
will fail silently if any errors occur:
email_messages/forms.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django import forms
from django.utils.translation import ugettext,\

Chapter 3

67

 ugettext_lazy as _
from django.core.mail import send_mail
from django.contrib.auth.models import User

class MessageForm(forms.Form):
 recipient = forms.ModelChoiceField(
 label=_("Recipient"),
 queryset=User.objects.all(),
 required=True,
)
 message = forms.CharField(
 label=_("Message"),
 widget=forms.Textarea,
 required=True,
)

 def __init__(self, request, *args, **kwargs):
 super(MessageForm, self).__init__(*args, **kwargs)
 self.request = request
 self.fields["recipient"].queryset = \
 self.fields["recipient"].queryset.\
 exclude(pk=request.user.pk)

 def save(self):
 cleaned_data = self.cleaned_data
 send_mail(
 subject=ugettext("A message from %s") % \
 self.request.user,
 message=cleaned_data["message"],
 from_email=self.request.user.email,
 recipient_list=[
 cleaned_data["recipient"].email
],
 fail_silently=True,
)

2. Then, call the save() method from the form in the view if the posted data is valid:
email_messages/views.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.contrib.auth.decorators import login_required

Forms and Views

68

from django.shortcuts import render, redirect

from .forms import MessageForm

@login_required
def message_to_user(request):
 if request.method == "POST":
 form = MessageForm(request, data=request.POST)
 if form.is_valid():
 form.save()
 return redirect("message_to_user_done")
 else:
 form = MessageForm(request)

 return render(request,
 "email_messages/message_to_user.html",
 {"form": form}
)

How it works…
Let's take a look at the form. The save() method uses the cleaned data from the form
to read the recipient's e-mail address and the message. The sender of the e-mail is the
current user from the request. If the e-mail cannot be sent due to an incorrect mail server
configuration or another reason, it will fail silently; that is, no error will be raised.

Now, let's look at the view. When the posted form is valid, the save() method of the form will
be called and the user will be redirected to the success page.

See also
 f The Passing HttpRequest to the form recipe

 f The Downloading authorized files recipe

Uploading images
In this recipe, we will take a look at the easiest way to handle image uploads. You will see an
example of an app, where the visitors can upload images with inspirational quotes.

Getting ready
Make sure to have Pillow or PIL installed in your virtual environment or globally.

Chapter 3

69

Then, let's create a quotes app and put it in INSTALLED_APPS in the settings. Then, we
will add an InspirationalQuote model with three fields: the author, quote text, and
picture, as follows:

quotes/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import os
from django.db import models
from django.utils.timezone import now as timezone_now
from django.utils.translation import ugettext_lazy as _
from django.utils.encoding import python_2_unicode_compatible

def upload_to(instance, filename):
 now = timezone_now()
 filename_base, filename_ext = os.path.splitext(filename)
 return "quotes/%s%s" % (
 now.strftime("%Y/%m/%Y%m%d%H%M%S"),
 filename_ext.lower(),
)

@python_2_unicode_compatible
class InspirationalQuote(models.Model):
 author = models.CharField(_("Author"), max_length=200)
 quote = models.TextField(_("Quote"))
 picture = models.ImageField(_("Picture"),
 upload_to=upload_to,
 blank=True,
 null=True,
)

 class Meta:
 verbose_name = _("Inspirational Quote")
 verbose_name_plural = _("Inspirational Quotes")

 def __str__(self):
 return self.quote

In addition, we created an upload_to() function, which sets the path of the uploaded
picture to be something similar to quotes/2015/04/20150424140000.png. As you can
see, we use the date timestamp as the filename to ensure its uniqueness. We pass this
function to the picture image field.

Forms and Views

70

How to do it…
Execute these steps to complete the recipe:

1. Create the forms.py file and put a simple model form there:
quotes/forms.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django import forms
from .models import InspirationalQuote

class InspirationalQuoteForm(forms.ModelForm):
 class Meta:
 model = InspirationalQuote
 fields = ["author", "quote", "picture", "language"]

2. In the views.py file, put a view that handles the form. Don't forget to pass the
FILES dictionary-like object to the form. When the form is valid, trigger the save
method as follows:
quotes/views.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.shortcuts import redirect
from django.shortcuts import render
from .forms import InspirationalQuoteForm

def add_quote(request):
 if request.method == "POST":
 form = InspirationalQuoteForm(
 data=request.POST,
 files=request.FILES,
)
 if form.is_valid():
 quote = form.save()
 return redirect("add_quote_done")
 else:
 form = InspirationalQuoteForm()
 return render(request,
 "quotes/change_quote.html",
 {"form": form}
)

Chapter 3

71

3. Lastly, create a template for the view in templates/quotes/change_quote.
html. It is very important to set the enctype attribute to multipart/form-data
for the HTML form, otherwise the file upload won't work:
{# templates/quotes/change_quote.html #}
{% extends "base.html" %}
{% load i18n %}

{% block content %}
 <form method="post" action="" enctype="multipart/form-data">
 {% csrf_token %}
 {{ form.as_p }}
 <button type="submit">{% trans "Save" %}</button>
 </form>
{% endblock %}

How it works…
Django model forms are forms that are created from models. They provide all the fields from
the model so you don't need to define them again. In the preceding example, we created a
model form for the InspirationalQuote model. When we save the form, the form knows
how to save each field in the database, as well as to upload the files and save them in the
media directory.

There's more
As a bonus, we will see an example of how to generate a thumbnail out of the uploaded
image. Using this technique, you could also generate several other specific versions of the
image, such as the list version, mobile version, and desktop computer version.

We will add three methods to the InspirationalQuote model (quotes/models.py).
They are save(), create_thumbnail(), and get_thumbnail_picture_url(). When
the model is being saved, we will trigger the creation of the thumbnail. When we need to
show the thumbnail in a template, we can get its URL using {{ quote.get_thumbnail_
picture_url }}. The method definitions are as follows:

quotes/models.py
…
from PIL import Image
from django.conf import settings
from django.core.files.storage import default_storage as storage
THUMBNAIL_SIZE = getattr(
 settings,
 "QUOTES_THUMBNAIL_SIZE",
 (50, 50)

Forms and Views

72

)

class InspirationalQuote(models.Model):
 # …
 def save(self, *args, **kwargs):
 super(InspirationalQuote, self).save(*args, **kwargs)
 # generate thumbnail picture version
 self.create_thumbnail()

 def create_thumbnail(self):
 if not self.picture:
 return ""
 file_path = self.picture.name
 filename_base, filename_ext = os.path.splitext(file_path)
 thumbnail_file_path = "%s_thumbnail.jpg" % filename_base
 if storage.exists(thumbnail_file_path):
 # if thumbnail version exists, return its url path
 return "exists"
 try:
 # resize the original image and
 # return URL path of the thumbnail version
 f = storage.open(file_path, 'r')
 image = Image.open(f)
 width, height = image.size

 if width > height:
 delta = width - height
 left = int(delta/2)
 upper = 0
 right = height + left
 lower = height
 else:
 delta = height - width
 left = 0
 upper = int(delta/2)
 right = width
 lower = width + upper

 image = image.crop((left, upper, right, lower))
 image = image.resize(THUMBNAIL_SIZE, Image.ANTIALIAS)

 f_mob = storage.open(thumbnail_file_path, "w")
 image.save(f_mob, "JPEG")
 f_mob.close()

Chapter 3

73

 return "success"
 except:
 return "error"

 def get_thumbnail_picture_url(self):
 if not self.picture:
 return ""
 file_path = self.picture.name
 filename_base, filename_ext = os.path.splitext(file_path)
 thumbnail_file_path = "%s_thumbnail.jpg" % filename_base
 if storage.exists(thumbnail_file_path):
 # if thumbnail version exists, return its URL path
 return storage.url(thumbnail_file_path)
 # return original as a fallback
 return self.picture.url

In the preceding methods, we are using the file storage API instead of directly juggling the
filesystem, as we could then exchange the default storage with Amazon S3 buckets or other
storage services and the methods will still work.

How does the creating the thumbnail work? If we had the original file saved
as quotes/2014/04/20140424140000.png, we are checking whether the
quotes/2014/04/20140424140000_thumbnail.jpg file doesn't exist and, in that case,
we are opening the original image, cropping it from the center, resizing it to 50 x 50 pixels,
and saving it to the storage.

The get_thumbnail_picture_url() method checks whether the thumbnail version
exists in the storage and returns its URL. If the thumbnail version does not exist, the URL of
the original image is returned as a fallback.

See also
 f The Creating a form layout with django-crispy-forms recipe

Forms and Views

74

Creating a form layout with
django-crispy-forms

The django-crispy-forms Django app allows you to build, customize, and reuse forms
using one of the following CSS frameworks: Uni-Form, Bootstrap, or Foundation. The usage of
django-crispy-forms is analogous to fieldsets in the Django contributed administration;
however, it is more advanced and customizable. You define form layout in the Python code
and you don't need to worry about how each field is presented in HTML. However, if you need
to add specific HTML attributes or wrapping, you can easily do that too. Moreover, all the
markup used by django-crispy-forms is located in the templates that can be overwritten
for specific needs.

In this recipe, we will see an example of how to use django-crispy-forms with
Bootstrap 3, which is the most popular frontend framework to develop responsive,
mobile-first web projects.

Getting ready
To start with, execute the following tasks one by one:

Download the Bootstrap frontend framework from http://getbootstrap.com/ and
integrate CSS and JavaScript in the templates. Learn more about this in the Arranging the
base.html template recipe in Chapter 4, Templates and JavaScript.

Install django-crispy-forms in your virtual environment using the following command:

(myproject_env)$ pip install django-crispy-forms

Make sure that crispy_forms is added to INSTALLED_APPS and then set bootstrap3 as
the template pack to be used in this project:

conf/base.py or settings.py
INSTALLED_APPS = (
 # …
 "crispy_forms",
)
…
CRISPY_TEMPLATE_PACK = "bootstrap3"

http://getbootstrap.com/

Chapter 3

75

Let's create a bulletin_board app to illustrate the usage of django-crispy-forms
and put it in INSTALLED_APPS in the settings. We will have a Bulletin model there with
these fields: bulletin_type, title, description, contact_person, phone, email,
and image as follows:

bulletin_board/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.utils.encoding import python_2_unicode_compatible

TYPE_CHOICES = (
 ('searching', _("Searching")),
 ('offering', _("Offering")),
)

@python_2_unicode_compatible
class Bulletin(models.Model):
 bulletin_type = models.CharField(_("Type"), max_length=20,
 choices=TYPE_CHOICES)

 title = models.CharField(_("Title"), max_length=255)
 description = models.TextField(_("Description"),
 max_length=300)

 contact_person = models.CharField(_("Contact person"),
 max_length=255)
 phone = models.CharField(_("Phone"), max_length=200,
 blank=True)
 email = models.EmailField(_("Email"), blank=True)

 image = models.ImageField(_("Image"), max_length=255,
 upload_to="bulletin_board/", blank=True)

 class Meta:
 verbose_name = _("Bulletin")
 verbose_name_plural = _("Bulletins")
 ordering = ("title",)

 def __str__(self):
 return self.title

Forms and Views

76

How to do it…
Follow these steps:

1. Let's add a model form for the bulletin in the newly created app. We will attach a form
helper to the form in the initialization method itself. The form helper will have the
layout property that will define the layout for the form, as follows:
bulletin_board/forms.py
-*- coding: UTF-8 -*-
from django import forms
from django.utils.translation import ugettext_lazy as _,\
 ugettext
from crispy_forms.helper import FormHelper
from crispy_forms import layout, bootstrap
from .models import Bulletin

class BulletinForm(forms.ModelForm):
 class Meta:
 model = Bulletin
 fields = ["bulletin_type", "title", "description",
 "contact_person", "phone", "email", "image"]

 def __init__(self, *args, **kwargs):
 super(BulletinForm, self).__init__(*args, **kwargs)

 self.helper = FormHelper()
 self.helper.form_action = ""
 self.helper.form_method = "POST"

 self.fields["bulletin_type"].widget = \
 forms.RadioSelect()
 # delete empty choice for the type
 del self.fields["bulletin_type"].choices[0]

 self.helper.layout = layout.Layout(
 layout.Fieldset(
 _("Main data"),
 layout.Field("bulletin_type"),
 layout.Field("title",
 css_class="input-block-level"),
 layout.Field("description",
 css_class="input-blocklevel",
 rows="3"),
),

Chapter 3

77

 layout.Fieldset(
 _("Image"),
 layout.Field("image",
 css_class="input-block-level"),
 layout.HTML(u"""{% load i18n %}
 <p class="help-block">{% trans
 "Available formats are JPG, GIF, and PNG.
 Minimal size is 800 × 800 px." %}</p>
 """),
 title=_("Image upload"),
 css_id="image_fieldset",
),
 layout.Fieldset(
 _("Contact"),
 layout.Field("contact_person",
 css_class="input-blocklevel"),
 layout.Div(
 bootstrap.PrependedText("phone",
 """<span class="glyphicon glyphicon-
 earphone">
 """,
 css_class="inputblock-level"),
 bootstrap.PrependedText("email", "@",
 css_class="input-block-level",
 placeholder="contact@example.com"),
 css_id="contact_info",
),
),
 bootstrap.FormActions(
 layout.Submit("submit", _("Save")),
)
)

2. To render the form in the template, we just need to load the crispy_forms_tags
template tag library and use the {% crispy %} template tag as shown in the
following:
{# templates/bulletin_board/change_form.html #}
{% extends "base.html" %}
{% load crispy_forms_tags %}

{% block content %}
 {% crispy form %}
{% endblock %}

Forms and Views

78

3. Create the base.html template. You can do this according to the example in the
Arranging the base.html template recipe in Chapter 4, Templates and JavaScript.

How it works…
The page with the bulletin form will look similar to the following:

As you can see, the fields are grouped by fieldsets. The first argument of the Fieldset object
defines the legend, the other positional arguments define the fields. You can also pass named
arguments to define the HTML attributes for the fieldset; for example, for the second fieldset,
we are passing title and css_id to set the title and id HTML attributes.

Fields can also have additional attributes passed by named arguments; for example, for
the description field, we are passing css_class and rows to set the class and rows
HTML attributes.

Chapter 3

79

Besides the normal fields, you can pass HTML snippets as this is done with the help block for
the image field. You can also have prepended text fields in the layout. For example, we added a
phone icon to the Phone field and an @ sign for the Email field. As you can see from the example
with the contact fields, we can easily wrap fields in the HTML <div> elements using the Div
objects. This is useful when specific JavaScript needs to be applied to some form fields.

The action attribute for the HTML form is defined by the form_action property of the
form helper. If you use the empty string as an action, the form will be submitted to the same
view, where the form is included. The method attribute of the HTML form is defined by the
form_method property of the form helper. As you know, the HTML forms allow the GET and
POST methods. Finally, there is a Submit object in order to render the submit button, which
takes the name of the button as the first positional argument and the value of the button as
the second argument.

There's more…
For the basic usage, the given example is more than necessary. However, if you need a specific
markup for the forms in your project, you can still overwrite and modify templates of the
django-crispy-forms app as there is no markup hardcoded in the Python files, rather all
the generated markup is rendered through the templates. Just copy the templates from the
django-crispy-forms app to your project's template directory and change them as required.

See also
 f The Filtering object lists recipe

 f The Managing paginated lists recipe

 f The Downloading authorized files recipe

Downloading authorized files
Sometimes, you might need to allow only specific people to download intellectual property
from your website. For example, music, videos, literature, or other artistic works should
be accessible only to the paid members. In this recipe, you will learn how to restrict image
downloads only to the authenticated users using the contributed Django auth app.

Getting ready
To start, create the quotes app as in the Uploading images recipe.

Forms and Views

80

How to do it…
Execute these steps one by one:

1. Create the view that will require authentication to download a file, as follows:
quotes/views.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import os
from django.shortcuts import get_object_or_404
from django.http import FileResponse
from django.utils.text import slugify
from django.contrib.auth.decorators import login_required
from .models import InspirationalQuote

@login_required(login_url="my_login_page")
def download_quote_picture(request, quote_id):
 quote = get_object_or_404(InspirationalQuote,
 pk=quote_id)
 file_name, file_extension = os.path.splitext(
 quote.picture.file.name)
 file_extension = file_extension[1:] # remove the dot
 response = FileResponse(
 quote.picture.file,
 content_type="image/%s" % file_extension
)
 response["Content-Disposition"] = "attachment;" \
 " filename=%s---%s.%s" % (
 slugify(quote.author)[:100],
 slugify(quote.quote)[:100],
 file_extension
)
 return response

2. Add the view to the URL configuration:
quotes/urls.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.conf.urls import patterns, url

urlpatterns = patterns("",
 # …
 url(r'^(?P<quote_id>\d+)/download/$',
 "quotes.views.download_quote_picture",

Chapter 3

81

 name="download_quote_picture"
),
)

3. Then, we need to set the login view in project URL configuration. Note how we are
also adding login_helper for django-crispy-forms:
myproject/urls.py
-*- coding: UTF-8 -*-
from django.conf.urls import patterns, include, url
from django.conf import settings
from django.contrib import admin
from django.core.urlresolvers import reverse_lazy
from django.utils.translation import string_concat
from django.utils.translation import ugettext_lazy as _
from django.conf.urls.i18n import i18n_patterns
from crispy_forms.helper import FormHelper
from crispy_forms import layout, bootstrap

login_helper = FormHelper()
login_helper.form_action = reverse_lazy("my_login_page")
login_helper.form_method = "POST"
login_helper.form_class = "form-signin"
login_helper.html5_required = True
login_helper.layout = layout.Layout(
 layout.HTML(string_concat("""<h2 class="form-signin-
heading">""", _("Please Sign In"), """</h2>""")),
 layout.Field("username", placeholder=_("username")),
 layout.Field("password", placeholder=_("password")),
 layout.HTML("""<input type="hidden" name="next" value="{{ next
}}" />"""),
 layout.Submit("submit", _("Login"), css_class="btn-lg"),
)

urlpatterns = i18n_patterns("",
 # …
 url(r'login/$', "django.contrib.auth.views.login",
 {"extra_context": {"login_helper": login_helper}},
 name="my_login_page"
),
 url(r'^quotes/', include("quotes.urls")),
)

Forms and Views

82

4. Let's create a template for the login form, as shown in the following:
{# templates/registration/login.html #}
{% extends "base.html" %}
{% load crispy_forms_tags %}

{% block stylesheet %}
 {{ block.super }}
 <link rel="stylesheet" href="{{ STATIC_URL }}site/css/login.
css">
{% endblock %}

{% block content %}
 <div class="container">
 {% crispy form login_helper %}
 </div>
{% endblock %}

5. Create the login.css file to add some style to the login form. Lastly, you should
restrict the users from bypassing Django and downloading restricted files directly.
To do so on an Apache web server, you can put the .htaccess file in the media/
quotes directory with the following content if you are using Apache 2.2:
media/quotes/.htaccess
Order deny,allow
Deny from all

You can put the following content if you are using Apache 2.4:
media/quotes/.htaccess
Require all denied

How it works…
The download_quote_picture() view streams the picture from a specific inspirational
quote. The Content-Disposition header that is set to attachment makes the file
downloadable instead of being immediately shown in the browser. The filename for the file will
be something similar to walt-disney---if-you-can-dream-it-you-can-do-it.png.
The @login_required decorator will redirect the visitor to the login page if he or she tries to
access the downloadable file without being logged in.

As we want to have a nice Bootstrap-style login form, we are using django-crispy-
forms again and define a helper for the login_helper form. The helper is passed to the
authorization form as an extra context variable and then used as the second parameter in the
{% crispy %} template tag.

Chapter 3

83

Depending on the CSS applied, the login form might look similar to the following:

See also
 f The Uploading images recipe

 f The Creating a form layout with django-crispy-forms recipe

Filtering object lists
In web development, besides views with forms, it is typical to have object-list views and detail
views. List views can simply list objects that are ordered, for example, alphabetically or by
creation date; however, that is not very user-friendly with huge amounts of data. For the
best accessibility and convenience, you should be able to filter the content by all possible
categories. In this recipe, we will see the pattern that is used to filter list views by any number
of categories.

Forms and Views

84

What we'll be creating is a list view of movies that can be filtered by genre, director, actor, or
rating. It will look similar to the following with Bootstrap 3 applied to it:

Getting ready
For the filtering example, we will use the Movie model with relations to genres, directors, and
actors to filter by. It will also be possible to filter by ratings, which is PositiveIntegerField
with choices. Let's create the movies app, put it in INSTALLED_APPS in the settings, and
define the mentioned models in the new app, as follows:

movies/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.utils.encoding import python_2_unicode_compatible

RATING_CHOICES = (
 (1, ""),
 (2, ""),
 (3, ""),

Chapter 3

85

 (4, ""),
 (5, ""),
)

@python_2_unicode_compatible
class Genre(models.Model):
 title = models.CharField(_("Title"), max_length=100)

 def __str__(self):
 return self.title

@python_2_unicode_compatible
class Director(models.Model):
 first_name = models.CharField(_("First name"), max_length=40)
 last_name = models.CharField(_("Last name"), max_length=40)

 def __str__(self):
 return self.first_name + " " + self.last_name

@python_2_unicode_compatible
class Actor(models.Model):
 first_name = models.CharField(_("First name"), max_length=40)
 last_name = models.CharField(_("Last name"), max_length=40)

 def __str__(self):
 return self.first_name + " " + self.last_name

@python_2_unicode_compatible
class Movie(models.Model):
 title = models.CharField(_("Title"), max_length=255)
 genres = models.ManyToManyField(Genre, blank=True)
 directors = models.ManyToManyField(Director, blank=True)
 actors = models.ManyToManyField(Actor, blank=True)
 rating = models.PositiveIntegerField(choices=RATING_CHOICES)

 def __str__(self):
 return self.title

Forms and Views

86

How to do it…
To complete the recipe, follow these steps:

1. First of all, we create MovieFilterForm with all the possible categories to filter by:
movies/forms.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django import forms
from django.utils.translation import ugettext_lazy as _

from .models import Genre, Director, Actor, RATING_CHOICES

class MovieFilterForm(forms.Form):
 genre = forms.ModelChoiceField(
 label=_("Genre"),
 required=False,
 queryset=Genre.objects.all(),
)
 director = forms.ModelChoiceField(
 label=_("Director"),
 required=False,
 queryset=Director.objects.all(),
)
 actor = forms.ModelChoiceField(
 label=_("Actor"),
 required=False,
 queryset=Actor.objects.all(),
)
 rating = forms.ChoiceField(
 label=_("Rating"),
 required=False,
 choices=RATING_CHOICES,
)

2. Then, we create a movie_list view that will use MovieFilterForm to validate
the request query parameters and perform the filtering for chosen categories. Note
the facets dictionary that is used here to list the categories and also the currently
selected choices:
movies/views.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals

Chapter 3

87

from django.shortcuts import render
from .models import Genre, Director, Actor
from .models import Movie, RATING_CHOICES
from .forms import MovieFilterForm

def movie_list(request):
 qs = Movie.objects.order_by("title")

 form = MovieFilterForm(data=request.GET)

 facets = {
 "selected": {},
 "categories": {
 "genres": Genre.objects.all(),
 "directors": Director.objects.all(),
 "actors": Actor.objects.all(),
 "ratings": RATING_CHOICES,
 },
 }

 if form.is_valid():
 genre = form.cleaned_data["genre"]
 if genre:
 facets["selected"]["genre"] = genre
 qs = qs.filter(genres=genre).distinct()

 director = form.cleaned_data["director"]
 if director:
 facets["selected"]["director"] = director
 qs = qs.filter(directors=director).distinct()

 actor = form.cleaned_data["actor"]
 if actor:
 facets["selected"]["actor"] = actor
 qs = qs.filter(actors=actor).distinct()

 rating = form.cleaned_data["rating"]
 if rating:
 rating = int(rating)
 facets["selected"]["rating"] = (rating, dict(RATING_
CHOICES)[rating])
 qs = qs.filter(rating=rating).distinct()

 # Let's inspect the facets in the console

Forms and Views

88

 if settings.DEBUG:
 from pprint import pprint
 pprint(facets)

 context = {
 "form": form,
 "facets": facets,
 "object_list": qs,
 }
 return render(request, "movies/movie_list.html",
 context)

3. Lastly, we create the template for the list view. We will use the facets dictionary
here to list the categories and know which category is currently selected. To generate
URLs for the filters, we will use the {% modify_query %} template tag, which will
be described later in the Creating a template tag to modify request query parameters
recipe in Chapter 5, Custom Template Filters and Tags. Copy the following code in the
templates/movies/movie_list.html directory:
{# templates/movies/movie_list.html #}
{% extends "base_two_columns.html" %}
{% load i18n utility_tags %}

{% block sidebar %}
<div class="filters panel-group" id="accordion">
 <div class="panel panel-default">
 <div class="panel-heading">
 <h6 class="panel-title">
 <a data-toggle="collapse" data-parent="#accordion"
href="#collapseGenres">
 {% trans "Filter by Genre" %}

 </h6>
 </div>
 <div id="collapseGenres" class="panel-collapse collapse
in">
 <div class="panel-body">
 <div class="list-group">
 <a class="list-group-item{% if not facets.
selected.genre %} active{% endif %}" href="{% modify_query "genre"
"page" %}">{% trans "All" %}
 {% for cat in facets.categories.genres %}
 <a class="list-group-item{% if facets.
selected.genre == cat %} active{% endif %}" href="{% modify_query
"page" genre=cat.pk %}">{{ cat }}
 {% endfor %}

Chapter 3

89

 </div>
 </div>
 </div>
 </div>

 <div class="panel panel-default">
 <div class="panel-heading">
 <h6 class="panel-title">
 <a data-toggle="collapse" data-parent="#accordion"
href="#collapseDirectors">
 {% trans "Filter by Director" %}

 </h6>
 </div>
 <div id="collapseDirectors" class="panel-collapse
collapse">
 <div class="panel-body">
 <div class="list-group">
 <a class="list-group-item{% if not facets.
selected.director %} active{% endif %}" href="{% modify_query
"director" "page" %}">{% trans "All" %}
 {% for cat in facets.categories.directors %}
 <a class="list-group-item{% if facets.
selected.director == cat %} active{% endif %}" href="{% modify_
query "page" director=cat.pk %}">{{ cat }}
 {% endfor %}
 </div>
 </div>
 </div>
 </div>

 {# Analogously by the examples of genres and directors above,
add a filter for actors here… #}

 <div class="panel panel-default">
 <div class="panel-heading">
 <h6 class="panel-title">
 <a data-toggle="collapse" data-parent="#accordion"
href="#collapseRatings">
 {% trans "Filter by Rating" %}

 </h6>
 </div>
 <div id="collapseRatings" class="panel-collapse collapse">
 <div class="panel-body">

Forms and Views

90

 <div class="list-group">
 <a class="list-group-item{% if not facets.
selected.rating %} active{% endif %}" href="{% modify_query
"rating" "page" %}">{% trans "All" %}
 {% for r_val, r_display in facets.categories.
ratings %}
 <a class="list-group-item{% if facets.
selected.rating.0 == r_val %} active{% endif %}" href="{% modify_
query "page" rating=r_val %}">{{ r_display }}
 {% endfor %}
 </div>
 </div>
 </div>
 </div>
</div>
{% endblock %}

{% block content %}
<div class="movie_list">
 {% for movie in object_list %}
 <div class="movie alert alert-info">
 <p>{{ movie.title }}</p>
 </div>
 {% endfor %}
</div>
{% endblock %}

4. Add a simple base template with two-column layout, as follows:
{# base_two_columns.html #}
{% extends "base.html" %}

{% block container %}
 <div class="container">
 <div class="row">
 <div id="sidebar" class="col-md-4">
 {% block sidebar %}
 {% endblock %}
 </div>
 <div id="content" class="col-md-8">
 {% block content %}
 {% endblock %}
 </div>
 </div>
 </div>
{% endblock %}

Chapter 3

91

5. Create the base.html template. You can do that according to the example provided in
the Arranging the base.html template recipe in Chapter 4, Templates and JavaScript.

How it works…
We are using the facets dictionary that is passed to the template context to know which filters
we have and which filters are selected. To look deeper, the facets dictionary consists of
two sections: the categories dictionary and the selected dictionary. The categories
dictionary contains QuerySets or choices of all filterable categories. The selected
dictionary contains the currently selected values for each category.

In the view, we check whether the query parameters are valid in the form and then drill down
QuerySet of objects from the selected categories. Additionally, we set the selected values to
the facets dictionary, which will be passed to the template.

In the template, for each categorization from the facets dictionary, we list all the categories
and mark the currently selected category as active.

It is as simple as that.

See also
 f The Managing paginated lists recipe

 f The Composing class-based views recipe

 f The Creating a template tag to modify request query parameters recipe in Chapter 5,
Custom Template Filters and Tags

Managing paginated lists
If you have dynamically changing lists of objects or the amount of them is greater than 30,
you will surely need pagination for the list. With pagination, instead of the full QuerySet,
you provide a fraction of the dataset that is limited to a specific amount per page and you will
also show the links to get to the other pages of the list. Django has classes to manage the
paginated data, and we will see how to do that in this recipe for the example provided in the
previous recipe.

Getting ready
Let's start with the forms and views of the movies app from the Filtering object lists recipe.

Forms and Views

92

How to do it…
To add pagination to the list view of the movies, follow these steps:

1. First, import the necessary pagination classes from Django. We will add pagination
management to the movie_list view just after filtering. Also, we will slightly modify
the context dictionary by assigning page instead of the movie QuerySet to the
object_list key:
movies/views.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.shortcuts import render
from django.core.paginator import Paginator, EmptyPage,\
 PageNotAnInteger

from .models import Movie
from .forms import MovieFilterForm

def movie_list(request):
 paginate_by = 15
 qs = Movie.objects.order_by("title")
 # … filtering goes here…

 paginator = Paginator(qs, paginate_by)

 page_number = request.GET.get("page")
 try:
 page = paginator.page(page_number)
 except PageNotAnInteger:
 # If page is not an integer, show first page.
 page = paginator.page(1)
 except EmptyPage:
 # If page is out of range, show last existing page.
 page = paginator.page(paginator.num_pages)

 context = {
 # …
 "object_list": page,
 }
 return render(request, "movies/movie_list.html", context)

2. In the template, we will add pagination controls after the list of movies, as follows:
{# templates/movies/movie_list.html #}
{% extends "base.html" %}

Chapter 3

93

{% load i18n utility_tags %}

{% block sidebar %}
 {# … filters go here… #}
{% endblock %}

{% block content %}
<div class="movie_list">
 {% for movie in object_list %}
 <div class="movie alert alert-info">
 <p>{{ movie.title }}</p>
 </div>
 {% endfor %}
</div>

{% if object_list.has_other_pages %}
 <ul class="pagination">
 {% if object_list.has_previous %}
 <a href="{% modify_query page=object_list.
previous_page_number %}">«
 {% else %}
 <li class="disabled">«
 {% endif %}
 {% for page_number in object_list.paginator.page_range %}
 {% if page_number == object_list.number %}
 <li class="active">
 {{ page_number }} <span class="sr-
only">(current)

 {% else %}

 <a href="{% modify_query page=page_number
%}">{{ page_number }}

 {% endif %}
 {% endfor %}
 {% if object_list.has_next %}
 <a href="{% modify_query page=object_list.next_
page_number %}">»
 {% else %}
 <li class="disabled">»
 {% endif %}

{% endif %}
{% endblock %}

Forms and Views

94

How it works…
When you look at the results in the browser, you will see the pagination controls similar to the
following, added after the list of movies:

How do we achieve this? When the QuerySet is filtered out, we will create a paginator
object passing QuerySet and the maximal amount of items that we want to show per page,
which is 15 here. Then, we will read the current page number from the query parameter,
page. The next step is to retrieve the current page object from paginator. If the page
number is not an integer, we get the first page. If the number exceeds the amount of possible
pages, the last page is retrieved. The page object has methods and attributes necessary
for the pagination widget shown in the preceding screenshot. Also, the page object acts like
QuerySet so that we can iterate through it and get the items from the fraction of the page.

The snippet marked in the template creates a pagination widget with the markup for the
Bootstrap 3 frontend framework. We show the pagination controls only if there are more
pages than the current one. We have the links to the previous and next pages, and the list of
all page numbers in the widget. The current page number is marked as active. To generate
URLs for the links, we use the {% modify_query %} template tag, which will be described
later in the Creating a template tag to modify request query parameters recipe in Chapter 5,
Custom Template Filters and Tags.

See also
 f The Filtering object lists recipe

 f The Composing class-based views recipe

 f The Creating a template tag to modify request query parameters recipe in Chapter 5,
Custom Template Filters and Tags

Chapter 3

95

Composing class-based views
Django views are callables that take requests and return responses. In addition to the
function-based views, Django provides an alternative way to define views as classes. This
approach is useful when you want to create reusable modular views or combine views of the
generic mixins. In this recipe, we will convert the previously shown function-based movie_
list view to a class-based MovieListView view.

Getting ready
Create the models, form, and template similar to the previous recipes, Filtering object lists
and Managing paginated lists.

How to do it…
1. We will need to create a URL rule in the URL configuration and add a class-based

view. To include a class-based view in the URL rules, the as_view() method is used,
as follows:
movies/urls.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.conf.urls import patterns, url
from .views import MovieListView
urlpatterns = patterns("",
 url(r'^$', MovieListView.as_view(), name="movie_list"),
)

2. Our class-based view, MovieListView, will inherit the Django View class and
override the get() and post() methods, which are used to distinguish between the
requests by GET and POST. We will also add the get_queryset_and_facets()
and get_page() methods to make the class more modular:
movies/views.py
-*- coding: UTF-8 -*-
from django.shortcuts import render
from django.core.paginator import Paginator, EmptyPage,\
 PageNotAnInteger
from django.views.generic import View

from .models import Genre
from .models import Director
from .models import Actor
from .models import Movie, RATING_CHOICES

Forms and Views

96

from .forms import MovieFilterForm

class MovieListView(View):
 form_class = MovieFilterForm
 template_name = "movies/movie_list.html"
 paginate_by = 15

 def get(self, request, *args, **kwargs):
 form = self.form_class(data=request.GET)
 qs, facets = self.get_queryset_and_facets(form)
 page = self.get_page(request, qs)
 context = {
 "form": form,
 "facets": facets,
 "object_list": page,
 }
 return render(request, self.template_name, context)

 def post(self, request, *args, **kwargs):
 return self.get(request, *args, **kwargs)

 def get_queryset_and_facets(self, form):
 qs = Movie.objects.order_by("title")

 facets = {
 "selected": {},
 "categories": {
 "genres": Genre.objects.all(),
 "directors": Director.objects.all(),
 "actors": Actor.objects.all(),
 "ratings": RATING_CHOICES,
 },
 }
 if form.is_valid():
 genre = form.cleaned_data["genre"]
 if genre:
 facets["selected"]["genre"] = genre
 qs = qs.filter(genres=genre).distinct()

 director = form.cleaned_data["director"]
 if director:
 facets["selected"]["director"] = director
 qs = qs.filter(
 directors=director,

Chapter 3

97

).distinct()

 actor = form.cleaned_data["actor"]
 if actor:
 facets["selected"]["actor"] = actor
 qs = qs.filter(actors=actor).distinct()

 rating = form.cleaned_data["rating"]
 if rating:
 facets["selected"]["rating"] = (
 int(rating),
 dict(RATING_CHOICES)[int(rating)]
)
 qs = qs.filter(rating=rating).distinct()
 return qs, facets

 def get_page(self, request, qs):
 paginator = Paginator(qs, self.paginate_by)

 page_number = request.GET.get("page")
 try:
 page = paginator.page(page_number)
 except PageNotAnInteger:
 # If page is not an integer, show first page.
 page = paginator.page(1)
 except EmptyPage:
 # If page is out of range,
 # show last existing page.
 page = paginator.page(paginator.num_pages)
 return page

How it works…
The following are the things happening in the get() method:

First, we create the form object passing the GET dictionary-like object to it. The GET object
contains all the query variables that are passed using the GET method.

Then, the form is passed to the get_queryset_and_facets() method, which returns a
tuple of the following two elements: the QuerySet and the facets dictionary respectively.

Then, the current request object and QuerySet is passed to the get_page() method,
which returns the current page object.

Lastly, we create a context dictionary and render the response.

Forms and Views

98

There's more…
As you see, the get(), post(), and get_page() methods are generic so that we could
create a generic FilterableListView class with these methods in the utils app. Then,
in any app that requires a filterable list, we could create a class-based view that extends
FilterableListView and defines only the form_class and template_name attributes
and the get_queryset_and_facets() method. This is how class-based views work.

See also
 f The Filtering object lists recipe

 f The Managing paginated lists recipe

Generating PDF documents
Django views allow you to create much more than just HTML pages. You can generate
files of any type. For example, you can create PDF documents for invoices, tickets, booking
confirmations, and so on. In this recipe, we will show you how to generate resumes (curriculum
vitae) in the PDF format out of the data from the database. We will be using the Pisa xhtml2pdf
library, which is very practical as it allows you to use HTML templates to make PDF documents.

Getting ready
First of all, we need to install the xhtml2pdf Python library in your virtual environment:

(myproject_env)$ pip install xhtml2pdf

Then, let's create a cv app containing a simple CV model with the Experience model that is
attached to it through a foreign key. The CV model will have these fields: first name, last name,
and e-mail. The Experience model will have these fields: the start date of a job, the end
date of a job, company, position at that company, and the skills gained:

cv/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.utils.encoding import python_2_unicode_compatible

@python_2_unicode_compatible
class CV(models.Model):
 first_name = models.CharField(_("First name"), max_length=40)
 last_name = models.CharField(_("Last name"), max_length=40)

Chapter 3

99

 email = models.EmailField(_("Email"))

 def __str__(self):
 return self.first_name + " " + self.last_name

@python_2_unicode_compatible
class Experience(models.Model):
 cv = models.ForeignKey(CV)
 from_date = models.DateField(_("From"))
 till_date = models.DateField(_("Till"), null=True, blank=True)
 company = models.CharField(_("Company"), max_length=100)
 position = models.CharField(_("Position"), max_length=100)
 skills = models.TextField(_("Skills gained"), blank=True)

 def __str__(self):
 till = _("present")
 if self.till_date:
 till = self.till_date.strftime("%m/%Y")
 return _("%(from)s-%(till)s %(pos)s at %(company)s") % {
 "from": self.from_date.strftime("%m/%Y"),
 "till": till,
 "pos": self.position,
 "company": self.company,
 }
 class Meta:
 ordering = ("-from_date",)

How to do it…
Execute the following steps to complete the recipe:

1. In the URL rules, let's create a rule for the view that will download a PDF document of
a resume by the ID of the CV model, as follows:
cv/urls.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.conf.urls import patterns, url

urlpatterns = patterns('cv.views',
 url(r'^(?P<cv_id>\d+)/pdf/$', "download_cv_pdf",
name="download_cv_pdf"),
)

Forms and Views

100

2. Now, let's create the download_cv_pdf() view. This view renders an HTML
template and then passes the rendered string to the pisaDocument PDF creator:
cv/views.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
try:
 from cStringIO import StringIO
except ImportError:
 from StringIO import StringIO
from xhtml2pdf import pisa

from django.conf import settings
from django.shortcuts import get_object_or_404
from django.template.loader import render_to_string
from django.http import HttpResponse

from .models import CV

def download_cv_pdf(request, cv_id):
 cv = get_object_or_404(CV, pk=cv_id)

 response = HttpResponse(content_type="application/pdf")
 response["Content-Disposition"] = "attachment; "\
 "filename=%s_%s.pdf" % (
 cv.first_name,
 cv.last_name
)

 html = render_to_string("cv/cv_pdf.html", {
 "cv": cv,
 "MEDIA_ROOT": settings.MEDIA_ROOT,
 "STATIC_ROOT": settings.STATIC_ROOT,
 })
 pdf = pisa.pisaDocument(
 StringIO(html.encode("UTF-8")),
 response,
 encoding="UTF-8",
)
 return response

Chapter 3

101

3. Lastly, we will create the template with which the document will be rendered,
as follows:
{# templates/cv/cv_pdf.html #}
<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8" />
 <title>My Title</title>
 <style type="text/css">
 @page {
 size: "A4";
 margin: 2.5cm 1.5cm 2.5cm 1.5cm;
 @frame footer {
 -pdf-frame-content: footerContent;
 bottom: 0cm;
 margin-left: 0cm;
 margin-right: 0cm;
 height: 1cm;
 }
 }
 #footerContent {
 color: #666;
 font-size: 10pt;
 text-align: center;
 }
 /* … Other CSS Rules go here … */

 </style>
 </head>
 <body>
 <div>
 <h1>Curriculum Vitae</h1>
 <table>
 <tr>
 <td><p>{{ cv.first_name }} {{ cv.last_name
 }}

 Contact: {{ cv.email }}</p>
 </td>
 <td align="right">
 <img src="{{ STATIC_ROOT
 }} /site/img/smiley.jpg"
 width="100" height="100" />
 </td>
 </tr>

Forms and Views

102

 </table>

 <h2>Experience</h2>
 <table>
 {% for experience in cv.experience_set.all %}
 <tr>
 <td valign="top"><p>{{
 experience.from_date|date:"F Y" }} -
 {% if experience.till_date %}
 {{ experience.till_date|date:"F Y" }}
 {% else %}
 present
 {% endif %}

 {{ experience.position }} at {{
 experience.company }}</p>
 </td>
 <td valign="top"><p>Skills gained

 {{ experience.skills|linebreaksbr }}

 </p>
 </td>
 </tr>
 {% endfor %}
 </table>
 </div>
 <pdf:nextpage>
 <div>
 This is an empty page to make a paper plane.
 </div>
 <div id="footerContent">
 Document generated at {% now "Y-m-d" %} |
 Page <pdf:pagenumber> of <pdf:pagecount>
 </div>
 </body>
</html>

Chapter 3

103

How it works…
Go to model administration and enter a CV document. Then, if you access the document's
URL at http://127.0.0.1:8000/en/cv/1/pdf/, you will be asked to download a PDF
document that looks something similar to the following:

Forms and Views

104

How does the view work? First, we load a curriculum vitae by its ID, if it exists, or raise the
page not found error, if it doesn't. Then, we create the response object with the content type
of the PDF document. We set the Content-Disposition header to attachment with the
specified filename. This will force the browsers to open a dialog box prompting us to save
the PDF document and suggesting the specified name for the file. Then, we render the
HTML template as a string passing curriculum vitae object and the MEDIA_ROOT and
STATIC_ROOT paths.

Note that the src attribute of the tag that is used for the
PDF creation needs to point to the file in the filesystem or the full
URL of the online image. Pisa xhtml2pdf will download the image
and include it in the PDF document.

Then, we create a pisaDocument file with the UTF-8-encoded HTML as source and response
object as the destination. The response object is a file-like object and pisaDocument writes
the content of the document to it. The response object is returned by the view as expected.

Let's take a look at the HTML template that is used to create this document. The template has
some unusual markup tags and CSS rules. If we want to have some elements on each page of
the document, we can create CSS frames for that. In the preceding example, the <div> tag
with the footerContent ID is marked as a frame, which will be repeated at the bottom of
each page. In a similar way, we can have a header or background image for each page.

The following are the specific markup tags used in this document:

 f The <pdf:nextpage> tag sets a manual page break

 f The <pdf:pagenumber> tag returns the number of the current page

 f The <pdf:pagecount> tag returns the total number of pages

The current version 0.0.6 of the Pisa xhtml2pdf library doesn't fully support all HTML tags and
CSS rules. There are no publicly-accessible benchmarks to see what exactly is supported and
at what level. Therefore, you would need to experiment in order to make a PDF document look
like in the design requirements. However, this library is still mighty enough for customized
layouts, which can be basically created just with the knowledge of HTML and CSS.

See also
 f The Managing paginated lists recipe

 f The Downloading authorized files recipe

Chapter 3

105

Implementing a multilingual search with
Haystack

One of the main functionalities of content-driven websites is a full-text search. Haystack
is a modular search API that supports the Solr, Elasticsearch, Whoosh, and Xapian search
engines. For each model in your project that has to be findable in the search, you need to
define an index that will read out the textual information from the models and place it into
the backend. In this recipe, you will learn how to set up a search with Haystack and the
Python-based Whoosh search engine for a multilingual website.

Getting ready
In the beginning, let's create a couple of apps with models that will be indexed in the search.
Let's create an ideas app containing the Category and Idea models, as follows:

ideas/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.core.urlresolvers import reverse
from django.core.urlresolvers import NoReverseMatch
from django.utils.encoding import python_2_unicode_compatible
from utils.models import UrlMixin
from utils.fields import MultilingualCharField, MultilingualTextField

@python_2_unicode_compatible
class Category(models.Model):
 title = MultilingualCharField(_("Title"), max_length=200)

 class Meta:
 verbose_name = _("Idea Category")
 verbose_name_plural = _("Idea Categories")

 def __str__(self):
 return self.title

@python_2_unicode_compatible
class Idea(UrlMixin):
 title = MultilingualCharField(_("Title"), max_length=200)
 subtitle = MultilingualCharField(_("Subtitle"), max_length=200,
blank=True)

Forms and Views

106

 description = MultilingualTextField(_("Description"),
 blank=True)
 is_original = models.BooleanField(_("Original"))
 categories = models.ManyToManyField(Category,
 verbose_name=_("Categories"), blank=True,
 related_name="ideas")

 class Meta:
 verbose_name = _("Idea")
 verbose_name_plural = _("Ideas")

 def __str__(self):
 return self.title

 def get_url_path(self):
 try:
 return reverse("idea_detail", kwargs={"id": self.pk})
 except NoReverseMatch:
 return ""

The Idea model has multilingual fields, which means that there is supposed to be a
translation of the content for each language.

Another app will be quotes from the Uploading images recipe with the InspirationalQuote
model, where each quote can just be in any one language from the languages defined in
settings.LANGUAGES and each quote doesn't necessarily have a translation:

quotes/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import os
from django.db import models
from django.utils.timezone import now as timezone_now
from django.utils.translation import ugettext_lazy as _
from django.utils.encoding import python_2_unicode_compatible
from django.conf import settings
from django.core.urlresolvers import reverse
from django.core.urlresolvers import NoReverseMatch

from utils.models import UrlMixin

def upload_to(instance, filename):
 now = timezone_now()
 filename_base, filename_ext = os.path.splitext(filename)
 return 'quotes/%s%s' % (

Chapter 3

107

 now.strftime("%Y/%m/%Y%m%d%H%M%S"),
 filename_ext.lower(),
)

@python_2_unicode_compatible
class InspirationalQuote(UrlMixin):
 author = models.CharField(_("Author"), max_length=200)
 quote = models.TextField(_("Quote"))
 picture = models.ImageField(_("Picture"), upload_to=upload_to,
 blank=True, null=True)
 language = models.CharField(_("Language"), max_length=2,
 blank=True, choices=settings.LANGUAGES)

 class Meta:
 verbose_name = _("Inspirational Quote")
 verbose_name_plural = _("Inspirational Quotes")

 def __str__(self):
 return self.quote

 def get_url_path(self):
 try:
 return reverse("quote_detail", kwargs={"id": self.pk})
 except NoReverseMatch:
 return ""
 # …
 def title(self):
 return self.quote

Put these two apps in INSTALLED_APPS in the settings, create and apply database
migrations, and create the model administration for these models to add some data. Also,
create list and detail views for these models and plug them in the URL rules. If you are having
any difficulty with any of these tasks, familiarize yourself with the concepts in the official
Django tutorial once again: https://docs.djangoproject.com/en/1.8/intro/
tutorial01/.

Make sure you installed django-haystack, whoosh, and django-crispy-forms in your virtual
environment:

(myproject_env)$ pip install django-crispy-forms

(myproject_env)$ pip install django-haystack

(myproject_env)$ pip install whoosh

https://docs.djangoproject.com/en/1.8/intro/tutorial01/
https://docs.djangoproject.com/en/1.8/intro/tutorial01/

Forms and Views

108

How to do it…
Let's set up the multilingual search with Haystack and Whoosh by executing the following steps:

1. Create a search app that will contain the MultilingualWhooshEngine
and search indexes for our ideas and quotes. The search engine will live in the
multilingual_whoosh_backend.py file:
search/multilingual_whoosh_backend.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.conf import settings
from django.utils import translation
from haystack.backends.whoosh_backend import \
 WhooshSearchBackend, WhooshSearchQuery, WhooshEngine
from haystack import connections
from haystack.constants import DEFAULT_ALIAS

class MultilingualWhooshSearchBackend(WhooshSearchBackend):
 def update(self, index, iterable, commit=True,
 language_specific=False):
 if not language_specific and \
 self.connection_alias == "default":
 current_language = (translation.get_language()
 or settings.LANGUAGE_CODE)[:2]
 for lang_code, lang_name in settings.LANGUAGES:
 using = "default_%s" % lang_code
 translation.activate(lang_code)
 backend = connections[using].get_backend()
 backend.update(index, iterable, commit,
 language_specific=True)
 translation.activate(current_language)
 elif language_specific:
 super(MultilingualWhooshSearchBackend, self).\
 update(index, iterable, commit)

class MultilingualWhooshSearchQuery(WhooshSearchQuery):
 def __init__(self, using=DEFAULT_ALIAS):
 lang_code = translation.get_language()[:2]
 using = "default_%s" % lang_code
 super(MultilingualWhooshSearchQuery, self).\
 __init__(using)

class MultilingualWhooshEngine(WhooshEngine):
 backend = MultilingualWhooshSearchBackend
 query = MultilingualWhooshSearchQuery

Chapter 3

109

2. Then, let's create the search indexes, as follows:
search/search_indexes.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.conf import settings
from django.utils.translation import get_language
from haystack import indexes
from ideas.models import Idea
from quotes.models import InspirationalQuote

class IdeaIndex(indexes.SearchIndex, indexes.Indexable):
 text = indexes.CharField(document=True)

 def get_model(self):
 return Idea

 def index_queryset(self, using=None):
 """Used when the entire index for model
 is updated."""
 return self.get_model().objects.all()

 def prepare_text(self, obj):
 # this will be called for each language / backend
 return "\n".join((
 obj.title,
 obj.subtitle,
 obj.description,
 "\n".join([cat.title
 for cat in obj.categories.all()
]),
))

class InspirationalQuoteIndex(indexes.SearchIndex,
 indexes.Indexable):
 text = indexes.CharField(document=True)

 def get_model(self):
 return InspirationalQuote

 def index_queryset(self, using=None):
 """Used when the entire index for model
 is updated."""
 if using and using != "default":

Forms and Views

110

 lang_code = using.replace("default_", "")
 else:
 lang_code = settings.LANGUAGE_CODE[:2]
 return self.get_model().objects.filter(language=lang_code)

 def prepare_text(self, obj):
 # this will be called for each language / backend
 return "\n".join((
 obj.author,
 obj.quote,
))

3. Later, configure the settings to use our MultilingualWhooshEngine:
INSTALLED_APPS = (
 # …
 # third party
 "crispy_forms",
 "haystack",
 # project-specific
 "quotes",
 "utils",
 "ideas",
 "search",
)
LANGUAGE_CODE = "en"
LANGUAGES = (
 ("en", "English"),
 ("de", "Deutsch"),
 ("fr", "Français"),
 ("lt", "Lietuvių kalba"),
)
CRISPY_TEMPLATE_PACK = "bootstrap3"
HAYSTACK_CONNECTIONS = {
 "default": {
 "ENGINE": "search.multilingual_whoosh_backend."\
 "MultilingualWhooshEngine",
 "PATH": os.path.join(PROJECT_PATH, "myproject",
 "tmp", "whoosh_index_en"),
 },
 "default_en": {
 "ENGINE": "search.multilingual_whoosh_backend."\
 "MultilingualWhooshEngine",
 "PATH": os.path.join(PROJECT_PATH, "myproject",
 "tmp", "whoosh_index_en"),

Chapter 3

111

 },
 "default_de": {
 "ENGINE": "search.multilingual_whoosh_backend."\
 "MultilingualWhooshEngine",
 "PATH": os.path.join(PROJECT_PATH, "myproject",
 "tmp", "whoosh_index_de"),
 },
 "default_fr": {
 "ENGINE": "search.multilingual_whoosh_backend."\
 "MultilingualWhooshEngine",
 "PATH": os.path.join(PROJECT_PATH, "myproject",
 "tmp", "whoosh_index_fr"),
 },
 "default_lt": {
 "ENGINE": "search.multilingual_whoosh_backend."\
 "MultilingualWhooshEngine",
 "PATH": os.path.join(PROJECT_PATH, "myproject",
 "tmp", "whoosh_index_lt"),
 },
}

4. Now, we need to define the URL rules for the search view:
myproject/urls.py
-*- coding: UTF-8 -*-
from django.conf.urls import patterns, include, url
from django.core.urlresolvers import reverse_lazy
from django.utils.translation import string_concat
from django.utils.translation import ugettext_lazy as _
from django.conf.urls.i18n import i18n_patterns

from crispy_forms.helper import FormHelper
from crispy_forms import layout, bootstrap
from haystack.views import SearchView

class CrispySearchView(SearchView):
 def extra_context(self):
 helper = FormHelper()
 helper.form_tag = False
 helper.disable_csrf = True
 return {"search_helper": helper}

urlpatterns = i18n_patterns('',
 # …
 url(r'^search/$', CrispySearchView(),

Forms and Views

112

 name='haystack_search'),
 # …
)

5. Then, here comes the template for the search form and search results, as shown in
the following:
{# templates/search/search.html #}
{% extends "base.html" %}
{% load i18n crispy_forms_tags utility_tags %}

{% block content %}
 <h2>{% trans "Search" %}</h2>
 <form method="get" action="{{ request.path }}">
 <div class="well clearfix">
 {% crispy form search_helper %}
 <p class="pull-right">
 <input class="btn btn-primary" type="submit"
value="Search">
 </p>
 </div>
 </form>

 {% if query %}
 <h3>{% trans "Results" %}</h3>

 {% for result in page.object_list %}
 <p>

 {{ result.object.title }}

 </p>
 {% empty %}
 <p>{% trans "No results found." %}</p>
 {% endfor %}

 {% if page.has_previous or page.has_next %}
 <nav>
 <ul class="pager">
 <li class="previous">
 {% if page.has_previous %}<a href="{%
modify_query page=page.previous_page_number %}">{% endif %}

Chapter 3

113

 «</
span>
 {% if page.has_previous %}{% endif %}

 <li class="next">
 {% if page.has_next %}<a href="{% modify_
query page=page.next_page_number %}">{% endif %}
 »</
span>
 {% if page.has_next %}{% endif %}

 </nav>
 {% endif %}
 {% endif %}
{% endblock %}

6. Call the rebuild_index management command in order to index the database
data and prepare the full-text search to be used:
(myproject_env)$ python manage.py rebuild_index --noinput

How it works…
The MultilingualWhooshEngine specifies two custom properties: backend and
query. The custom MultilingualWhooshSearchBackend backend ensures that, for
each language, the items will be indexed just in that language and put under the specific
Haystack index location that is defined in the HAYSTACK_CONNECTIONS setting. The
MultilingualWhooshSearchQuery custom query ensures that when searching for
keywords, the specific Haystack connection of the current language will be used.

Each index has a field text, where full-text from a specific language of a model will be
stored. The model for the index is defined by the get_model() method, QuerySet to index
is defined by the index_queryset() method, and text to search in gets collected in the
prepare_text() method.

Forms and Views

114

As we want to have a nice Bootstrap 3 form, we will be passing FormHelper from django-
crispy-forms to the search view. We can do that by overriding the extra_context()
method of SearchView. The final search form will look similar to the following:

The easiest way to regularly update the search index is to call the rebuild_index
management command by a cron job every night. To learn about it, check the Setting up cron
jobs for regular tasks recipe in Chapter 11, Testing and Deployment.

See also
 f The Creating form layout with django-crispy-forms recipe

 f The Downloading authorized file recipe

 f The Setting up cron jobs for regular tasks recipe in Chapter 11, Testing and Deployment

115

4
Templates and

JavaScript

In this chapter, we will cover the following topics:

 f Arranging the base.html template

 f Including JavaScript settings

 f Using HTML5 data attributes

 f Opening object details in a modal dialog

 f Implementing a continuous scroll

 f Implementing the Like widget

 f Uploading images by Ajax

Introduction
We are living in the Web2.0 world, where social web applications and smart websites
communicate between servers and clients using Ajax, refreshing whole pages only when the
context changes. In this chapter, you will learn best practices to deal with JavaScript in your
templates in order to create a rich user experience. For responsive layouts, we will use the
Bootstrap 3 frontend framework. For productive scripting, we will use the jQuery JavaScript
framework.

Templates and JavaScript

116

Arranging the base.html template
When you start working on templates, one of the first actions is to create the base.html
boilerplate, which will be extended by most of the page templates in your project. In this
recipe, we will demonstrate how to create such template for multilingual HTML5 websites
with responsiveness in mind.

Responsive websites are the ones that adapt to the viewport of
the device whether the visitor uses desktop browsers, tablets,
or phones.

Getting ready
Create the templates directory in your project and set TEMPLATE_DIRS in the settings.

How to do it…
Perform the following steps:

1. In the root directory of your templates, create a base.html file with the following
content:
{# templates/base.html #}
<!DOCTYPE html>
{% load i18n %}
<html lang="{{ LANGUAGE_CODE }}">
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-
scale=1" />
 <title>{% block title %}{% endblock %}{% trans "My Website"
%}</title>
 <link rel="icon" href="{{ STATIC_URL }}site/img/favicon.ico"
type="image/png" />

 {% block meta_tags %}{% endblock %}

 {% block base_stylesheet %}
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.
com/bootstrap/3.3.5/css/bootstrap.min.css" />
 <link href="{{ STATIC_URL }}site/css/style.css"
rel="stylesheet" media="screen" type="text/css" />
 {% endblock %}

Chapter 4

117

 {% block stylesheet %}{% endblock %}

 {% block base_js %}
 <script src="//code.jquery.com/jquery-1.11.3.min.js"></
script>
 <script src="//code.jquery.com/jquery-migrate-1.2.1.min.
js"></script>
 <script src="https://maxcdn.bootstrapcdn.com/
bootstrap/3.3.5/js/bootstrap.min.js"></script>
 <script src="{% url "js_settings" %}"></script>
 {% endblock %}

 {% block js %}{% endblock %}
 {% block extrahead %}{% endblock %}
</head>
<body class="{% block bodyclass %}{% endblock %}">
 {% block page %}
 <section class="wrapper">
 <header class="clearfix container">
 <h1>{% trans "My Website" %}</h1>
 {% block header_navigation %}
 {% include "utils/header_navigation.html" %}
 {% endblock %}
 {% block language_chooser %}
 {% include "utils/language_chooser.html" %}
 {% endblock %}
 </header>
 <div id="content" class="clearfix container">
 {% block content %}
 {% endblock %}
 </div>
 <footer class="clearfix container">
 {% block footer_navigation %}
 {% include "utils/footer_navigation.html" %}
 {% endblock %}
 </footer>
 </section>
 {% endblock %}
 {% block extrabody %}{% endblock %}
</body>
</html>

Templates and JavaScript

118

2. In the same directory, create another file named base_simple.html for specific
cases, as follows:
{# templates/base_simple.html #}
{% extends "base.html" %}

{% block page %}
 <section class="wrapper">
 <div id="content" class="clearfix">
 {% block content %}
 {% endblock %}
 </div>
 </section>
{% endblock %}

How it works…
The base template contains the <head> and <body> sections of the HTML document with
all the details that are reused on each page of the website. Depending on the web design
requirements, you can have additional base templates for different layouts. For example, we
added the base_simple.html file, which has the same HTML <head> section and a very
minimalistic <body> section; and it can be used for the login screen, password reset, or other
simple pages. You can have separate base templates for single-column, two-column, and
three-column layouts, where each of them extends base.html and overwrites the content of
the <body> section.

Let's look into the details of the base.html template that we defined earlier.

In the <head> section, we define UTF-8 as the default encoding to support multilingual
content. Then, we have the viewport definition that will scale the website in the browser
in order to use the full width. This is necessary for small-screen devices that will get
specific screen layouts created with the Bootstrap frontend framework. Of course, there is
a customizable website title and the favicon will be shown in the browser's tab. We have
extendable blocks for meta tags, style sheets, JavaScript, and whatever else that might be
necessary for the <head> section. Note that we load the Bootstrap CSS and JavaScript in
the template as we want to have responsive layouts and basic solid predefined styles for all
elements. Then, we load the JavaScript jQuery library that efficiently and flexibly allows us
to create rich user experiences. We also load JavaScript settings that are rendered from a
Django view. You will learn about this in the next recipe.

In the <body> section, we have the header with an overwritable navigation and a language
chooser. We also have the content block and footer. At the very bottom, there is an extendable
block for additional markup or JavaScript.

Chapter 4

119

The base template that we created is, by no means, a static unchangeable template. You can
add to it the elements that you need, for example, Google Analytics code, common JavaScript
files, the Apple touch icon for iPhone bookmarks, Open Graph meta tags, Twitter Card tags,
schema.org attributes, and so on.

See also
 f The Including JavaScript settings recipe

Including JavaScript settings
Each Django project has its configuration set in the conf/base.py or settings.py
settings file. Some of these configuration values also need to be set in JavaScript. As we
want a single location to define our project settings, and we don't want to repeat the process
when setting the configuration for the JavaScript values, it is a good practice to include a
dynamically generated configuration file in the base template. In this recipe, we will see how to
do that.

Getting ready
Make sure that you have the media, static, and request context processors set in the
TEMPLATE_CONTEXT_PROCESSORS setting, as follows:

conf/base.py or settings.py
TEMPLATE_CONTEXT_PROCESSORS = (
 "django.contrib.auth.context_processors.auth",
 "django.core.context_processors.debug",
 "django.core.context_processors.i18n",
 "django.core.context_processors.media",
 "django.core.context_processors.static",
 "django.core.context_processors.tz",
 "django.contrib.messages.context_processors.messages",
 "django.core.context_processors.request",
)

Also, create the utils app if you haven't done so already and place it under INSTALLED_
APPS in the settings.

Templates and JavaScript

120

How to do it…
Follow these steps to create and include the JavaScript settings:

1. Create a URL rule to call a view that renders JavaScript settings, as follows:
urls.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.conf.urls import patterns, include, url
from django.conf.urls.i18n import i18n_patterns

urlpatterns = i18n_patterns("",
 # …
 url(r"^js-settings/$", "utils.views.render_js",
 {"template_name": "settings.js"},
 name="js_settings",
),
)

2. In the views of your utils app, create the render_js() view that returns a
response of the JavaScript content type, as shown in the following:
utils/views.py
-*- coding: utf-8 -*-
from __future__ import unicode_literals
from datetime import datetime, timedelta
from django.shortcuts import render
from django.views.decorators.cache import cache_control

@cache_control(public=True)
def render_js(request, cache=True, *args, **kwargs):
 response = render(request, *args, **kwargs)
 response["Content-Type"] = \
 "application/javascript; charset=UTF-8"
 if cache:
 now = datetime.utcnow()
 response["Last-Modified"] = \
 now.strftime("%a, %d %b %Y %H:%M:%S GMT")
 # cache in the browser for 1 month
 expires = now + timedelta(days=31)

 response["Expires"] = \
 expires.strftime("%a, %d %b %Y %H:%M:%S GMT")
 else:
 response["Pragma"] = "No-Cache"
 return response

Chapter 4

121

3. Create a settings.js template that returns JavaScript with the global settings
variable, as follows:
templates/settings.js
window.settings = {
 MEDIA_URL: '{{ MEDIA_URL|escapejs }}',
 STATIC_URL: '{{ STATIC_URL|escapejs }}',
 lang: '{{ LANGUAGE_CODE|escapejs }}',
 languages: { {% for lang_code, lang_name in LANGUAGES %}'{{
lang_code|escapejs }}': '{{ lang_name|escapejs }}'{% if not
forloop.last %},{% endif %} {% endfor %} }
};

4. Finally, if you haven't done it yet, include the rendered JavaScript settings file in the
base template, as shown in the following:
templates/base.html
<script src="{% url "js_settings" %}"></script>

How it works…
The Django template system is very flexible; you are not limited to using templates just for
HTML. In this example, we will dynamically create the JavaScript file. You can access it in your
development web server at http://127.0.0.1:8000/en/js-settings/ and its content
will be something similar to the following:

window.settings = {
 MEDIA_URL: '/media/',
 STATIC_URL: '/static/20140424140000/',
 lang: 'en',
 languages: { 'en': 'English', 'de': 'Deutsch', 'fr': 'Français',
'lt': 'Lietuvi kalba' }
};

The view will be cacheable in both server and browser.

If you want to pass more variables to the JavaScript settings, either create a custom view
and pass all the values to the context or create a custom context processor and pass all the
values there. In the latter case, the variables will also be accessed in all the templates of your
project. For example, you might have indicators such as {{ is_mobile }}, {{ is_tablet
}}, and {{ is_desktop }} in your templates, with the user agent string telling whether the
visitor uses a mobile, tablet, or desktop browser.

Templates and JavaScript

122

See also
 f The Arranging the base.html template recipe

 f The Using HTML5 data attributes recipe

Using HTML5 data attributes
When you have dynamic data related to the DOM elements, you need a more efficient way
to pass the values from Django to JavaScript. In this recipe, we will see a way to attach data
from Django to custom HTML5 data attributes and then describe how to read the data from
JavaScript with two practical examples. The first example will be an image that changes its
source, depending on the viewport, so that the smallest version is shown on mobile devices,
the medium-sized version is shown on tablets, and the biggest high-quality image is shown for
the desktop version of the website. The second example will be a Google Map with a marker
at a specified geographical position.

Getting ready
To get started, perform the following steps:

1. Create a locations app with a Location model, which will at least have the title
character field, the slug field for URLs, the small_image, medium_image, and
large_image image fields, and the latitude and longitude floating-point fields.

The term slug comes from newspaper editing and it means a short string
without any special characters; just letters, numbers, underscores, and
hyphens. Slugs are generally used to create unique URLs.

2. Create an administration for this model and enter a sample location.

3. Lastly, create a detailed view for the location and set the URL rule for it.

How to do it…
Perform the following steps:

1. As we already have the app created, we will now need the template for the
location detail:
{# templates/locations/location_detail.html #}
{% extends "base.html" %}

{% block content %}

Chapter 4

123

 <h2>{{ location.title }}</h2>

 <img class="img-full-width"
 src="{{ location.small_image.url }}"
 data-small-src="{{ location.small_image.url }}"
 data-medium-src="{{ location.medium_image.url }}"
 data-large-src="{{ location.large_image.url }}"
 alt="{{ location.title|escape }}"
 />

 <div id="map"
 data-latitude="{{ location.latitude|stringformat:"f" }}"
 data-longitude="{{ location.longitude|stringformat:"f" }}"
 ></div>
{% endblock %}

{% block extrabody %}
 <script src="https://maps-api-ssl.google.com/maps/api/js?v=3"></
script>
 <script src="{{ STATIC_URL }}site/js/location_detail.js"></
script>
{% endblock %}

2. Besides the template, we need the JavaScript file that will read out the HTML5 data
attributes and use them accordingly, as follows:
//site_static/site/js/location_detail.js
jQuery(function($) {

function show_best_images() {
 $('img.img-full-width').each(function() {
 var $img = $(this);
 if ($img.width() > 1024) {
 $img.attr('src', $img.data('large-src'));
 } else if ($img.width() > 468) {
 $img.attr('src', $img.data('medium-src'));
 } else {
 $img.attr('src', $img.data('small-src'));
 }
 });
}

function show_map() {

Templates and JavaScript

124

 var $map = $('#map');
 var latitude = parseFloat($map.data('latitude'));
 var longitude = parseFloat($map.data('longitude'));
 var latlng = new google.maps.LatLng(latitude, longitude);

 var map = new google.maps.Map($map.get(0), {
 zoom: 15,
 center: latlng
 });
 var marker = new google.maps.Marker({
 position: latlng,
 map: map
 });
}show_best_images();show_map();

$(window).on('resize', show_best_images);

});

3. Finally, we need to set some CSS, as shown in the following:
/* site_static/site/css/style.css */
img.img-full-width {
 width: 100%;
}
#map {
 height: 300px;
}

Chapter 4

125

How it works…
If you open your location detail view in a browser, you will see something similar to the
following in the large window:

Templates and JavaScript

126

If you resize the browser window to 468 pixels or less, the image will change to its smallest
version, as shown in the following:

Let's take a look at the code. In the template, we have an image tag with an img-full-
width CSS class and its source is set to the smallest image by default. This image tag also
has data-small-src, data-medium-src, and data-large-src custom attributes. In
the JavaScript, the show_best_images() function is called when the page is loaded or
the window is resized. The function goes through all images with the img-full-width CSS
class and sets appropriate image sources from the custom data attributes, depending on the
current image width.

Chapter 4

127

Then, there is a <div> element with the map ID and the data-latitude and data-
longitude custom attributes in the template. In the JavaScript, a show_map() function is
called when the page is loaded. This function will create a Google Map in the <div> element.
At first, the custom attributes are read and converted from strings to floating-point values.
Then, the LatLng object is created that, in the next steps, becomes the center of the map
and the geographical position of the marker shown on this map.

See also
 f The Including JavaScript settings recipe

 f The Opening object details in a modal dialog recipe

 f The Inserting a map into a change form recipe in Chapter 6, Model Administration

Opening object details in a modal dialog
In this recipe, we will create a list of links to the locations, which when clicked, opens a
Bootstrap 3 modal dialog (we will call it pop up in this recipe) with some information about
the location and the more… link leading to the location detail page. The content for the dialog
will be loaded by Ajax. For visitors without JavaScript, the detail page will open immediately,
without this intermediate step.

Getting ready
Let's start with the locations app that we created in the previous recipe.

In the urls.py file, we will have three URL rules; one for the location list, other for the
location detail, and the third one for the dialog, as follows:

locations/urls.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.conf.urls import patterns, url

urlpatterns = patterns("locations.views",
 url(r"^$", "location_list", name="location_list"),
 url(r"^(?P<slug>[^/]+)/$", "location_detail",
 name="location_detail"),
 url(r"^(?P<slug>[^/]+)/popup/$", "location_detail_popup",
 name="location_detail_popup"),
)

Templates and JavaScript

128

Consequently, there will be three simple views, as shown in the following:

locations/views.py
from __future__ import unicode_literals
-*- coding: UTF-8 -*-
from django.shortcuts import render, get_object_or_404
from .models import Location

def location_list(request):
 location_list = Location.objects.all()
 return render(request, "locations/location_list.html",
 {"location_list": location_list})

def location_detail(request, slug):
 location = get_object_or_404(Location, slug=slug)
 return render(request, "locations/location_detail.html",
 {"location": location})

def location_detail_popup(request, slug):
 location = get_object_or_404(Location, slug=slug)
 return render(request, "locations/location_detail_popup.html",
 {"location": location})

How to do it…
Execute these steps one by one:

1. Create a template for the location's list view with a hidden empty modal dialog at the
end. Each listed location will have custom HTML5 data attributes dealing with the
pop-up information, as follows:
{# templates/locations/location_list.html #}
{% extends "base.html" %}
{% load i18n %}

{% block content %}
 <h2>{% trans "Locations" %}</h2>

 {% for location in location_list %}
 <li class="item">
 <a href="{% url "location_detail" slug=location.
slug %}"
 data-popup-url="{% url "location_detail_popup"
slug=location.slug %}"
 data-popup-title="{{ location.title|escape }}">

Chapter 4

129

 {{ location.title }}

 {% endfor %}

{% endblock %}

{% block extrabody %}
 <div id="popup" class="modal fade">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-
dismiss="modal" aria-hidden="true">×</button>
 <h4 class="modal-title">Modal title</h4>
 </div>
 <div class="modal-body">
 </div>
 </div>
 </div>
 </div>
 <script src="{{ STATIC_URL }}site/js/location_list.js"></
script>
{% endblock %}

2. We need JavaScript to handle the opening of the dialog and loading the content
dynamically:
// site_static/site/js/location_list.js
jQuery(function($) {
 var $popup = $('#popup');

 $('body').on('click', '.item a', function(e) {
 e.preventDefault();
 var $link = $(this);
 var popup_url = $link.data('popup-url');
 var popup_title = $link.data('popup-title');

 if (!popup_url) {
 return true;
 }
 $('.modal-title', $popup).html(popup_title);
 $('.modal-body', $popup).load(popup_url, function() {
 $popup.on('shown.bs.modal', function () {

Templates and JavaScript

130

 // do something when dialog is shown
 }).modal("show");
 });

 $('.close', $popup).click(function() {
 // do something when dialog is closing
 });

 });
});

3. Finally, we will create a template for the content that will be loaded in the modal
dialog, as shown in the following:
{# templates/locations/location_detail_popup.html #}
{% load i18n %}
<p><img src="{{ location.small_image.url }}" alt="{{ location.
title|escape }}" /></p>

<p class="clearfix">
 <a href="{% url "location_detail" slug=location.slug %}"
 class="btn btn-default pull-right">
 {% trans "More" %}

</p>

Chapter 4

131

How it works…
If we go to the location's list view in a browser and click on one of the locations, we will see a
modal dialog similar to the following:

How does this work? In the template, there is a <div> element with the item CSS class and
a link for each location. The links have the data-popup-url and data-popup-title
custom attributes. In the JavaScript, when the page is loaded, we assign an onclick handler
for the <body> tag. The handler checks if any link inside the tag with the item CSS class
was clicked. For each such clicked link the custom attributes are read as popup_url and
popup_title, the new title is set for the hidden dialog box, the content is loaded in the
modal dialog using Ajax, and then it is shown to the visitor.

Templates and JavaScript

132

See also
 f The Using HTML5 data attributes recipe

 f The Implementing a continuous scroll recipe

 f The Implementing the Like widget recipe

Implementing a continuous scroll
Social websites often have the feature of continuous scrolling, which is also known as infinite
scrolling. There are long lists of items and as you scroll the page down, new items are loaded
and attached to the bottom automatically. In this recipe, we will see how to achieve such an
effect with Django and the jScroll jQuery plugin. We'll illustrate this using a sample view showing
the top 250 movies of all time from Internet Movie Database (http://www.imdb.com/).

Getting ready
First, download the jScroll plugin from the following link: https://github.com/
pklauzinski/jscroll.

Put the jquery.jscroll.js and jquery.jscroll.min.js files from the package in the
myproject/site_static/site/js/ directory.

Next, for this example, you will create a movies app with a paginated list view for the movies.
You can either create a Movie model or a list of dictionaries with the movie data. Every movie
will have rank, title, release year, and rating fields.

How to do it…
Perform the following steps to create an continuously scrolling page:

1. The first step is to create a template for the list view that will also show a link to the
next page, as follows:
{# templates/movies/movie_list.html #}
{% extends "base.html" %}
{% load i18n utility_tags %}

{% block content %}
 <h2>{% trans "Top Movies" %}</h2>
 <div class="object_list">
 {% for movie in object_list %}
 <div class="item">
 <p>{{ movie.rank }}.

http://www.imdb.com/
https://github.com/pklauzinski/jscroll
https://github.com/pklauzinski/jscroll

Chapter 4

133

 {{ movie.title }}
 ({{ movie.year }})
 {% trans "IMDB rating" %}:
{{ movie.rating }}
 </p>
 </div>
 {% endfor %}
 {% if object_list.has_next %}
 <p class="pagination"><a class="next_page" href="{%
modify_query page=object_list.next_page_number %}">{% trans
"More…" %}</p>
 {% endif %}
 </div>
{% endblock %}

{% block extrabody %}
 <script src="{{ STATIC_URL }}site/js/jquery.jscroll.min.js"></
script>
 <script src="{{ STATIC_URL }}site/js/list.js"></script>
{% endblock %}

2. The second step is to add JavaScript, as shown in the following:
// site_static/site/js/list.js
jQuery(function($) {
 $('.object_list').jscroll({
 loadingHtml: '<img src="' + settings.STATIC_URL + 'site/
img/loading.gif" alt="Loading" />',
 padding: 100,
 pagingSelector: '.pagination',
 nextSelector: 'a.next_page:last',
 contentSelector: '.item,.pagination'
 });
});

How it works…
When you open the movie list view in a browser; a predefined number of items, for example,
25, is shown on the page. As you scroll down, an additional 25 items and the next pagination
link are loaded and appended to the item container. Then, the third page of the items is
loaded and attached at the bottom, and this continues until there are no more pages left
to display.

Templates and JavaScript

134

Upon the page load, the <div> tag in JavaScript that has the object_list CSS class and
contains the items and pagination links will become a jScroll object. The following parameters
define its features:

 f loadingHtml: This sets an animated loading indicator shown at the end of the list
when a new page is loading

 f padding: This will define that the new page has to be loaded, when there are 100
pixels between the scrolling position and the end of the scrolling area

 f pagingSelector: This CSS selector finds the HTML elements that will be hidden in
the browsers with JavaScript switched on

 f nextSelector: This CSS selector finds the HTML elements that will be used to read
the URL of the next page

 f contentSelector: This CSS selector defines the HTML elements to be taken out of
the loaded content and put in the container

See also
 f The Managing paginated lists recipe in Chapter 3, Forms and Views

 f The Composing class-based views recipe in Chapter 3, Forms and Views

 f The Including JavaScript settings recipe

Implementing the Like widget
Nowadays, social websites usually have integrated Facebook, Twitter, and Google+ widgets
to like and share pages. In this recipe, I will guide you through a similar internal liking Django
app that saves all the likes in your database so that you can create specific views based on
the things that are liked on your website. We will create a Like widget with a two-state button
and badge showing the number of total likes. The following are the states:

 f Inactive state, where you can click on a button to activate it:

Chapter 4

135

 f Active state, where you can click on a button to deactivate it:

The state of the widget will be handled by Ajax calls.

Getting ready
First, create a likes app with a Like model, which has a foreign-key relation to the user
that is liking something and a generic relationship to any object in the database. We will use
ObjectRelationMixin, which we defined in the Creating a model mixin to handle generic
relations recipe in Chapter 2, Database Structure. If you don't want to use the mixin, you can
also define a generic relation in the following model yourself:

likes/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.conf import settings
from django.utils.encoding import python_2_unicode_compatible
from utils.models import CreationModificationDateMixin
from utils.models import object_relation_mixin_factory

@python_2_unicode_compatible
class Like(CreationModificationDateMixin,
object_relation_mixin_factory(is_required=True)):
 user = models.ForeignKey(settings.AUTH_USER_MODEL)

 class Meta:
 verbose_name = _("like")
 verbose_name_plural = _("likes")
 ordering = ("-created",)

 def __str__(self):
 return _(u"%(user)s likes %(obj)s") % {
 "user": self.user,
 "obj": self.content_object,
 }

Templates and JavaScript

136

Also, make sure that the request context processor is set in the settings. We also need an
authentication middleware in the settings for the currently logged-in user attached to the request:

conf/base.py or settings.py
TEMPLATE_CONTEXT_PROCESSORS = (
 # …
 "django.core.context_processors.request",
)
MIDDLEWARE_CLASSES = (
 # …
 "django.contrib.auth.middleware.AuthenticationMiddleware",
)

How to do it…
Execute these steps one by one:

1. In the likes app, create a templatetags directory with an empty __init__.py
file in order to make it a Python module. Then, add the likes_tags.py file, where
we'll define the {% like_widget %} template tag as follows:
likes/templatetags/likes_tags.py
-*- coding: UTF-8 -*-
from django import template
from django.contrib.contenttypes.models import ContentType
from django.template import loader

from likes.models import Like

register = template.Library()

TAGS

@register.tag
def like_widget(parser, token):
 try:
 tag_name, for_str, obj = token.split_contents()
 except ValueError:
 raise template.TemplateSyntaxError, \
 "%r tag requires a following syntax: " \
 "{%% %r for <object> %%}" % (
 token.contents[0], token.contents[0])
 return ObjectLikeWidget(obj)

class ObjectLikeWidget(template.Node):

Chapter 4

137

 def __init__(self, obj):
 self.obj = obj

 def render(self, context):
 obj = template.resolve_variable(self.obj, context)
 ct = ContentType.objects.get_for_model(obj)

 is_liked_by_user = bool(Like.objects.filter(
 user=context["request"].user,
 content_type=ct,
 object_id=obj.pk,
))

 context.push()
 context["object"] = obj
 context["content_type_id"] = ct.pk
 context["is_liked_by_user"] = is_liked_by_user
 context["count"] = get_likes_count(obj)

 output = loader.render_to_string(
 "likes/includes/like.html", context)
 context.pop()
 return output

2. Also, we'll add a filter in the same file to get the number of likes for a specified object:
FILTERS

@register.filter
def get_likes_count(obj):
 ct = ContentType.objects.get_for_model(obj)
 return Like.objects.filter(
 content_type=ct,
 object_id=obj.pk,
).count()

3. In the URL rules, we need a rule for a view, which will handle the liking and unliking
using Ajax:
likes/urls.py
-*- coding: UTF-8 -*-
from django.conf.urls import patterns, url

urlpatterns = patterns("likes.views",

 url(r"^(?P<content_type_id>[^/]+)/(?P<object_id>[^/]+)/$",

Templates and JavaScript

138

 "json_set_like", name="json_set_like"),
)

4. Then, we need to define the view, as shown in the following:
likes/views.py
-*- coding: UTF-8 -*-
import json
from django.http import HttpResponse
from django.views.decorators.cache import never_cache
from django.contrib.contenttypes.models import ContentType
from django.shortcuts import render
from django.views.decorators.csrf import csrf_exempt

from .models import Like
from .templatetags.likes_tags import get_likes_count

@never_cache
@csrf_exempt
def json_set_like(request, content_type_id, object_id):
 """
 Sets the object as a favorite for the current user
 """
 result = {
 "success": False,
 }
 if request.user.is_authenticated() and \
 request.method == "POST":
 content_type = ContentType.objects.get(id=content_type_id)
 obj = content_type.get_object_for_this_type(pk=object_id)
 like, is_created = Like.objects.get_or_create(
 content_type=ContentType.objects.get_for_model(obj),
 object_id=obj.pk,
 user=request.user,
)
 if not is_created:
 like.delete()
 result = {
 "success": True,
 "obj": unicode(obj),
 "action": is_created and "added" or "removed",
 "count": get_likes_count(obj),
 }
 json_str = json.dumps(result, ensure_ascii=False,
 encoding="utf8")

Chapter 4

139

 return HttpResponse(json_str,
 mimetype="application/json; charset=utf-8")

5. In the template for the list or detail view of any object, we can add the template
tag for the widget. Let's add the widget to the location detail that we created in the
previous recipes, as follows:
{# templates/locations/location_detail.html #}
{% extends "base.html" %}
{% load likes_tags %}

{% block content %}
 {% if request.user.is_authenticated %}
 {% like_widget for location %}
 {% endif %}
 {# the details of the object go here… #}
{% endblock %}

{% block extrabody %}
 <script src="{{ STATIC_URL }}site/js/likes.js"></script>
{% endblock %}

6. Then, we need a template for the widget, as shown in the following:
{# templates/likes/includes/like.html #}
{% load i18n %}
<div class="like-widget">
 <button type="button" class="like-button btn btn-default {% if
is_liked_by_user %} active{% endif %}"
 data-href="{% url "json_set_like" content_type_id=content_
type_id object_id=object.pk %}"
 data-like-text="{% trans "Like" %}"
 data-unlike-text="{% trans "Unlike" %}"
 >
 {% if is_liked_by_user %}

 {% trans "Unlike" %}
 {% else %}

 {% trans "Like" %}
 {% endif %}
 </button>
 {{ count }}
</div>

Templates and JavaScript

140

7. Finally, we create JavaScript to handle the liking and unliking action in the browser,
as follows:
// site_static/site/js/likes.js
(function($) {
 $(document).on('click', '.like-button', function() {
 var $button = $(this);
 var $badge = $button.closest('.like-widget')
 .find('.like-badge');
 $.post($button.data('href'), function(data) {
 if (data['action'] == 'added') {
 $button.addClass('active').html(
' ' +
$button.data('unlike-text')
);
 } else {
 $button.removeClass('active').html(
' ' +
$button.data('like-text')
);
 }
 $badge.html(data['count']);
 }, 'json');
 });
})(jQuery);

How it works…
For any object in your website, you can put the {% like_widget for object %} template
tag that will check whether the object is already liked and will show an appropriate state. The
data-href, data-like-text, and data-unlike-text custom HTML5 attributes are
in the widget template. The first attribute holds a unique object-specific URL to change the
current state of the widget. The other two attributes hold the translated texts for the widget.
In the JavaScript, liking buttons are recognized by the like button CSS class. A click-event
listener attached to the document watches for the onClick events from each such button
and then posts an Ajax call to the URL that is specified by the data-href attribute. The
specified view accepts two of the parameters, content type and object ID, of the liked object.
The view checks whether Like for the specified object exists, and if it does, the view removes
it; otherwise the Like object is added. As a result, the view returns a JSON response with the
success status, liked object's text representation, the action whether the Like object was
added or removed, and the total number of likes. Depending on the action that is returned,
JavaScript will show an appropriate state for the button.

Chapter 4

141

You can debug the Ajax responses in the Chrome Developer Tools or Firefox Firebug plugin. If
any server errors occur while developing, you will see the error trace back in the preview of the
response, otherwise you will see the returned JSON as shown in the following screenshot:

See also
 f The Opening object details in a modal dialog recipe

 f The Implementing a continuous scroll recipe

 f The Uploading images by Ajax recipe

 f The Creating a model mixin to handle generic relations recipe in Chapter 2,
Database Structure

 f Chapter 5, Custom Template Filters and Tags

Uploading images by Ajax
File uploads using Ajax has become the de facto standard on the web. People want to see
what they have chosen right after selecting a file instead of seeing it after submitting a form.
Also, if the form has validation errors, nobody wants to select the files again; the file should
still be selected in the form with validation errors.

There is a third-party app, django-ajax-uploader, that can be used to upload images with
Ajax. In this recipe, we will see how to do this.

Templates and JavaScript

142

Getting ready
Let's start with the quotes app that we created for the Uploading images recipe in Chapter 3,
Forms and Views. We will reuse the model and view; however, we'll create a different form and
template and add JavaScript too.

Install django-crispy-forms and django-ajax-uploader in your local environment
using the following commands:

(myproject)$ pip install django-crispy-forms

(myproject)$ pip install ajaxuploader

Don't forget to put these apps in INSTALLED_APPS, as follows:

conf/base.py or settings.py
INSTALLED_APPS = (
 # …
 "quotes",
 "crispy_forms",
 "ajaxuploader",
)

How to do it…
Let's redefine the form for inspirational quotes using the following steps:

1. First, we create a layout for the Bootstrap 3 markup. Note that, instead of the
picture image field, we have the hidden picture_path and delete_picture
fields and some markup for the file upload widget:
quotes/forms.py
-*- coding: UTF-8 -*-
import os
from django import forms
from django.utils.translation import ugettext_lazy as _
from django.core.files import File
from django.conf import settings
from crispy_forms.helper import FormHelper
from crispy_forms import layout, bootstrap
from .models import InspirationQuote

class InspirationQuoteForm(forms.ModelForm):
 picture_path = forms.CharField(
 max_length=255,
 widget=forms.HiddenInput(),
 required=False,

Chapter 4

143

)
 delete_picture = forms.BooleanField(
 widget=forms.HiddenInput(),
 required=False,
)

 class Meta:
 model = InspirationQuote
 fields = ["author", "quote"]

 def __init__(self, *args, **kwargs):
 super(InspirationQuoteForm, self).\
 __init__(*args, **kwargs)

 self.helper = FormHelper()
 self.helper.form_action = ""
 self.helper.form_method = "POST"

 self.helper.layout = layout.Layout(
 layout.Fieldset(
 _("Quote"),
 layout.Field("author"),
 layout.Field("quote", rows=3),
 layout.HTML("""
 {% include "quotes/includes/image_upload_widget.html" %}
 """),
 layout.Field("picture_path"), # hidden
 layout.Field("delete_picture"), # hidden
),
 bootstrap.FormActions(
 layout.Submit("submit", _("Save"),
 css_class="btn btn-primary"),
)
)

2. Then, we will overwrite the save method in order to handle the saving of the
inspirational quote, as follows:
 def save(self, commit=True):
 instance = super(InspirationQuoteForm, self).\
 save(commit=True)

 if self.cleaned_data['delete_picture'] and \
 instance.picture:

Templates and JavaScript

144

 instance.picture.delete()

 if self.cleaned_data['picture_path']:
 tmp_path = self.cleaned_data['picture_path']
 abs_tmp_path = os.path.join(
 settings.MEDIA_ROOT, tmp_path)

 filename = InspirationQuote._meta.\
 get_field('picture').upload_to(
 instance, tmp_path)
 instance.picture.save(
 filename,
 File(open(abs_tmp_path, "rb")),
 False
)

 os.remove(abs_tmp_path)
 instance.save()
 return instance

3. In addition to the previously defined views in the quotes app, we add the ajax_
uploader view that will handle uploads with Ajax, as shown in the following:
quotes/views.py
…
from ajaxuploader.views import AjaxFileUploader
ajax_uploader = AjaxFileUploader()

4. Then, we set the URL rule for the view, as follows:
quotes/urls.py
-*- coding: UTF-8 -*-
from django.conf.urls import patterns, url

urlpatterns = patterns("",
 # …
 url(r"^ajax-upload/$", "quotes.views.ajax_uploader",
 name="ajax_uploader"),
)

5. Next, create the image_upload_widget.html template that will be included in the
crispy form:
{# templates/quotes/includes/image_upload_widget.html #}
{% load i18n %}
<div id="image_upload_widget">
 <div class="preview">

Chapter 4

145

 {% if instance.picture %}

 {% endif %}
 </div>
 <div class="uploader">
 <noscript>
 <p>{% trans "Please enable JavaScript to use file
uploader." %}</p>
 </noscript>
 </div>
 <p class="help_text" class="help-block">{% trans "Available
formats are JPG, GIF, and PNG." %}</p>
 <div class="messages"></div>
</div>

6. Then, it is time to create the template for the form page itself. In the extrabody block,
we will set a translatable_file_uploader_options variable that will deal with
all translatable options for the file uploader, such as the widget template markup,
error messages, and notifications:
{# templates/quotes/change_quote.html #}
{% extends "base.html" %}
{% load i18n crispy_forms_tags %}

{% block stylesheet %}
 {{ block.super }}
 <link rel="stylesheet" href="{{ STATIC_URL }}ajaxuploader/css/
fileuploader.css" />
{% endblock %}

{% block content %}
 {% crispy form %}
{% endblock %}

{% block extrabody %}
 <script src="{{ STATIC_URL }}ajaxuploader/js/fileuploader.
js"></script>
 <script>
 var translatable_file_uploader_options = {
 template: '<div class="qq-upload-drop-area">{%
trans "Drop image here" %}</div>' +
 '<div class="qq-uploader">' +
 '<div class="qq-upload-button btn"><span
class="glyphicon glyphicon-upload"> {% trans "Upload
Image" %}</div>' +

Templates and JavaScript

146

 ' <button class="btn btn-danger qq-delete-
button"> {% trans
"Delete" %}</button>' +
 '<ul class="qq-upload-list">' +
 '</div>',
 // template for one item in file list
 fileTemplate: '' +
 '' +
 '' +
 '' +
 '{% trans
"Cancel" %}' +
 '{% trans
"Failed" %}' +
 '',
 messages: {
 typeError: '{% trans "{file} has invalid
extension. Only {extensions} are allowed." %}',
 sizeError: '{% trans "{file} is too large, maximum
file size is {sizeLimit}." %}',
 minSizeError: '{% trans "{file} is too small,
minimum file size is {minSizeLimit}." %}',
 emptyError: '{% trans "{file} is empty, please
select files again without it." %}',
 filesLimitError: '{% trans "No more than
{filesLimit} files are allowed to be uploaded." %}',
 onLeave: '{% trans "The files are being uploaded,
if you leave now the upload will be cancelled." %}'
 }
 };
 var ajax_uploader_path = '{% url "ajax_uploader" %}';
 </script>
 <script src="{{ STATIC_URL }}site/js/change_quote.js"></
script>
{% endblock %}

7. Finally, we create the JavaScript file that will initialize the file upload widget and
handle the image preview and deletion, as follows:
// site_static/site/js/change_quote.js
$(function() {
 var csrfmiddlewaretoken = $('input[name="csrfmiddlewaretok
en"]').val();
 var $image_upload_widget = $('#image_upload_widget');
 var current_image_path = $('#id_picture_path').val();
 if (current_image_path) {

Chapter 4

147

 $('.preview', $image_upload_widget).html(
 '<img src="' + window.settings.MEDIA_URL + current_
image_path + '" alt="" />'
);
 }
 var options = $.extend(window.translatable_file_uploader_
options, {
 allowedExtensions: ['jpg', 'jpeg', 'gif', 'png'],
 action: window.ajax_uploader_path,
 element: $('.uploader', $image_upload_widget)[0],
 multiple: false,
 onComplete: function(id, fileName, responseJSON) {
 if(responseJSON.success) {
 $('.messages', $image_upload_widget).html("");
 // set the original to media_file_path
 $('#id_picture_path').val('uploads/' + fileName);
 // show preview link
 $('.preview', $image_upload_widget).html(
 '<img src="' + window.settings.MEDIA_URL +
'uploads/' + fileName + '" alt="" />'
);
 }
 },
 onAllComplete: function(uploads) {
 // uploads is an array of maps
 // the maps look like this: {file: FileObject,
response: JSONServerResponse}
 $('.qq-upload-success').fadeOut("slow", function() {
 $(this).remove();
 });
 },
 params: {
 'csrf_token': csrfmiddlewaretoken,
 'csrf_name': 'csrfmiddlewaretoken',
 'csrf_xname': 'X-CSRFToken'
 },
 showMessage: function(message) {
 $('.messages', $image_upload_widget).html(
 '<div class="alert alert-danger">' + message + '</
div>'
);
 }
 });
 var uploader = new qq.FileUploader(options);

Templates and JavaScript

148

 $('.qq-delete-button', $image_upload_widget).click(function()
{
 $('.messages', $image_upload_widget).html("");
 $('.preview', $image_upload_widget).html("");
 $('#id_delete_picture').val(1);
 return false;
 });
});

How it works…
When an image is selected in the upload widget, the result in the browser will look similar to
the following screenshot:

Chapter 4

149

The same form can be used to create an inspirational quote and change an existing
inspirational quote. Let's dig deeper into the process to see how it works. In the form,
we have an uploading mechanism that consists of the following essential parts:

 f The area for the preview of the image that is defined as a <div> tag with the preview
CSS class. Initially, it might show an image if we are in an object change view and the
InspirationQuote object is passed to the template as {{ instance }}.

 f The area for the Ajax uploader widget that is defined as a <div> tag with the
uploader CSS class. It will be filled with the dynamically-created uploading and
deleting buttons as well as the uploading progress indicators.

 f The help text for the upload.

 f The area for error messages that is defined as a <div> tag with the messages
CSS class.

 f The hidden picture_path character field to set the path of the uploaded file.

 f The hidden delete_picture Boolean field to mark the deletion of the file.

On page load, JavaScript will check whether picture_path is set; and if it is, it will show a
picture preview. This will be the case only when the form is submitted with an image selected;
however, there are validation errors.

Furthermore, we are defining the options for the upload widget in JavaScript. These options
are combined of the global translatable_file_uploader_options variable with
translatable strings set in the template and other configuration options set in the JavaScript
file. The Ajax upload widget is initialized with these options. Some important settings to note
are the onComplete callback that shows an image preview and fills in the picture_path
field when an image is uploaded and the showMessage callback that defines how to show
the error messages in the wanted area.

Lastly, there is a handler for the delete button in JavaScript, which when clicked, sets the
hidden delete_picture field to 1 and removes the preview image.

The Ajax uploader widget dynamically creates a form with the file upload field and a hidden
<iframe> tag to post the form data. When a file is selected, it is immediately uploaded
to the uploads directory under MEDIA_URL and the path to the file is set to the hidden
picture_path field. This directory is a temporary location for the uploaded files. When a
user submits the inspirational quote form and the input is valid, the save() method is called.
If delete_picture is set to 1, the picture of the model instance will be deleted. If the
picture_path field is defined, the image from the temporary location will be copied to its
final destination and the original will be removed.

Templates and JavaScript

150

See also
 f The Uploading images recipe in Chapter 3, Forms and Views

 f The Opening object details in a modal dialog recipe

 f The Implementing a continuous scroll recipe

 f The Implementing the Like widget recipe

151

5
Custom Template

Filters and Tags

In this chapter, we will cover the following topics:

 f Following conventions for your own template filters and tags

 f Creating a template filter to show how many days have passed since a post
was published

 f Creating a template filter to extract the first media object

 f Creating a template filter to humanize URLs

 f Creating a template tag to include a template if it exists

 f Creating a template tag to load a QuerySet in a template

 f Creating a template tag to parse content as a template

 f Creating a template tag to modify request query parameters

Introduction
As you know, Django has an extensive template system with features such as template
inheritance, filters to change the representation of values, and tags for presentational logic.
Moreover, Django allows you to add your own template filters and tags to your apps. Custom
filters or tags should be located in a template-tag library file under the templatetags Python
package in your app. Then, your template-tag library can be loaded in any template with a {%
load %} template tag. In this chapter, we will create several useful filters and tags that will
give more control to template editors.

Custom Template Filters and Tags

152

To see the template tags of this chapter in action, create a virtual environment,
extract the code provided for this chapter there, run the development server, and visit
http://127.0.0.1:8000/en/ in a browser.

Following conventions for your own template
filters and tags

Custom template filters and tags can become a total mess if you don't have persistent guidelines
to follow. Template filters and tags should serve template editors as much as possible. They
should be both handy and flexible. In this recipe, we will take a look at some conventions that
should be used when enhancing the functionality of the Django template system.

How to do it...
Follow these conventions when extending the Django template system:

1. Don't create or use custom template filters or tags when the logic for the page fits
better in the view, context processors, or model methods. When your content is
context-specific, such as a list of objects or object-detail view, load the object in the
view. If you need to show some content on every page, create a context processor.
Use custom methods of the model instead of template filters when you need to get
some properties of an object that are not related to the context of the template.

2. Name the template-tag library with the _tags suffix. When your app is named
differently than your template-tag library, you can avoid ambiguous package
importing problems.

3. In the newly created library, separate the filters from tags, for example, using
comments as shown the following code:
utils/templatetags/utility_tags.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django import template
register = template.Library()

FILTERS
.. your filters go here..

TAGS
.. your tags go here..

4. When creating advanced custom template tags, make sure that their syntax is easy to
remember by including the following constructs:

 � for [app_name.model_name]: Include this construct in order to use a
specific model

Chapter 5

153

 � using [template_name]: Include this construct in order to use a
template for the output of the template tag

 � limit [count]: Include this construct in order to limit the results to a
specific amount

 � as [context_variable]: Include this construct in order to save the
results to a context variable that can be reused multiple times

5. Try to avoid multiple values that are defined positionally in the template tags, unless
they are self-explanatory. Otherwise, this will likely confuse the template developers.

6. Make as many resolvable arguments as possible. Strings without quotes should be
treated as context variables that need to be resolved or short words that remind you
of the structure of the template tag components.

Creating a template filter to show how
many days have passed since a post was
published

Not all people keep track of the date and when talking about creation or modification dates
of cutting-edge information; for many of us, it is convenient to read the time difference. For
example, the blog entry was posted three days ago, the news article was published today, and
the user last logged in yesterday. In this recipe, we will create a template filter named days_
since, which converts dates to humanized time differences.

Getting ready
Create the utils app and put it under INSTALLED_APPS in the settings, if you haven't done
that yet. Then, create a templatetags Python package in this app (Python packages are
directories with an empty __init__.py file).

How to do it...
Create a utility_tags.py file with the following content:

utils/templatetags/utility_tags.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from datetime import datetime
from django import template
from django.utils.translation import ugettext_lazy as _
from django.utils.timezone import now as tz_now

Custom Template Filters and Tags

154

register = template.Library()

FILTERS

@register.filter
def days_since(value):
 """ Returns number of days between today and value."""

 today = tz_now().date()
 if isinstance(value, datetime.datetime):
 value = value.date()
 diff = today - value
 if diff.days > 1:
 return _("%s days ago") % diff.days
 elif diff.days == 1:
 return _("yesterday")
 elif diff.days == 0:
 return _("today")
 else:
 # Date is in the future; return formatted date.
 return value.strftime("%B %d, %Y")

How it works...
If you use this filter in a template as shown in the following code, it will render something
similar to yesterday or 5 days ago:

{% load utility_tags %}
{{ object.published|days_since }}

You can apply this filter to values of the date and datetime types.

Each template-tag library has a register, where filters and tags are collected. Django filters
are functions registered by the @register.filter decorator. By default, the filter in the
template system will be named same as the function or other callable object. If you want, you
can set a different name for the filter by passing the name to the decorator, as follows:

@register.filter(name="humanized_days_since")
def days_since(value):
 ...

The filter itself is quite self-explanatory. At first, the current date is read. If the given value of
the filter is of the datetime type, date is extracted. Then, the difference between today and
the extracted value is calculated. Depending on the number of days, different string results
are returned.

Chapter 5

155

There's more...
This filter is also easy to extend in order to show the difference in time, such as just now,
7 minutes ago, and 3 hours ago. Just operate on the datetime values instead of the
date values.

See also
 f The Creating a template filter to extract the first media object recipe

 f The Creating a template filter to humanize URLs recipe

Creating a template filter to extract the first
media object

Imagine that you are developing a blog overview page, and for each post, you want to show
images, music, or videos in that page taken from the content. In such a case, you need to
extract the <figure>, , <object>, <embed>, <video>, <audio>, and <iframe>
tags from the HTML content of the post. In this recipe, we will see how to perform this using
regular expressions in the first_media filter.

Getting ready
We will start with the utils app that should be set in INSTALLED_APPS in the settings and
the templatetags package in this app.

How to do it...
In the utility_tags.py file, add the following content:

utils/templatetags/utility_tags.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import re
from django import template
from django.utils.safestring import mark_safe
register = template.Library()

FILTERS

media_tags_regex = re.compile(

Custom Template Filters and Tags

156

 r"<figure[\S\s]+?</figure>|"
 r"<object[\S\s]+?</object>|"
 r"<video[\S\s]+?</video>|"
 r"<audio[\S\s]+?</audio>|"
 r"<iframe[\S\s]+?</iframe>|"
 r"<(img|embed)[^>]+>",
 re.MULTILINE
)

@register.filter
def first_media(content):
 """ Returns the first image or flash file from the html
 content """
 m = media_tags_regex.search(content)
 media_tag = ""
 if m:
 media_tag = m.group()
 return mark_safe(media_tag)

How it works...
If the HTML content in the database is valid, when you put the following code in the template,
it will retrieve the media tags from the content field of the object; otherwise, an empty string
will be returned if no media is found:

{% load utility_tags %}
{{ object.content|first_media }}

Regular expressions are powerful feature to search/replace patterns of text. At first, we will
define the compiled regular expression as media_file_regex. In our case, we will search
for all the possible media tags that can also occur in multiple lines.

Python strings can be concatenated without a plus (+) symbol.

Let's see how this regular expression works, as follows:

 f Alternating patterns are separated by the pipe (|) symbol.

 f For possibly multiline tags, we will use the [\S\s]+? pattern that matches any
symbol at least once; however, as little times as possible, until we find the the
string that goes after it. Therefore, <figure[\S\s]+?</figure> searches for a
<figure> tag and everything after it, until it finds the closing </figure> tag.

 f Similarly, with the [^>]+ pattern, we search for any symbol except the greater than
(>) symbol at least once and as many times as possible.

Chapter 5

157

The re.MULTILINE flag ensures that the search will happen in multiple lines. Then, in the
filter, we will perform a search for this regular expression pattern. By default, the result of
the filter will show the <, >, and & symbols escaped as the <, >, and & entities.
However, we use the mark_safe() function that marks the result as safe and HTML-ready in
order to be shown in the template without escaping.

There's more...
If you are interested in regular expressions, you can learn more about them in the official
Python documentation at https://docs.python.org/2/library/re.html.

See also
 f The Creating a template filter to show how many days have passed since a post was

published recipe

 f The Creating a template filter to humanize URLs recipe

Creating a template filter to humanize URLs
Usually, common web users enter URLs in address fields without protocol and trailing slashes.
In this recipe, we will create a humanize_url filter that is used to present URLs to the user in
a shorter format, truncating very long addresses, similar to what Twitter does with the links in
the tweets.

Getting ready
Similar to the previous recipes, we will start with the utils app that should be set in
INSTALLED_APPS in the settings and contain the templatetags package.

How to do it...
In the FILTERS section of the utility_tags.py template library in the utils app, let's
add a humanize_url filter and register it, as shown in the following code:

utils/templatetags/utility_tags.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import re
from django import template

https://docs.python.org/2/library/re.html

Custom Template Filters and Tags

158

register = template.Library()

FILTERS

@register.filter
def humanize_url(url, letter_count):
 """ Returns a shortened human-readable URL """
 letter_count = int(letter_count)
 re_start = re.compile(r"^https?://")
 re_end = re.compile(r"/$")
 url = re_end.sub("", re_start.sub("", url))
 if len(url) > letter_count:
 url = "%s…" % url[:letter_count - 1]
 return url

How it works...
We can use the humanize_url filter in any template, as follows:

{% load utility_tags %}

 {{ object.website|humanize_url:30 }}

The filter uses regular expressions to remove the leading protocol and trailing slash, shorten
the URL to the given amount of letters, and add an ellipsis to the end if the URL doesn't fit in
the specified letter count.

See also
 f The Creating a template filter to show how many days have passed since a post was

published recipe

 f The Creating a template filter to extract the first media object recipe

 f The Creating a template tag to include a template if it exists recipe

Creating a template tag to include a
template if it exists

Django has the {% include %} template tag that renders and includes another template.
However, there is a problem in some situations, where an error is raised if the template does
not exist. In this recipe, we will see how to create a {% try_to_include %} template tag
that includes another template and fails silently if there is no such template.

Chapter 5

159

Getting ready
We will start again with the utils app that is installed and ready for custom template tags.

How to do it...
Advanced custom template tags consist of two things: the function that is parsing the
arguments of the template tag and the Node class that is responsible for the logic of the
template tag as well as the output. Perform the following steps to create the {% try_to_
include %} template tag:

1. First, let's create the function parsing the template-tag arguments, as follows:
utils/templatetags/utility_tags.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django import template
from django.template.loader import get_template
register = template.Library()

TAGS

@register.tag
def try_to_include(parser, token):
 """Usage: {% try_to_include "sometemplate.html" %}
 This will fail silently if the template doesn't exist.
 If it does exist, it will be rendered with the current
 context."""
 try:
 tag_name, template_name = token.split_contents()
 except ValueError:
 raise template.TemplateSyntaxError, \
 "%r tag requires a single argument" % \
 token.contents.split()[0]
 return IncludeNode(template_name)

2. Then, we need the Node class in the same file, as follows:
class IncludeNode(template.Node):
 def __init__(self, template_name):
 self.template_name = template_name

 def render(self, context):
 try:
 # Loading the template and rendering it
 template_name = template.resolve_variable(

Custom Template Filters and Tags

160

 self. template_name, context)
 included_template = get_template(
 template_name
).render(context)
 except template.TemplateDoesNotExist:
 included_template = ""
 return included_template

How it works...
The {% try_to_include %} template tag expects one argument, that is, template_
name. Therefore, in the try_to_include() function, we try to assign the split contents of
the token only to the tag_name variable (which is try_to_include) and the template_
name variable. If this doesn't work, the template syntax error is raised. The function returns
the IncludeNode object, which gets the template_name field for later use.

In the render() method of IncludeNode, we resolve the template_name variable. If a
context variable was passed to the template tag, its value will be used here for template_
name. If a quoted string was passed to the template tag, then the content in the quotes will be
used for template_name.

Lastly, we will try to load the template and render it with the current template context. If that
doesn't work, an empty string is returned.

There are at least two situations where we could use this template tag:

 f It is used when including a template whose path is defined in a model, as follows:
{% load utility_tags %}
{% try_to_include object.template_path %}

 f It is used when including a template whose path is defined with the {% with
%} template tag somewhere high in the template context variable's scope. This
is especially useful when you need to create custom layouts for plugins in the
placeholder of a template in Django CMS:
{# templates/cms/start_page.html #}
{% with editorial_content_template_path="cms/plugins/editorial_
content/start_page.html" %}
 {% placeholder "main_content" %}
{% endwith %}

{# templates/cms/plugins/editorial_content.html #}
{% load utility_tags %}

{% if editorial_content_template_path %}
 {% try_to_include editorial_content_template_path %}

Chapter 5

161

{% else %}
 <div>
 <!-- Some default presentation of
 editorial content plugin -->
 </div>
{% endif %}

There's more...
You can use the {% try_to_include %} tag as well as the default {% include %} tag
to include the templates that extend other templates. This is beneficial for large-scale portals,
where you have different kinds of lists in which complex items share the same structure as
widgets but have a different source of data.

For example, in the artist list template, you can include the artist item template, as follows:

{% load utility_tags %}
{% for object in object_list %}
 {% try_to_include "artists/includes/artist_item.html" %}
{% endfor %}

This template will extend from the item base, as follows:

{# templates/artists/includes/artist_item.html #}
{% extends "utils/includes/item_base.html" %}

{% block item_title %}
 {{ object.first_name }} {{ object.last_name }}
{% endblock %}

The item base defines the markup for any item and also includes a Like widget, as follows:

{# templates/utils/includes/item_base.html #}
{% load likes_tags %}

<h3>{% block item_title %}{% endblock %}</h3>
{% if request.user.is_authenticated %}
 {% like_widget for object %}
{% endif %}

See also
 f The Creating templates for Django CMS recipe in Chapter 7, Django CMS

 f The Writing your own CMS plugin recipe in Chapter 7, Django CMS

 f The Implementing the Like widget recipe in Chapter 4, Templates and JavaScript

Custom Template Filters and Tags

162

 f The Creating a template tag to load a QuerySet in a template recipe

 f The Creating a template tag to parse content as a template recipe

 f The Creating a template tag to modify request query parameters recipe

Creating a template tag to load a QuerySet
in a template

Most often, the content that should be shown on a webpage will have to be defined in
the view. If this is the content to be shown on every page, it is logical to create a context
processor. Another situation is where you need to show additional content such as the latest
news or a random quote on some pages; for example, the starting page or the details page of
an object. In this case, you can load the necessary content with the {% get_objects %}
template tag, which we will implement in this recipe.

Getting ready
Once again, we will start with the utils app that should be installed and ready for custom
template tags.

How to do it...
An advanced custom template tag consists of a function that parses arguments that are
passed to the tag and a Node class that renders the output of the tag or modifies the template
context. Perform the following steps to create the {% get_objects %} template tag:

1. First, let's create the function parsing the template-tag arguments, as follows:
utils/templatetags/utility_tags.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django import template
register = template.Library()

TAGS

@register.tag
def get_objects(parser, token):
 """
 Gets a queryset of objects of the model specified
 by app and model names
 Usage:
 {% get_objects [<manager>.]<method> from

Chapter 5

163

 <app_name>.<model_name> [limit <amount>] as
 <var_name> %}
 Example:
 {% get_objects latest_published from people.Person
 limit 3 as people %}
 {% get_objects site_objects.all from news.Article
 limit 3 as articles %}
 {% get_objects site_objects.all from news.Article
 as articles %}
 """
 amount = None
 try:
 tag_name, manager_method, str_from, appmodel, \
 str_limit, amount, str_as, var_name = \
 token.split_contents()
 except ValueError:
 try:
 tag_name, manager_method, str_from, appmodel, \
 str_as, var_name = token.split_contents()
 except ValueError:
 raise template.TemplateSyntaxError, \
 "get_objects tag requires a following "\
 "syntax: "\
 "{% get_objects [<manager>.]<method> "\
 "from <app_ name>.<model_name> "\
 "[limit <amount>] as <var_name> %}"
 try:
 app_name, model_name = appmodel.split(".")
 except ValueError:
 raise template.TemplateSyntaxError, \
 "get_objects tag requires application name "\
 "and model name separated by a dot"
 model = models.get_model(app_name, model_name)
 return ObjectsNode(
 model, manager_method, amount, var_name
)

2. Then, we will create the Node class in the same file, as shown in the following code:
class ObjectsNode(template.Node):
 def __init__(
 self, model, manager_method, amount, var_name
):
 self.model = model
 self.manager_method = manager_method

Custom Template Filters and Tags

164

 self.amount = amount
 self.var_name = var_name

 def render(self, context):
 if "." in self.manager_method:
 manager, method = \
 self.manager_method.split(".")
 else:
 manager = "_default_manager"
 method = self.manager_method

 qs = getattr(
 getattr(self.model, manager),
 method,
 self.model._default_manager.none,
)()
 if self.amount:
 amount = template.resolve_variable(
 self.amount, context
)
 context[self.var_name] = qs[:amount]
 else:
 context[self.var_name] = qs
 return ""

How it works...
The {% get_objects %} template tag loads QuerySet defined by the method of the
manager from a specified app and model, limits the result to the specified amount, and
saves the result to a context variable.

The following code is the simplest example of how to use the template tag that we have just
created. It will load all news articles in any template using the following snippet:

{% load utility_tags %}
{% get_objects all from news.Article as all_articles %}
{% for article in all_articles %}
 {{ article.title }}
{% endfor %}

This is using the all() method of the default objects manager of the Article model and
it will sort the articles by the ordering attribute defined in the Meta class of the model.

Chapter 5

165

A more advanced example would be required to create a custom manager with a custom
method to query the objects from the database. A manager is an interface that provides the
database query operations to models. Each model has at least one manager called objects
by default. As an example, let's create an Artist model that has a draft or published status
and a new custom_manager that allows you to select random published artists:

artists/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _

STATUS_CHOICES = (
 ("draft", _("Draft"),
 ("published", _("Published"),
)
class ArtistManager(models.Manager):
 def random_published(self):
 return self.filter(status="published").order_by("?")

class Artist(models.Model):
 # ...
 status = models.CharField(_("Status"), max_length=20,
 choices=STATUS_CHOICES)
 custom_manager = ArtistManager()

To load a random published artist, you add the following snippet to any template:

{% load utility_tags %}
{% get_objects custom_manager.random_published from artists.Artist
limit 1 as random_artists %}
{% for artist in random_artists %}
 {{ artist.first_name }} {{ artist.last_name }}
{% endfor %}

Let's look at the code of the {% get_objects %} template tag. In the parsing function,
there is one of the two formats expected; with the limit and without it. The string is parsed,
the model is recognized, and then the components of the template tag are passed to the
ObjectNode class.

Custom Template Filters and Tags

166

In the render() method of the Node class, we will check the manager's name and its
method's name. If this is not defined, _default_manager will be used, which is an
automatic property of any model injected by Django and points to the first available models.
Manager() instance. In most cases, _default_manager will be same as objects. After
that, we will call the method of the manager and fall back to empty QuerySet if the method
doesn't exist. If a limit is defined, we will resolve the value of it and limit QuerySet. Lastly, we
will save the QuerySet to the context variable.

See also
 f The Creating a template tag to include a template if it exists recipe

 f The Creating a template tag to parse content as a template recipe

 f The Creating a template tag to modify request query parameters recipe

Creating a template tag to parse content as
a template

In this recipe, we will create a {% parse %} template tag, which will allow you to put
template snippets in the database. This is valuable when you want to provide different content
for authenticated and unauthenticated users, when you want to include a personalized
salutation or you don't want to hardcode the media paths in the database.

Getting ready
As usual, we will start with the utils app that should be installed and ready for custom
template tags.

How to do it...
An advanced custom template tag consists of a function that parses the arguments that
are passed to the tag and a Node class that renders the output of the tag or modifies the
template context. Perform the following steps to create them:

1. First, let's create the function parsing the arguments of the template tag, as follows:
utils/templatetags/utility_tags.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django import template

Chapter 5

167

register = template.Library()

TAGS

@register.tag
def parse(parser, token):
 """
 Parses the value as a template and prints it or
 saves to a variable
 Usage:
 {% parse <template_value> [as <variable>] %}
 Examples:
 {% parse object.description %}
 {% parse header as header %}
 {% parse "{{ MEDIA_URL }}js/" as js_url %}
 """
 bits = token.split_contents()
 tag_name = bits.pop(0)
 try:
 template_value = bits.pop(0)
 var_name = None
 if len(bits) == 2:
 bits.pop(0) # remove the word "as"
 var_name = bits.pop(0)
 except ValueError:
 raise template.TemplateSyntaxError, \
 "parse tag requires a following syntax: "\
 "{% parse <template_value> [as <variable>] %}"

 return ParseNode(template_value, var_name)

2. Then, we will create the Node class in the same file, as follows:
class ParseNode(template.Node):
 def __init__(self, template_value, var_name):
 self.template_value = template_value
 self.var_name = var_name

 def render(self, context):
 template_value = template.resolve_variable(
 self.template_value, context)
 t = template.Template(template_value)
 context_vars = {}
 for d in list(context):
 for var, val in d.items():

Custom Template Filters and Tags

168

 context_vars[var] = val
 result = t.render(template.RequestContext(
 context["request"], context_vars))
 if self.var_name:
 context[self.var_name] = result
 return ""
 return result

How it works...
The {% parse %} template tag allows you to parse a value as a template and render it
immediately or save it as a context variable.

If we have an object with a description field, which can contain template variables or logic, we
can parse and render it using the following code:

{% load utility_tags %}
{% parse object.description %}

It is also possible to define a value in order to parse using a quoted string as shown in
the following code:

{% load utility_tags %}
{% parse "{{ STATIC_URL }}site/img/" as img_path %}

Let's take a look at the code of the {% parse %} template tag. The parsing function checks the
arguments of the template tag bit by bit. At first, we expect the parse name, then the template
value, and at last we expect the optional as word followed by the context variable name. The
template value and variable name are passed to the ParseNode class. The render() method
of that class, at first, resolves the value of the template variable and creates a template object
out of it. Then, it renders the template with all the context variables. If the variable name is
defined, the result is saved to it; otherwise, the result is shown immediately.

See also
 f The Creating a template tag to include a template if it exists recipe

 f The Creating a template tag to load a QuerySet in a template recipe

 f The Creating a template tag to modify request query parameters recipe

Chapter 5

169

Creating a template tag to modify request
query parameters

Django has a convenient and flexible system to create canonical and clean URLs just by
adding regular expression rules to the URL configuration files. However, there is a lack of
built-in mechanisms in order to manage query parameters. Views such as search or filterable
object lists need to accept query parameters to drill down through the filtered results using
another parameter or to go to another page. In this recipe, we will create the {% modify_
query %}, {% add_to_query %}, and {% remove_from_query %} template tags,
which let you add, change, or remove the parameters of the current query.

Getting ready
Once again, we start with the utils app that should be set in INSTALLED_APPS and contain
the templatetags package.

Also, make sure that you have the request context processor set for the TEMPLATE_
CONTEXT_PROCESSORS setting, as follows:

conf/base.py or settings.py
TEMPLATE_CONTEXT_PROCESSORS = (
 "django.contrib.auth.context_processors.auth",
 "django.core.context_processors.debug",
 "django.core.context_processors.i18n",
 "django.core.context_processors.media",
 "django.core.context_processors.static",
 "django.core.context_processors.tz",
 "django.contrib.messages.context_processors.messages",
 "django.core.context_processors.request",
)

How to do it...
For these template tags, we will be using the simple_tag decorator that parses the
components and requires you to just define the rendering function, as follows:

1. At first, we will create the {% modify_query %} template tag:
utils/templatetags/utility_tags.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import urllib
from django import template

Custom Template Filters and Tags

170

from django.utils.encoding import force_str
register = template.Library()

TAGS

@register.simple_tag(takes_context=True)
def modify_query(
 context, *params_to_remove, **params_to_change
):
 """ Renders a link with modified current query
 parameters """
 query_params = []
 for key, value_list in \
 context["request"].GET._iterlists():
 if not key in params_to_remove:
 # don't add key-value pairs for
 # params_to_change
 if key in params_to_change:
 query_params.append(
 (key, params_to_change[key])
)
 params_to_change.pop(key)
 else:
 # leave existing parameters as they were
 # if not mentioned in the params_to_change
 for value in value_list:
 query_params.append((key, value))
 # attach new params
 for key, value in params_to_change.items():
 query_params.append((key, value))
 query_string = context["request"].path
 if len(query_params):
 query_string += "?%s" % urllib.urlencode([
 (key, force_str(value))
 for (key, value) in query_params if value
]).replace("&", "&")
 return query_string

2. Then, let's create the {% add_to_query %} template tag:
@register.simple_tag(takes_context=True)
def add_to_query(
 context, *params_to_remove, **params_to_add
):
 """ Renders a link with modified current query

Chapter 5

171

 parameters """
 query_params = []
 # go through current query params..
 for key, value_list in \
 context["request"].GET._iterlists():
 if not key in params_to_remove:
 # don't add key-value pairs which already
 # exist in the query
 if key in params_to_add and \
 unicode(params_to_add[key]) in value_list:
 params_to_add.pop(key)
 for value in value_list:
 query_params.append((key, value))
 # add the rest key-value pairs
 for key, value in params_to_add.items():
 query_params.append((key, value))
 # empty values will be removed
 query_string = context["request"].path
 if len(query_params):
 query_string += "?%s" % urllib.urlencode([
 (key, force_str(value))
 for (key, value) in query_params if value
]).replace("&", "&")
 return query_string

3. Lastly, let's create the {% remove_from_query %} template tag:
@register.simple_tag(takes_context=True)
def remove_from_query(context, *args, **kwargs):
 """ Renders a link with modified current query
 parameters """
 query_params = []
 # go through current query params..
 for key, value_list in \
 context["request"].GET._iterlists():
 # skip keys mentioned in the args
 if not key in args:
 for value in value_list:
 # skip key-value pairs mentioned in kwargs
 if not (key in kwargs and
 unicode(value) == unicode(kwargs[key])):
 query_params.append((key, value))
 # empty values will be removed
 query_string = context["request"].path
 if len(query_params):

Custom Template Filters and Tags

172

 query_string = "?%s" % urllib.urlencode([
 (key, force_str(value))
 for (key, value) in query_params if value
]).replace("&", "&")
 return query_string

How it works...
All the three created template tags behave similarly. At first, they read the current query
parameters from the request.GET dictionary-like QueryDict object to a new list of key
value query_params tuples. Then, the values are updated depending on the positional
arguments and keyword arguments. Lastly, the new query string is formed, all spaces and
special characters are URL-encoded, and the ampersands connecting the query parameters
are escaped. This new query string is returned to the template.

To read more about the QueryDict objects, refer to the official Django
documentation at https://docs.djangoproject.com/en/1.8/
ref/request-response/#querydict-objects.

Let's take a look at an example of how the {% modify_query %} template tag can be used.
Positional arguments in the template tag define which query parameters are to be removed and
the keyword arguments define which query parameters are to be modified at the current query.
If the current URL is http://127.0.0.1:8000/artists/?category=fine-art&page=5,
we can use the following template tag to render a link that goes to the next page:

{% load utility_tags %}
6

The following snippet is the output rendered using the preceding template tag:

6

We can also use the following example to render a link that resets pagination and goes to
another category, Sculpture, as follows:

{% load utility_tags i18n %}
{% trans
"Sculpture" %}

The following snippet is the output rendered using the preceding template tag:

Sculpture

https://docs.djangoproject.com/en/1.8/ref/request-response/#querydict-objects
https://docs.djangoproject.com/en/1.8/ref/request-response/#querydict-objects

Chapter 5

173

With the {% add_to_query %} template tag, you can add the parameters step-by-step
with the same name. For example, if the current URL is http://127.0.0.1:8000/
artists/?category=fine-art, you can add another category, Sculpture, with
the help of the following link:

{% load utility_tags i18n %}
{% trans
"Sculpture" %}

This will be rendered in the template as shown in the following snippet:

Sculptu
re

Lastly, with the help of the {% remove_from_query %} template tag, you can remove
the parameters step-by-step with the same name. For example, if the current URL is
http://127.0.0.1:8000/artists/?category=fine-art&category=sculpture,
you can remove the Sculpture category with the help of the following link:

{% load utility_tags i18n %}
<span
class="glyphicon glyphicon-remove"> {% trans "Sculpture" %}

This will be rendered in the template as follows:

<span class="glyphicon
glyphicon-remove"> Sculpture

See also
 f The Filtering object lists recipe in Chapter 3, Forms and Views

 f The Creating a template tag to include a template if it exists recipe

 f The Creating a template tag to load a QuerySet in a template recipe

 f The Creating a template tag to parse content as a template recipe

175

6
Model Administration

In this chapter, we will cover the following topics:

 f Customizing columns on the change list page

 f Creating admin actions

 f Developing change list filters

 f Customizing default admin settings

 f Inserting a map on a change form

Introduction
The Django framework comes with a built-in administration system for your models. With very
little effort, you can set up filterable, searchable, and sortable lists for browsing your models
and configure forms to add and edit data. In this chapter, we will go through the advanced
techniques to customize administration by developing some practical cases.

Customizing columns on the change
list page

Change list views in the default Django administration system let you have an overview of
all instances of the specific models. By default, the list_display model admin property
controls the fields that are shown in different columns. Additionally, you can have custom
functions set there that return the data from relations or display custom HTML. In this recipe,
we will create a special function for the list_display property that shows an image in one
of the columns of the list view. As a bonus, we will make one field directly editable in the list
view by adding the list_editable setting.

Model Administration

176

Getting ready
To start with, make sure that django.contrib.admin is in INSTALLED_APPS in the
settings and AdminSite is hooked in the URL configuration. Then, create a new products
app and put it under INSTALLED_APPS. This app will have the Product and ProductPhoto
models, where one product might have multiple photos. For this example, we will also be
using UrlMixin, which was defined in the Creating a model mixin with URL-related methods
recipe in Chapter 2, Database Structure.

Let's create the Product and ProductPhoto models in the models.py file, as follows:

products/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import os
from django.db import models
from django.utils.timezone import now as timezone_now
from django.utils.translation import ugettext_lazy as _
from django.core.urlresolvers import reverse
from django.core.urlresolvers import NoReverseMatch
from django.utils.encoding import python_2_unicode_compatible
from utils.models import UrlMixin

def upload_to(instance, filename):
 now = timezone_now()
 filename_base, filename_ext = os.path.splitext(filename)
 return "products/%s/%s%s" % (
 instance.product.slug,
 now.strftime("%Y%m%d%H%M%S"),
 filename_ext.lower(),
)

@python_2_unicode_compatible
class Product(UrlMixin):
 title = models.CharField(_("title"), max_length=200)
 slug = models.SlugField(_("slug"), max_length=200)
 description = models.TextField(_("description"), blank=True)
 price = models.DecimalField(_("price (€)"), max_digits=8,
 decimal_places=2, blank=True, null=True)

 class Meta:
 verbose_name = _("Product")

Chapter 6

177

 verbose_name_plural = _("Products")

 def __str__(self):
 return self.title

 def get_url_path(self):
 try:
 return reverse("product_detail", kwargs={
 "slug": self.slug
 })
 except NoReverseMatch:
 return ""

@python_2_unicode_compatible
class ProductPhoto(models.Model):
 product = models.ForeignKey(Product)
 photo = models.ImageField(_("photo"), upload_to=upload_to)

 class Meta:
 verbose_name = _("Photo")
 verbose_name_plural = _("Photos")

 def __str__(self):
 return self.photo.name

How to do it...
We will create a simple administration for the Product model that will have instances of the
ProductPhoto model attached to the product as inlines.

In the list_display property, we will list the get_photo() method of the model admin
that will be used to show the first photo from many-to-one relationship.

Let's create an admin.py file with the following content:

products/admin.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.contrib import admin
from django.utils.translation import ugettext_lazy as _

Model Administration

178

from django.http import HttpResponse

from .models import Product, ProductPhoto

class ProductPhotoInline(admin.StackedInline):
 model = ProductPhoto
 extra = 0

class ProductAdmin(admin.ModelAdmin):
 list_display = ["title", "get_photo", "price"]
 list_editable = ["price"]

 fieldsets = (
 (_("Product"), {
 "fields": ("title", "slug", "description", "price"),
 }),
)
 prepopulated_fields = {"slug": ("title",)}
 inlines = [ProductPhotoInline]

 def get_photo(self, obj):
 project_photos = obj.productphoto_set.all()[:1]
 if project_photos.count() > 0:
 return """

 """ % {
 "product_url": obj.get_url_path(),
 "photo_url": project_photos[0].photo.url,
 }
 return ""
 get_photo.short_description = _("Preview")
 get_photo.allow_tags = True

admin.site.register(Product, ProductAdmin)

Chapter 6

179

How it works...
If you look at the product administration list in the browser, it will look similar to the following
screenshot:

Usually, the list_display property defines the fields to list in the administration list view;
for example, title and price are the fields of the Product model.

Besides the normal field names, the list_display property accepts a function or
another callable, the name of an attribute of the admin model, or the name of the
attribute of the model.

Model Administration

180

In Python, a callable is a function, method, or a class that implements
the __call__() method. You can check whether a variable is
callable using the callable() function.

Each callable that you use in list_display will get a model instance passed as the first
argument. Therefore, in our example, we have the get_photo() method of the model admin
that retrieves the Product instance as obj. The method tries to get the first ProductPhoto
from the many-to-one relationship and, if it exists, it returns the HTML with the tag
linked to the detail page of Product.

You can set several attributes for the callables that you use in list_display. The short_
description attribute of the callable defines the title shown for the column. The allow_
tags attribute informs administration to not escape the HTML values.

In addition, the Price field is made editable by the list_editable setting and there is a
Save button at the bottom to save the whole list of products.

There's more...
Ideally, the get_photo() method shouldn't have any hardcoded HTML in it; however, it
should load and render a template from a file. For this, you can utilize the render_to_
string() function from django.template.loader. Then, your presentation logic will be
separated from the business logic. I am leaving this as an exercise for you.

See also
 f The Creating a model mixin with URL-related methods recipe in Chapter 2,

Database Structure

 f The Creating admin actions recipe

 f The Developing change list filters recipe

Creating admin actions
The Django administration system provides actions that we can execute for selected items in
the list. There is one action given by default and it is used to delete selected instances. In this
recipe, we will create an additional action for the list of the Product model that allows the
administrators to export selected products to Excel spreadsheets.

Chapter 6

181

Getting ready
We will start with the products app that we created in the previous recipe.

Make sure that you have the xlwt module installed in your virtual environment to create an
Excel spreadsheet:

(myproject_env)$ pip install xlwt

How to do it...
Admin actions are functions that take three arguments: the current ModelAdmin value, the
current HttpRequest value, and the QuerySet value containing the selected items. Perform
the following steps to create a custom admin action:

1. Let's create an export_xls() function in the admin.py file of the products app,
as follows:
products/admin.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import xlwt
... other imports ...

def export_xls(modeladmin, request, queryset):
 response = HttpResponse(
 content_type="application/ms-excel"
)
 response["Content-Disposition"] = "attachment; "\
 "filename=products.xls"
 wb = xlwt.Workbook(encoding="utf-8")
 ws = wb.add_sheet("Products")

 row_num = 0

 ### Print Title Row ###
 columns = [
 # column name, column width
 ("ID", 2000),
 ("Title", 6000),
 ("Description", 8000),
 ("Price (€)", 3000),
]

 header_style = xlwt.XFStyle()

Model Administration

182

 header_style.font.bold = True

 for col_num, (item, width) in enumerate(columns):
 ws.write(row_num, col_num, item, header_style)
 # set column width
 ws.col(col_num).width = width

 text_style = xlwt.XFStyle()
 text_style.alignment.wrap = 1

 price_style = xlwt.XFStyle()
 price_style.num_format_str = "0.00"

 styles = [
 text_style, text_style, text_style,
 price_style, text_style
]

 for obj in queryset.order_by("pk"):
 row_num += 1
 project_photos = obj.productphoto_set.all()[:1]
 url = ""
 if project_photos:
 url = "http://{0}{1}".format(
 request.META['HTTP_HOST'],
 project_photos[0].photo.url,
)
 row = [
 obj.pk,
 obj.title,
 obj.description,
 obj.price,
 url,
]
 for col_num, item in enumerate(row):
 ws.write(
 row_num, col_num, item, styles[col_num]
)

 wb.save(response)
 return response

export_xls.short_description = _("Export XLS")

Chapter 6

183

2. Then, add the actions setting to ProductAdmin, as follows:
class ProductAdmin(admin.ModelAdmin):
 # ...
 actions = [export_xls]

How it works...
If you take a look at the product administration list page in the browser, you will see a new
action called Export XLS, along with the default Delete selected Products action, as shown
in the following screenshot:

Model Administration

184

By default, admin actions do something with QuerySet and redirect the administrator back
to the change list page. However, for more complex actions like these, HttpResponse can
be returned. The export_xls() function returns HttpResponse with the content type
of the Excel spreadsheet. Using the Content-Disposition header, we set the response to be
downloadable with the products.xls file.

Then, we use the xlwt Python module to create the Excel file.

At first, a workbook with UTF-8 encoding is created. Then, we add a sheet named Products
to it. We will be using the write() method of the sheet to set the content and style for each
cell and the col() method to retrieve the column and set its width.

To get an overview of all the columns in the sheet, we will create a list of tuples with column
names and widths. Excel uses some magical units for the widths of the columns. They are
1/256 of the width of the zero character in the default font. Next, we will define the header
style as bold. As we have the columns defined, we will loop through them and fill the first row
with the column names, also assigning the bold style to them.

Then, we will create a style for normal cells and prices. The text in normal cells will be
wrapped in multiple lines. The prices will have a special number style with two numbers after
the decimal point.

Lastly, we will go through QuerySet of the selected products ordered by ID and print the
specified fields in the corresponding cells, also applying the specific styles.

The workbook is saved to the file-like HttpResponse object and the resulting Excel sheet
looks similar to the following:

ID Title Description Price (€) Preview
1 Ryno With the Ryno

microcycle, you're not
limited to the street
or the bike lane. It's a
transitional vehicle—it
goes most places
where a person can
walk or ride a bike.

3865.00 http://127.0.0.1:8000/
media/products/
ryno/20140523044813.jpg

2 Mercury Skate The main purpose of
designing this Mercury
Skate is to decrease
the skater's fatigue
and provide them
with an easier and
smoother ride on the
pavement.

http://127.0.0.1:8000/
media/products/mercury-
skate/20140521030128.png

Chapter 6

185

ID Title Description Price (€) Preview
4 Detroit Electric

Car
The Detroit Electric
SP:01 is a limited-
edition, two-seat, pure-
electric sports car that
sets new standards
for performance and
handling in electric
vehicles.

http://127.0.0.1:8000/
media/products/
detroit-electric-
car/20140521033122.jpg

See also
 f Chapter 9, Data Import and Export

 f The Customizing columns on the change list page recipe

 f The Developing change list filters recipe

Developing change list filters
If you want the administrators to be able to filter the change list by date, relation, or field
choices, you need to use the list_filter property for the admin model. Additionally, there
is a possibility of having custom-tailored filters. In this recipe, we will add a filter that allows
you to select products by the number of photos attached to them.

Getting ready
Let's start with the products app that we created in the previous recipe.

How to do it...
Execute the following two steps:

1. In the admin.py file, create a PhotoFilter class extending from
SimpleListFilter, as follows:
products/admin.py
-*- coding: UTF-8 -*-
... all previous imports go here ...
from django.db import models

class PhotoFilter(admin.SimpleListFilter):
 # Human-readable title which will be displayed in the
 # right admin sidebar just above the filter options.

Model Administration

186

 title = _("photos")

 # Parameter for the filter that will be used in the
 # URL query.
 parameter_name = "photos"

 def lookups(self, request, model_admin):
 """
 Returns a list of tuples. The first element in each
 tuple is the coded value for the option that will
 appear in the URL query. The second element is the
 human-readable name for the option that will appear
 in the right sidebar.
 """
 return (
 ("zero", _("Has no photos")),
 ("one", _("Has one photo")),
 ("many", _("Has more than one photo")),
)

 def queryset(self, request, queryset):
 """
 Returns the filtered queryset based on the value
 provided in the query string and retrievable via
 `self.value()`.
 """
 qs = queryset.annotate(
 num_photos=models.Count("productphoto")
)
 if self.value() == "zero":
 qs = qs.filter(num_photos=0)
 elif self.value() == "one":
 qs = qs.filter(num_photos=1)
 elif self.value() == "many":
 qs = qs.filter(num_photos__gte=2)
 return qs

2. Then, add a list filter to ProductAdmin, as shown in the following code:
class ProductAdmin(admin.ModelAdmin):
 # ...
 list_filter = [PhotoFilter]

Chapter 6

187

How it works...
The list filter that we just created will be shown in the sidebar of the product list, as follows:

The PhotoFilter class has translatable title and query parameter names as properties.
It also has two methods: the lookups() method that defines the choices of the filter and
the queryset() method that defines how to filter QuerySet objects when a specific value
is selected.

In the lookups() method, we define three choices: there are no photos, there is one
photo, and there is more than one photo attached. In the queryset() method, we use the
annotate() method of QuerySet to select the count of photos for each product. This count
of the photos is then filtered according to the selected choice.

To learn more about the aggregation functions such as annotate(), refer to the official
Django documentation at https://docs.djangoproject.com/en/1.8/topics/db/
aggregation/.

https://docs.djangoproject.com/en/1.8/topics/db/aggregation/
https://docs.djangoproject.com/en/1.8/topics/db/aggregation/

Model Administration

188

See also
 f The Customizing columns on the change list page recipe

 f The Creating admin actions recipe

 f The Customizing default admin settings recipe

Customizing default admin settings
Django apps as well as third-party apps come with their own administration settings; however,
there is a mechanism to switch these settings off and use your own better administration
settings. In this recipe, you will learn how to exchange the administration settings for the
django.contrib.auth app with custom administration settings.

Getting ready
Create a custom_admin app and put this app under INSTALLED_APPS in the settings.

How to do it...
Insert the following content in the new admin.py file in the custom_admin app:

custom_admin/admin.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.contrib import admin
from django.contrib.auth.admin import UserAdmin, GroupAdmin
from django.contrib.auth.admin import User, Group
from django.utils.translation import ugettext_lazy as _
from django.core.urlresolvers import reverse
from django.contrib.contenttypes.models import ContentType

class UserAdminExtended(UserAdmin):
 list_display = ("username", "email", "first_name",
 "last_name", "is_active", "is_staff", "date_joined",
 "last_login")
 list_filter = ("is_active", "is_staff", "is_superuser",
 "date_joined", "last_login")
 ordering = ("last_name", "first_name", "username")

Chapter 6

189

 save_on_top = True

class GroupAdminExtended(GroupAdmin):
 list_display = ("__unicode__", "display_users")
 save_on_top = True

 def display_users(self, obj):
 links = []
 for user in obj.user_set.all():
 ct = ContentType.objects.get_for_model(user)
 url = reverse(
 "admin:{}_{}_change".format(
 ct.app_label, ct.model
),
 args=(user.id,)
)
 links.append(
 """{}""".format(
 url,
 "{} {}".format(
 user.first_name, user.last_name
).strip() or user.username,
)
)
 return u"
".join(links)
 display_users.allow_tags = True
 display_users.short_description = _("Users")

admin.site.unregister(User)
admin.site.unregister(Group)
admin.site.register(User, UserAdminExtended)
admin.site.register(Group, GroupAdminExtended)

Model Administration

190

How it works...
The default user administration list looks similar to the following screenshot:

The default group administration list looks similar to the following screenshot:

Chapter 6

191

In this recipe, we created two model admin classes, UserAdminExtended and
GroupAdminExtended, which extend the contributed UserAdmin and GroupAdmin
classes, respectively, and overwrite some of the properties. Then, we unregistered the existing
administration classes for the User and Group models and registered the new modified ones.

The following screenshot is how the user administration will look now:

The modified user administration settings show more fields than the default settings in the
list view, add additional filters and ordering options, and show Submit buttons at the top of
the editing form.

Model Administration

192

In the change list of the new group administration settings, we will display the users who are
assigned to the specific groups. This looks similar to the following screenshot in the browser:

There's more...
In our Python code, we used a new way to format the strings. To learn more about the usage
of the format() method of the string compared to the old style, refer to the following URL:
https://pyformat.info/.

See also
 f The Customizing columns on the change list page recipe

 f The Inserting a map into a change form recipe

Inserting a map into a change form
Google Maps offer a JavaScript API to insert maps into your websites. In this recipe, we
will create a locations app with the Location model and extend the template of the
change form in order to add a map where an administrator can find and mark geographical
coordinates of a location.

https://pyformat.info/

Chapter 6

193

Getting ready
We will start with the locations app that should be put under INSTALLED_APPS in the
settings. Create a Location model there with a title, description, address, and geographical
coordinates, as follows:

locations/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.utils.encoding import python_2_unicode_compatible

COUNTRY_CHOICES = (
 ("UK", _("United Kingdom")),
 ("DE", _("Germany")),
 ("FR", _("France")),
 ("LT", _("Lithuania")),
)

@python_2_unicode_compatible
class Location(models.Model):
 title = models.CharField(_("title"), max_length=255,
 unique=True)
 description = models.TextField(_("description"), blank=True)
 street_address = models.CharField(_("street address"),
 max_length=255, blank=True)
 street_address2 = models.CharField(
 _("street address (2nd line)"), max_length=255,
 blank=True)
 postal_code = models.CharField(_("postal code"),
 max_length=10, blank=True)
 city = models.CharField(_("city"), max_length=255, blank=True)
 country = models.CharField(_("country"), max_length=2,
 blank=True, choices=COUNTRY_CHOICES)
 latitude = models.FloatField(_("latitude"), blank=True,
 null=True,
 help_text=_("Latitude (Lat.) is the angle between "
 "any point and the equator "
 "(north pole is at 90; south pole is at -90)."))
 longitude = models.FloatField(_("longitude"), blank=True,
 null=True,
 help_text=_("Longitude (Long.) is the angle "
 "east or west of "

Model Administration

194

 "an arbitrary point on Earth from Greenwich (UK), "
 "which is the international zero-longitude point "
 "(longitude=0 degrees). "
 "The anti-meridian of Greenwich is both 180 "
 "(direction to east) and -180 (direction to west)."))
 class Meta:
 verbose_name = _("Location")
 verbose_name_plural = _("Locations")

 def __str__(self):
 return self.title

How to do it...
The administration of the Location model is as simple as it can be. Perform the
following steps:

1. Let's create the administration settings for the Location model. Note that we are
using the get_fieldsets() method to define the field sets with a description
rendered from a template, as follows:
locations/admin.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.utils.translation import ugettext_lazy as _
from django.contrib import admin
from django.template.loader import render_to_string
from .models import Location

class LocationAdmin(admin.ModelAdmin):
 save_on_top = True
 list_display = ("title", "street_address",
 "description")
 search_fields = ("title", "street_address",
 "description")

 def get_fieldsets(self, request, obj=None):
 map_html = render_to_string(
 "admin/includes/map.html"
)
 fieldsets = [
 (_("Main Data"), {"fields": ("title",
 "description")}),
 (_("Address"), {"fields": ("street_address",
 "street_address2", "postal_code", "city",

Chapter 6

195

 "country", "latitude", "longitude")}),
 (_("Map"), {"description": map_html,
 "fields": []}),
]
 return fieldsets

admin.site.register(Location, LocationAdmin)

2. To create a custom change form template, add a new change_form.html file under
admin/locations/location/ in your templates directory. This template will
extend from the default admin/change_form.html template and will overwrite the
extrastyle and field_sets blocks, as follows:
{# myproject/templates/admin/locations/location/change_form.html
#}
{% extends "admin/change_form.html" %}
{% load i18n admin_static admin_modify %}
{% load url from future %}
{% load admin_urls %}

{% block extrastyle %}
 {{ block.super }}
 <link rel="stylesheet" type="text/css" href="{{ STATIC_URL }}
site/css/locating.css" />
{% endblock %}

{% block field_sets %}
 {% for fieldset in adminform %}
 {% include "admin/includes/fieldset.html" %}
 {% endfor %}
 <script type="text/javascript" src="http://maps.google.com/
maps/api/js?language=en"></script>
 <script type="text/javascript" src="{{ STATIC_URL }}site/js/
locating.js"></script>
{% endblock %}

3. Then, we need to create the template for the map that will be inserted in the Map
field set:
{# myproject/templates/admin/includes/map.html #}
{% load i18n %}
<div class="form-row">
 <div id="map_canvas">
 <!-- THE GMAPS WILL BE INSERTED HERE
 DYNAMICALLY -->
 </div>
 <ul id="map_locations">
 <div class="buttonHolder">
 <button id="locate_address" type="button"

Model Administration

196

 class="secondaryAction">
 {% trans "Locate address" %}
 </button>
 <button id="remove_geo" type="button"
 class="secondaryAction">
 {% trans "Remove from map" %}
 </button>
 </div>
</div>

4. Of course, the map won't be styled by default. Therefore, we have to add some CSS,
as shown in the following code:
/* site_static/site/css/locating.css */
#map_canvas {
 width:722px;
 height:300px;
 margin-bottom: 8px;
}
#map_locations {
 width:722px;
 margin: 0;
 padding: 0;
 margin-bottom: 8px;
}
#map_locations li {
 border-bottom: 1px solid #ccc;
 list-style: none;
}
#map_locations li:first-child {
 border-top: 1px solid #ccc;
}
.buttonHolder {
 width:722px;
}
#remove_geo {
 float: right;
}

5. Then, let's create a locating.js JavaScript file. We will be using jQuery in this
file, as jQuery comes with the contributed administration system and makes the
work easy and cross-browser. We don't want to pollute the environment with global
variables, therefore, we will start with a closure to make a private scope for variables
and functions (a closure is the local variables for a function kept alive after the
function has returned), as follows:
// site_static/site/js/locating.js
(function ($, undefined) {

Chapter 6

197

 var gMap;
 var gettext = window.gettext || function (val) {
 return val;
 };
 var gMarker;

 // ... this is where all the further JavaScript
 // functions go ...

}(django.jQuery));

6. We will create JavaScript functions one by one. The getAddress4search()
function will collect the address string from the address fields that can later
be used for geocoding, as follows:
function getAddress4search() {
 var address = [];
 var sStreetAddress2 = $('#id_street_address2').val();
 if (sStreetAddress2) {
 sStreetAddress2 = ' ' + sStreetAddress2;
 }
 address.push($('#id_street_address').val() + sStreetAddress2);
 address.push($('#id_city').val());
 address.push($('#id_country').val());
 address.push($('#id_postal_code').val());
 return address.join(', ');
}

7. The updateMarker() function will take the latitude and longitude arguments and
draw or move a marker on the map. It also makes the marker draggable:
function updateMarker(lat, lng) {
 var point = new google.maps.LatLng(lat, lng);
 if (gMarker) {
 gMarker.setPosition(point);
 } else {
 gMarker = new google.maps.Marker({
 position: point,
 map: gMap
 });
 }
 gMap.panTo(point, 15);
 gMarker.setDraggable(true);
 google.maps.event.addListener(gMarker, 'dragend', function() {
 var point = gMarker.getPosition();
 updateLatitudeAndLongitude(point.lat(), point.lng());
 });
}

Model Administration

198

8. The updateLatitudeAndLongitude() function takes the latitude and longitude
arguments and updates the values for the fields with the IDs id_latitude and
id_longitude, as follows:
function updateLatitudeAndLongitude(lat, lng) {
 lat = Math.round(lat * 1000000) / 1000000;
 lng = Math.round(lng * 1000000) / 1000000;
 $('#id_latitude').val(lat);
 $('#id_longitude').val(lng);
}

9. The autocompleteAddress() function gets the results from Google Maps
geocoding and lists them under the map in order to select the correct one, or if there
is just one result, it updates the geographical position and address fields, as follows:
function autocompleteAddress(results) {
 var $foundLocations = $('#map_locations').html('');
 var i, len = results.length;

 // console.log(JSON.stringify(results, null, 4));

 if (results) {
 if (len > 1) {
 for (i=0; i<len; i++) {
 $('' + results[i].formatted_address +
'').data('gmap_index', i).click(function (e) {
 e.preventDefault();
 var result = results[$(this).data('gmap_
index')];
 updateAddressFields(result.address_
components);
 var point = result.geometry.location;
 updateLatitudeAndLongitude(point.lat(), point.
lng());
 updateMarker(point.lat(), point.lng());
 $foundLocations.hide();
 }).appendTo($('').appendTo($foundLocations));
 }
 $('' + gettext('None of the listed') + '</
a>').click(function (e) {
 e.preventDefault();
 $foundLocations.hide();
 }).appendTo($('').appendTo($foundLocations));
 $foundLocations.show();
 } else {
 $foundLocations.hide();
 var result = results[0];
 updateAddressFields(result.address_components);

Chapter 6

199

 var point = result.geometry.location;
 updateLatitudeAndLongitude(point.lat(), point.lng());
 updateMarker(point.lat(), point.lng());
 }
 }
}

10. The updateAddressFields() function takes a nested dictionary with the address
components as an argument and fills in all the address fields:
function updateAddressFields(addressComponents) {
 var i, len=addressComponents.length;
 var streetName, streetNumber;
 for (i=0; i<len; i++) {
 var obj = addressComponents[i];
 var obj_type = obj.types[0];
 if (obj_type == 'locality') {
 $('#id_city').val(obj.long_name);
 }
 if (obj_type == 'street_number') {
 streetNumber = obj.long_name;
 }
 if (obj_type == 'route') {
 streetName = obj.long_name;
 }
 if (obj_type == 'postal_code') {
 $('#id_postal_code').val(obj.long_name);
 }
 if (obj_type == 'country') {
 $('#id_country').val(obj.short_name);
 }
 }
 if (streetName) {
 var streetAddress = streetName;
 if (streetNumber) {
 streetAddress += ' ' + streetNumber;
 }
 $('#id_street_address').val(streetAddress);
 }
}

11. Finally, we have the initialization function that is called on the page load. It attaches
the onclick event handlers to the buttons, creates a Google Map, and initially
marks the geoposition that is defined in the latitude and longitude fields,
as follows:
$(function (){
 $('#locate_address').click(function() {

Model Administration

200

 var oGeocoder = new google.maps.Geocoder();
 oGeocoder.geocode(
 {address: getAddress4search()},
 function (results, status) {
 if (status === google.maps.GeocoderStatus.OK) {
 autocompleteAddress(results);
 } else {
 autocompleteAddress(false);
 }
 }
);
 });

 $('#remove_geo').click(function() {
 $('#id_latitude').val('');
 $('#id_longitude').val('');
 gMarker.setMap(null);
 gMarker = null;
 });

 gMap = new google.maps.Map($('#map_canvas').get(0), {
 scrollwheel: false,
 zoom: 16,
 center: new google.maps.LatLng(51.511214, -0.119824),
 disableDoubleClickZoom: true
 });
 google.maps.event.addListener(gMap, 'dblclick',
function(event) {
 var lat = event.latLng.lat();
 var lng = event.latLng.lng();
 updateLatitudeAndLongitude(lat, lng);
 updateMarker(lat, lng);
 });
 $('#map_locations').hide();

 var $lat = $('#id_latitude');
 var $lng = $('#id_longitude');
 if ($lat.val() && $lng.val()) {
 updateMarker($lat.val(), $lng.val());
 }
});

Chapter 6

201

How it works...
If you look at the location change form in the browser, you will see a map shown in a field set
followed by the field set containing the address fields, as shown in the following screenshot:

Under the map, there are two buttons: Locate address and Remove from map.

Model Administration

202

When you click on the Locate address button, the geocoding is called in order to search for
the geographical coordinates of the entered address. The result of geocoding is either one
or more addresses with latitudes and longitudes in a nested dictionary format. To see the
structure of the nested dictionary in the console of the developer tools, put the following line
in the beginning of the autocompleteAddress() function:

console.log(JSON.stringify(results, null, 4));

If there is just one result, the missing postal code or other missing address fields are
populated, the latitude and longitude are filled in and a marker is put at a specific place on
the map. If there are more results, the entire list is shown under the map with the option to
select the correct one, as shown in the following screenshot:

Chapter 6

203

Then, the administrator can move the marker on the map by dragging and dropping. Also,
a double-click anywhere on the map will update the geographical coordinates and marker
position.

Finally, if the Remove from map button is clicked, the geographical coordinates are cleaned
and the marker is removed.

See also
 f The Using HTML5 data attributes recipe in Chapter 4, Templates and JavaScript

205

7
Django CMS

In this chapter, we will cover the following recipes:

 f Creating templates for Django CMS

 f Structuring the page menu

 f Converting an app to a CMS app

 f Attaching your own navigation

 f Writing your own CMS plugin

 f Adding new fields to the CMS page

Introduction
Django CMS is an open source content management system that is based on Django and
created by Divio AG, Switzerland. Django CMS takes care of a website's structure, provides
navigation menus, makes it easy to edit page content in the frontend, and supports multiple
languages in a website. You can also extend it according to your needs using the provided
hooks. To create a website, you need to create a hierarchical structure of the pages, where
each page has a template. Templates have placeholders that can be assigned different
plugins with the content. Using special template tags, the menus can be generated out of the
hierarchical page structure. The CMS takes care of URL mapping to specific pages.

In this chapter, we will look at Django CMS 3.1 from a developer's perspective. We will see
what is necessary for the templates to function and take a look at the possible page structure
for header and footer navigation. You will also learn how to attach the URL rules of an app to a
CMS page tree node. Then, we will attach the custom navigation to the page menu and create
our own CMS content plugins. Finally, you will learn how to add new fields to the CMS pages.

Django CMS

206

Although in this book, I won't guide you through all the bits and pieces of using Django CMS;
by the end of this chapter, you will be aware of its purpose and use. The rest can be learned
from the official documentation at http://docs.django-cms.org/en/develop/ and by
trying out the frontend user interface of the CMS.

Creating templates for Django CMS
For every page in your page structure, you need to choose a template from the list of
templates that are defined in the settings. In this recipe, we will look at the minimum
requirements for these templates.

Getting ready
If you want to start a new Django CMS project, execute the following commands in a virtual
environment and answer all the prompted questions:

(myproject_env)$ pip install djangocms-installer

(myproject_env)$ djangocms -p project/myproject myproject

Here, project/myproject is the path where the project will be created and myproject is
the project name.

On the other hand, if you want to integrate Django CMS in an existing project, check the
official documentation at http://docs.django-cms.org/en/latest/how_to/
install.html.

How to do it...
We will update the Bootstrap-powered base.html template so that it contains everything
that Django CMS needs. Then, we will create and register two templates, default.html and
start.html, to choose from for CMS pages:

1. First of all, we will update the base template that we created in the Arranging the
base.html template recipe in Chapter 4, Templates and JavaScript, as follows:
{# templates/base.html #}
<!DOCTYPE html>
{% load i18n cms_tags sekizai_tags menu_tags %}
<html lang="{{ LANGUAGE_CODE }}">
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-
scale=1" />
 <title>{% block title %}{% endblock %}{% trans "My Website"
%}</title>

http://docs.django-cms.org/en/develop/
http://docs.django-cms.org/en/latest/how_to/install.html
http://docs.django-cms.org/en/latest/how_to/install.html

Chapter 7

207

 <link rel="icon" href="{{ STATIC_URL }}site/img/favicon.ico"
type="image/png" />

 {% block meta_tags %}{% endblock %}

 {% render_block "css" %}
 {% block base_stylesheet %}
 <link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/
bootstrap/3.3.5/css/bootstrap.min.css" />
 <link href="{{ STATIC_URL }}site/css/style.css"
rel="stylesheet" media="screen" type="text/css" />
 {% endblock %}
 {% block stylesheet %}{% endblock %}

 {% block base_js %}
 <script src="//code.jquery.com/jquery-1.11.3.min.js"></
script>
 <script src="//code.jquery.com/jquery-migrate-1.2.1.min.
js"></script>
 <script src="//maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/
bootstrap.min.js"></script>
 {% endblock %}
 {% block js %}{% endblock %}
 {% block extrahead %}{% endblock %}
</head>
<body class="{% block bodyclass %}{% endblock %} {{ request.
current_page.cssextension.body_css_class }}">
 {% cms_toolbar %}
 {% block page %}
 <div class="wrapper">
 <div id="header" class="clearfix container">
 <h1>{% trans "My Website" %}</h1>
 <nav class="navbar navbar-default"
role="navigation">
 {% block header_navigation %}
 <ul class="nav navbar-nav">
 {% show_menu_below_id "start_page" 0 1
1 1 %}

 {% endblock %}
 {% block language_chooser %}
 <ul class="nav navbar-nav pull-right">
 {% language_chooser %}

 {% endblock %}

Django CMS

208

 </nav>
 </div>
 <div id="content" class="clearfix container">
 {% block content %}
 {% endblock %}
 </div>
 <div id="footer" class="clearfix container">
 {% block footer_navigation %}
 <nav class="navbar navbar-default"
role="navigation">
 <ul class="nav navbar-nav">
 {% show_menu_below_id "footer_
navigation" 0 1 1 1 %}

 </nav>
 {% endblock %}
 </div>
 </div>
 {% endblock %}
 {% block extrabody %}{% endblock %}
 {% render_block "js" %}
</body>
</html>

2. Then, we will create a cms directory under templates and add two templates for
CMS pages: default.html for normal pages and start.html for the home page,
as follows:
{# templates/cms/default.html #}
{% extends "base.html" %}
{% load cms_tags %}

{% block title %}{% page_attribute "page_title" %} - {% endblock
%}

{% block meta_tags %}
 <meta name="description" content="{% page_attribute meta_
description %}"/>
{% endblock %}

{% block content %}
 <h1>{% page_attribute "page_title" %}</h1>
 <div class="row">
 <div class="col-md-8">
 {% placeholder main_content %}
 </div>

Chapter 7

209

 <div class="col-md-4">
 {% placeholder sidebar %}
 </div>
 </div>
{% endblock %}

{# templates/cms/start.html #}
{% extends "base.html" %}
{% load cms_tags %}

{% block meta_tags %}
 <meta name="description" content="{% page_attribute meta_
description %}"/>
{% endblock %}

{% block content %}
 <!--
 Here goes very customized website-specific content like
slideshows, latest tweets, latest news, latest profiles, etc.
 -->
{% endblock %}

3. Lastly, we will set the paths of these two templates in the settings, as shown in
the following:
conf/base.py or settings.py
CMS_TEMPLATES = (
 ("cms/default.html", gettext("Default")),
 ("cms/start.html", gettext("Homepage")),
)

How it works...
As usual, the base.html template is the main template that is extended by all the other
templates. In this template, Django CMS uses the {% render_block %} template tag from
the django-sekizai module to inject CSS and JavaScript in the templates that create a
toolbar and other administration widgets in the frontend. We will insert the {% cms_toolbar
%} template tag at the beginning of the <body> section—that's where the toolbar will be
placed. We will use the {% show_menu_below_id %} template tag to render the header
and footer menus from the specific page menu trees. Also, we will use the {% language_
chooser %} template tag to render the language chooser that switches to the same page in
different languages.

Django CMS

210

The default.html and start.html templates that are defined in the CMS_TEMPLATES
setting will be available as a choice when creating a CMS page. In these templates, for each
area that needs to have dynamically entered content, add a {% placeholder %} template
tag when you need page-specific content or {% static_placeholder %} when you need
the content that is shared among different pages. Logged-in administrators can add content
plugins to the placeholders when they switch from the Live mode to the Draft mode in the
CMS toolbar and switch to the Structure section.

See also
 f The Arranging the base.html template recipe in Chapter 4, Templates and JavaScript

 f The Structuring the page menu recipe

Structuring the page menu
In this recipe, we will discuss some guidelines about defining the tree structures for the pages
of your website.

Getting ready
It is good practice to set the available languages for your website before creating the structure
of your pages (although the Django CMS database structure also allows you to add new
languages later). Besides LANGUAGES, make sure that you have CMS_LANGUAGES set in your
settings. The CMS_LANGUAGES setting defines which languages should be active for each
Django site, as follows:

conf/base.py or settings.py
...
from __future__ import unicode_literals
gettext = lambda s: s

LANGUAGES = (
 ("en", "English"),
 ("de", "Deutsch"),
 ("fr", "Français"),
 ("lt", "Lietuvių kalba"),
)

CMS_LANGUAGES = {
 "default": {
 "public": True,
 "hide_untranslated": False,

Chapter 7

211

 "redirect_on_fallback": True,
 },
 1: [
 {
 "public": True,
 "code": "en",
 "hide_untranslated": False,
 "name": gettext("en"),
 "redirect_on_fallback": True,
 },
 {
 "public": True,
 "code": "de",
 "hide_untranslated": False,
 "name": gettext("de"),
 "redirect_on_fallback": True,
 },
 {
 "public": True,
 "code": "fr",
 "hide_untranslated": False,
 "name": gettext("fr"),
 "redirect_on_fallback": True,
 },
 {
 "public": True,
 "code": "lt",
 "hide_untranslated": False,
 "name": gettext("lt"),
 "redirect_on_fallback": True,
 },
],
}

Django CMS

212

How to do it...
The page navigation is set in tree structures. The first tree is the main tree and, contrary to the
other trees, the root node of the main tree is not reflected in the URL structure. The root node
of this tree is the home page of the website. Usually, this page has a specific template, where
you add the content aggregated from different apps; for example, a slideshow, actual news,
newly registered users, latest tweets, or other latest or featured objects. For a convenient
way to render items from different apps, check the Creating a template tag to a QuerySet in a
template recipe in Chapter 5, Custom Template Filters and Tags.

If your website has multiple navigations such as a top, meta, and footer navigation, give an ID
to the root node of each tree in the Advanced settings of the page. This ID will be used in the
base template by the {% show_menu_below_id %} template tag. You can read more about
this and other menu-related template tags in the official documentation at http://docs.
django-cms.org/en/latest/reference/navigation.html.

The first tree defines the main structure of the website. If you want a page under the root-level
URL, for example, /en/search/ but not /en/meta/search/, put this page under the home
page. If you don't want a page to be shown in the menu as it will be linked from an icon or
widget, just hide it from the menu.

The footer navigation usually shows different items than the top navigation with some of the
items being repeated, for example, the page for developers will be shown only in the footer;
whereas, the page for news will be shown in both header and footer. For all the repeated
items, just create a page with the Redirect setting in the advanced settings of the page and
set it to the original page in the main tree. By default, when you create a secondary tree
structure, all pages under the root of that tree will include the slug of the root page in their
URL paths. If you want to skip the slug of the root in the URL path, you will need to set the
Overwrite URL setting in the advanced settings of the page. For example, the developers page
should be under /en/developers/ and not /en/secondary/developers/.

http://docs.django-cms.org/en/latest/reference/navigation.html
http://docs.django-cms.org/en/latest/reference/navigation.html

Chapter 7

213

How it works...
Finally, your page structure will look similar to the following image (of course, the page
structure can be much more complex too):

See also
 f The Creating a template tag to load a QuerySet in a template recipe in Chapter 5,

Custom Template Filters and Tags

 f The Creating templates for Django CMS recipe

 f The Attaching your own navigation recipe

Django CMS

214

Converting an app to a CMS app
The simplest Django CMS website will have the whole page tree created using administration
interface. However, for real-world cases, you will probably need to show forms or lists of
objects under some page nodes. If you have created an app that is responsible for some type
of objects in your website, such as movies, you can easily convert it to a Django CMS app and
attach it to one of the pages. This will ensure that the root URL of the app is translatable and
the menu item is highlighted when selected. In this recipe, we will convert the movies app to
a CMS app.

Getting ready
Let's start with the movies app that we created in the Filtering object lists recipe in
Chapter 3, Forms and Views.

How to do it...
Follow these steps to convert a usual movies Django app to a Django CMS app:

1. First of all, remove or comment out the inclusion of the URL configuration of the app
as it will be included by an apphook in Django CMS, as follows:
myproject/urls.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.conf.urls import patterns, include, url
from django.conf import settings
from django.conf.urls.static import static
from django.contrib.staticfiles.urls import \
 staticfiles_urlpatterns
from django.conf.urls.i18n import i18n_patterns
from django.contrib import admin
admin.autodiscover()

urlpatterns = i18n_patterns("",
 # remove or comment out the inclusion of app's urls
 # url(r"^movies/", include("movies.urls")),

 url(r"^admin/", include(admin.site.urls)),
 url(r"^", include("cms.urls")),
)
urlpatterns += staticfiles_urlpatterns()
urlpatterns += static(settings.MEDIA_URL,
 document_root=settings.MEDIA_ROOT)

Chapter 7

215

2. Create a cms_app.py file in the movies directory and create MoviesApphook
there, as follows:
movies/cms_app.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.utils.translation import ugettext_lazy as _
from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool

class MoviesApphook(CMSApp):
 name = _("Movies")
 urls = ["movies.urls"]

apphook_pool.register(MoviesApphook)

3. Set the newly created apphook in the settings, as shown in the following:
settings.py
CMS_APPHOOKS = (
 # ...
 "movies.cms_app.MoviesApphook",
)

4. Finally, in all the movie templates, change the first line to extend from the template of
the current CMS page instead of base.html, as follows:
{# templates/movies/movies_list.html #}

Change
{% extends "base.html" %}

to
{% extends CMS_TEMPLATE %}

How it works...
Apphooks are the interfaces that join the URL configuration of apps to the CMS pages.
Apphooks need to extend from CMSApp. To define the name, which will be shown in the
Application selection list under the Advanced settings of a page, put the path of the apphook
in the CMS_APPHOOKS project setting and restart the web server; the apphook will appear
as one of the applications in the advanced page settings. After selecting an application for a
page, you need to restart the server for the URLs to take effect.

The templates of the app should extend the page template if you want them to contain
the placeholders or attributes of the page, for example, the title or the description
meta tag.

Django CMS

216

See also
 f The Filtering object lists recipe in Chapter 3, Forms and Views

 f The Attaching your own navigation recipe

Attaching your own navigation
Once you have an app hooked in the CMS pages, all the URL paths under the page node will
be controlled by the urls.py file of the app. To add some menu items under this page, you
need to add a dynamical branch of navigation to the page tree. In this recipe, we will improve
the movies app and add new navigation items under the Movies page.

Getting ready
Let's say that we have a URL configuration for different lists of movies: editor's picks,
commercial movies, and independent movies, as shown in the following code:

movies/urls.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.conf.urls import url, patterns
from django.shortcuts import redirect

urlpatterns = patterns("movies.views",
 url(r"^$", lambda request: redirect("featured_movie_list")),
 url(r"^editors-picks/$", "movie_list", {"featured": True},
 name='featured_movie_list'),
 url(r"^commercial/$", "movie_list", {"commercial": True},
 name="commercial_movie_list"),
 url(r"^independent/$", "movie_list", {"independent": True},
 name="independent_movie_list"),
 url(r"^(?P<slug>[^/]+)/$", "movie_detail",
 name="movie_detail"),
)

Chapter 7

217

How to do it...
Follow these two steps to attach the Editor's Picks, Commercial Movies, and Independent
Movies menu choices to the navigational menu under the Movies page:

1. Create the menu.py file in the movies app and add the following MoviesMenu
class, as follows:
movies/menu.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.utils.translation import ugettext_lazy as _
from django.core.urlresolvers import reverse
from menus.base import NavigationNode
from menus.menu_pool import menu_pool
from cms.menu_bases import CMSAttachMenu

class MoviesMenu(CMSAttachMenu):
 name = _("Movies Menu")

 def get_nodes(self, request):
 nodes = [
 NavigationNode(
 _("Editor's Picks"),
 reverse("featured_movie_list"),
 1,
),
 NavigationNode(
 _("Commercial Movies"),
 reverse("commercial_movie_list"),
 2,
),
 NavigationNode(
 _("Independent Movies"),
 reverse("independent_movie_list"),
 3,
),
]
 return nodes

menu_pool.register_menu(MoviesMenu)

2. Restart the web server and then edit the Advanced settings of the Movies page and
select Movies Menu for the Attached menu setting.

Django CMS

218

How it works...
In the frontend, you will see the new menu items attached to the Movies page, as shown in
the following image:

Dynamic menus that are attachable to pages need to extend CMSAttachMenu, define the
name by which they will be selected, and define the get_nodes() method that returns a list
of NavigationNode objects. The NavigationNode class takes at least three parameters:
the title of the menu item, the URL path of the menu item, and the ID of the node. The IDs
can be chosen freely with the only requirement being that they have to be unique among this
attached menu. The other optional parameters are as follows:

 f parent_id: This is the ID of the parent node if you want to create a hierarchical
dynamical menu

 f parent_namespace: This is the name of another menu if this node is to be attached
to a different menu tree, for example, the name of this menu is "MoviesMenu"

 f attr: This is a dictionary of the additional attributes that can be used in a template
or menu modifier

 f visible: This sets whether or not the menu item should be visible

For other examples of attachable menus, refer to the official documentation at
https://django-cms.readthedocs.org/en/latest/how_to/menus.html.

See also
 f The Structuring the page menu recipe

 f The Converting an app to a CMS app recipe

https://django-cms.readthedocs.org/en/latest/how_to/menus.html

Chapter 7

219

Writing your own CMS plugin
Django CMS comes with a lot of content plugins that can be used in template placeholders,
such as the text, flash, picture, and Google map plugins. However, for more structured and
better styled content, you will need your own custom plugins, which are not too difficult to
implement. In this recipe, we will see how to create a new plugin and have a custom layout for
its data, depending on the chosen template of the page.

Getting ready
Let's create an editorial app and mention it in the INSTALLED_APPS setting. Also, we
will need the cms/magazine.html template that was created and mentioned in the CMS_
TEMPLATES setting; you can simply duplicate the cms/default.html template for this.

How to do it...
To create the EditorialContent plugin, follow these steps:

1. In the models.py file of the newly created app, add the EditorialContent model
extending from CMSPlugin. The EditorialContent model will have the following
fields: title, subtitle, description, website, image, image caption, and a CSS class:
editorial/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import os
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.utils.timezone import now as tz_now
from cms.models import CMSPlugin
from cms.utils.compat.dj import python_2_unicode_compatible

def upload_to(instance, filename):
 now = tz_now()
 filename_base, filename_ext = \
 os.path.splitext(filename)
 return "editorial/%s%s" % (
 now.strftime("%Y/%m/%Y%m%d%H%M%S"),
 filename_ext.lower(),
)

@python_2_unicode_compatible
class EditorialContent(CMSPlugin):

Django CMS

220

 title = models.CharField(_("Title"), max_length=255)
 subtitle = models.CharField(_("Subtitle"),
 max_length=255, blank=True)
 description = models.TextField(_("Description"),
 blank=True)
 website = models.CharField(_("Website"),
 max_length=255, blank=True)

 image = models.ImageField(_("Image"), max_length=255,
 upload_to=upload_to, blank=True)
 image_caption = models.TextField(_("Image Caption"),
 blank=True)

 css_class = models.CharField(_("CSS Class"),
 max_length=255, blank=True)

 def __str__(self):
 return self.title

 class Meta:
 ordering = ["title"]
 verbose_name = _("Editorial content")
 verbose_name_plural = _("Editorial contents")

2. In the same app, create a cms_plugins.py file and add a
EditorialContentPlugin class extending CMSPluginBase. This class is a
little bit like ModelAdmin—it defines the appearance of administration settings
for the plugin:
editorial/cms_plugins.py
-*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.utils.translation import ugettext as _
from cms.plugin_base import CMSPluginBase
from cms.plugin_pool import plugin_pool
from .models import EditorialContent

class EditorialContentPlugin(CMSPluginBase):
 model = EditorialContent
 name = _("Editorial Content")
 render_template = "cms/plugins/editorial_content.html"

 fieldsets = (
 (_("Main Content"), {
 "fields": (

Chapter 7

221

 "title", "subtitle", "description",
 "website"),
 "classes": ["collapse open"]
 }),
 (_("Image"), {
 "fields": ("image", "image_caption"),
 "classes": ["collapse open"]
 }),
 (_("Presentation"), {
 "fields": ("css_class",),
 "classes": ["collapse closed"]
 }),
)

 def render(self, context, instance, placeholder):
 context.update({
 "object": instance,
 "placeholder": placeholder,
 })
 return context

plugin_pool.register_plugin(EditorialContentPlugin)

3. To specify which plugins go to which placeholders, you have to define the
CMS_PLACEHOLDER_CONF setting. You can also define the extra context for the
templates of the plugins that are rendered in a specific placeholder. Let's allow
EditorialContentPlugin for the main_content placeholder and set the
editorial_content_template context variable for the main_content
placeholder in the cms/magazine.html template, as follows:
settings.py
CMS_PLACEHOLDER_CONF = {
 "main_content": {
 "name": gettext("Main Content"),
 "plugins": (
 "EditorialContentPlugin",
 "TextPlugin",
),
 },
 "cms/magazine.html main_content": {
 "name": gettext("Magazine Main Content"),
 "plugins": (
 "EditorialContentPlugin",
 "TextPlugin"
),

Django CMS

222

 "extra_context": {
 "editorial_content_template": \
 "cms/plugins/editorial_content/magazine.html",
 }
 },
}

4. Then, we will create two templates. One of them will be the editorial_content.
html template. It checks whether the editorial_content_template context
variable exists. If the variable exists, it is included. Otherwise, it shows the default
layout for editorial content:
{# templates/cms/plugins/editorial_content.html #}
{% load i18n %}

{% if editorial_content_template %}
 {% include editorial_content_template %}
{% else %}
 <div class="item{% if object.css_class %} {{ object.css_class
}}{% endif %}">
 <!-- editorial content for non-specific placeholders -->
 <div class="img">
 {% if object.image %}
 <img class="img-responsive" alt="{{ object.image_
caption|striptags }}" src="{{ object.image.url }}" />
 {% endif %}
 {% if object.image_caption %}<p class="caption">{{
object.image_caption|removetags:"p" }}</p>
 {% endif %}
 </div>
 <h3>{{ object.title }}</
a></h3>
 <h4>{{ object.subtitle }}</h4>
 <div class="description">{{ object.description|safe }}</
div>
 </div>
{% endif %}

5. The second template is a specific template for the EditorialContent plugin in the
cms/magazine.html template. There's nothing too fancy here, just an additional
Bootstrap-specific well CSS class for the container to make the plugin stand out:
{# templates/cms/plugins/editorial_content/magazine.html #}
{% load i18n %}
<div class="well item{% if object.css_class %} {{ object.css_class
}}{% endif %}">
 <!-- editorial content for non-specific placeholders -->

Chapter 7

223

 <div class="img">
 {% if object.image %}
 <img class="img-responsive" alt="{{ object.image_
caption|striptags }}" src="{{ object.image.url }}" />
 {% endif %}
 {% if object.image_caption %}<p class="caption">{{ object.
image_caption|removetags:"p" }}</p>
 {% endif %}
 </div>
 <h3>{{ object.title }}</h3>
 <h4>{{ object.subtitle }}</h4>
 <div class="description">{{ object.description|safe }}</div>
</div>

How it works...
If you go to the Draft mode of any CMS page and switch to the Structure section, you can add
the Editorial Content plugin to a placeholder. The content of this plugin will be rendered with
a specified template and it can also be customized, depending on the template of the page
where the plugin is chosen. For example, choose the cms/magazine.html template for the
News page and then add the Editorial Content plugin. The News page will look similar to the
following screenshot:

Django CMS

224

Here, the Test Title with an image and description is the custom plugin inserted in the
main_content placeholder in the magazine.html page template. If the page template
was different, the plugin would be rendered without the Bootstrap-specific well CSS class;
therefore, it would not have a gray background.

See also
 f The Creating templates for Django CMS recipe

 f The Structuring the page menu recipe

Adding new fields to the CMS page
CMS pages have several multilingual fields such as title, slug, menu title, page title, description
meta tag, and overwrite URL. They also have several common nonlanguage-specific fields such
as template, ID used in template tags, attached application, and attached menu. However,
that might not be enough for more complex websites. Thankfully, Django CMS features a
manageable mechanism to add new database fields for CMS pages. In this recipe, you will see
how to add fields for the CSS classes for the navigational menu items and page body.

Getting ready
Let's create the cms_extensions app and put it under INSTALLED_APPS in the settings.

How to do it...
To create a CMS page extension with the CSS class fields for the navigational menu items and
page body, follow these steps:

1. In the models.py file, create a CSSExtension class extending PageExtension
and put fields for the menu item's CSS class and <body> CSS class, as follows:
cms_extensions/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _
from cms.extensions import PageExtension
from cms.extensions.extension_pool import extension_pool

MENU_ITEM_CSS_CLASS_CHOICES = (

Chapter 7

225

 ("featured", ".featured"),
)

BODY_CSS_CLASS_CHOICES = (
 ("serious", ".serious"),
 ("playful", ".playful"),
)

class CSSExtension(PageExtension):
 menu_item_css_class = models.CharField(
 _("Menu Item CSS Class"),
 max_length=200,
 blank=True,
 choices=MENU_ITEM_CSS_CLASS_CHOICES,
)
 body_css_class = models.CharField(
 _("Body CSS Class"),
 max_length=200,
 blank=True,
 choices=BODY_CSS_CLASS_CHOICES,
)

extension_pool.register(CSSExtension)

2. In the admin.py file, let's add administration options for the CSSExtension model
that we just created:
cms_extensions/admin.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.contrib import admin
from cms.extensions import PageExtensionAdmin
from .models import CSSExtension

class CSSExtensionAdmin(PageExtensionAdmin):
 pass

admin.site.register(CSSExtension, CSSExtensionAdmin)

3. Then, we need to show the CSS extension in the toolbar for each page. This can be
done by putting the following code in the cms_toolbar.py file of the app:
cms_extensions/cms_toolbar.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from cms.api import get_page_draft

Django CMS

226

from cms.toolbar_pool import toolbar_pool
from cms.toolbar_base import CMSToolbar
from cms.utils import get_cms_setting
from cms.utils.permissions import has_page_change_permission
from django.core.urlresolvers import reverse, NoReverseMatch
from django.utils.translation import ugettext_lazy as _
from .models import CSSExtension

@toolbar_pool.register
class CSSExtensionToolbar(CMSToolbar):
 def populate(self):
 # always use draft if we have a page
 self.page = get_page_draft(
 self.request.current_page)

 if not self.page:
 # Nothing to do
 return

 # check global permissions
 # if CMS_PERMISSIONS is active
 if get_cms_setting("PERMISSION"):
 has_global_current_page_change_permission = \
 has_page_change_permission(self.request)
 else:
 has_global_current_page_change_permission = \
 False
 # check if user has page edit permission
 can_change = self.request.current_page and \
 self.request.current_page.\
 has_change_permission(self.request)
 if has_global_current_page_change_permission or \
 can_change:
 try:
 extension = CSSExtension.objects.get(
 extended_object_id=self.page.id)
 except CSSExtension.DoesNotExist:
 extension = None
 try:
 if extension:
 url = reverse(
 "admin:cms_extensions_cssextension_change",
 args=(extension.pk,)
)

Chapter 7

227

 else:
 url = reverse(
 "admin:cms_extensions_cssextension_add") + \
 "?extended_object=%s" % self.page.pk
 except NoReverseMatch:
 # not in urls
 pass
 else:
 not_edit_mode = not self.toolbar.edit_mode
 current_page_menu = self.toolbar.\
 get_or_create_menu("page")
 current_page_menu.add_modal_item(
 _("CSS"),
 url=url,
 disabled=not_edit_mode
)

This code checks whether the user has the permission to change the current page,
and if so, it loads the page menu from the current toolbar and adds a new menu
item, CSS, with the link to create or edit CSSExtension.

4. As we want to access the CSS extension in the navigation menu in order to attach a
CSS class, we need to create a menu modifier in the menu.py file of the same app:
cms_extensions/menu.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from cms.models import Page
from menus.base import Modifier
from menus.menu_pool import menu_pool

class CSSModifier(Modifier):
 def modify(self, request, nodes, namespace, root_id,
 post_cut, breadcrumb):
 if post_cut:
 return nodes
 for node in nodes:
 try:
 page = Page.objects.get(pk=node.id)
 except:
 continue
 try:
 page.cssextension
 except:
 pass
 else:

Django CMS

228

 node.cssextension = page.cssextension
 return nodes

menu_pool.register_modifier(CSSModifier)

5. Then, we will add the body CSS class to the <body> element in the base.html
template, as follows:
{# templates/base.html #}
<body class="{% block bodyclass %}{% endblock %}{% if request.
current_page.cssextension %}{{ request.current_page.cssextension.
body_css_class }}{% endif %}">

6. Lastly, we will modify the menu.html file, which is the default template for the
navigation menu, and add the menu item's CSS class as follows:
{# templates/menu/menu.html #}
{% load i18n menu_tags cache %}

{% for child in children %}
 <li class="{% if child.ancestor %}ancestor{% endif %}
{% if child.selected %} active{% endif %}{% if child.children
%} dropdown{% endif %}{% if child.cssextension %} {{ child.
cssextension.menu_item_css_class }}{% endif %}">
 {% if child.children %}<a class="dropdown-toggle" data-
toggle="dropdown" href="#">{{ child.get_menu_title }} <span
class="caret">
 <ul class="dropdown-menu">
 {% show_menu from_level to_level extra_inactive
extra_active template "" "" child %}

 {% else %}
 {{ child.
get_menu_title }}
 {% endif %}

{% endfor %}

Chapter 7

229

How it works...
The PageExtension class is a model mixin with a one-to-one relationship with the Page
model. To be able to administrate the custom extension model in Django CMS, there is a
specific PageExtensionAdmin class to extend. Then, in the cms_toolbar.py file, we will
create the CSSExtensionToolbar class, inheriting from the CMSToolbar class, to create
an item in the Django CMS toolbar. In the populate() method, we will perform the general
routine to check the page permissions and then we will add a CSS menu item to the toolbar.

If the administrator has the permission to edit the page, then they will see a CSS option in the
toolbar under the Page menu item, as shown in the following screenshot:

Django CMS

230

When the administrator clicks on the new CSS menu item, a pop-up window opens and
they can select the CSS classes for the navigation menu item and body, as shown in the
following screenshot:

To show a specific CSS class from the Page extension in the navigation menu, we need to
attach the CSSExtension object to the navigation items accordingly. Then, these objects
can be accessed in the menu.html template as {{ child.cssextension }}. In the end,
you will have some navigation menu items highlighted, such as the Music item shown here
(depending on your CSS):

To show a specific CSS class for <body> of the current page is much simpler. We can use {{
request.current_page.cssextension.body_css_class }} right away.

See also
 f The Creating templates for Django CMS recipe

231

8
Hierarchical Structures

In this chapter, we will cover the following recipes:

 f Creating hierarchical categories

 f Creating a category administration interface with django-mptt-admin

 f Creating a category administration interface with django-mptt-tree-editor

 f Rendering categories in a template

 f Using a single selection field to choose a category in forms

 f Using a checkbox list to choose multiple categories in forms

Introduction
Whether you build your own forum, threaded comments, or categorization system, there will
be a moment when you need to save hierarchical structures in the database. Although the
tables of relational databases (such as MySQL and PostgreSQL) are of a flat manner, there is
a fast and effective way to store hierarchical structures. It is called Modified Preorder Tree
Traversal (MPTT). MPTT allows you to read the tree structures without recursive calls to
the database.

At first, let's get familiar with the terminology of the tree structures. A tree data structure is a
recursive collection of nodes, starting at the root node and having references to child nodes.
There is a restriction that no node references back to create a loop and no reference is
duplicated. The following are some other terms to learn:

 f Parent is any node that is referencing to the child nodes.

 f Descendants are the nodes that can be reached by recursively traversing from a
parent to its children. Therefore, the node's descendants will be its child, the child's
children, and so on.

Hierarchical Structures

232

 f Ancestors are the nodes that can be reached by recursively traversing from a child to
its parent. Therefore, the node's ancestors will be its parent, the parent's parent, and
so on up to the root.

 f Siblings are the nodes with the same parent.

 f Leaf is a node without children.

Now, I'll explain how MPTT works. Imagine that you lay out your tree horizontally with the root
node at the top. Each node in the tree has left and right values. Imagine them as small left
and right handles on the left and right-hand side of the node. Then, you walk (traverse) around
the tree counter-clockwise, starting from the root node and mark each left or right value that
you find with a number: 1, 2, 3, and so on. It will look similar to the following diagram:

In the database table of this hierarchical structure, you will have a title, left value, and right
value for each node.

Now, if you want to get the subtree of the B node with 2 as the left value and 11 as the right
value, you will have to select all the nodes that have a left value between 2 and 11. They are
C, D, E, and F.

To get all the ancestors of the D node with 5 as the left value and 10 as the right value, you
have to select all the nodes that have a left value that is less than 5 and a right value that is
more than 10. These would be B and A.

Chapter 8

233

To get the number of the descendants for a node, you can use the following formula:
descendants = (right - left - 1) / 2

Therefore, the number of descendants for the B node can be calculated as shown in the
following: (11 - 2 - 1) / 2 = 4

If we want to attach the E node to the C node, we will have to update the left and right values
only for the nodes of their first common ancestor, the B node. Then, the C node will still have
3 as the left value; the E node will get 4 as the left value and 5 as the right value; the right
value of the C node will become 6; the left value of the D node will become 7; the left value of
the F node will stay 8; and the others will also remain the same.

Similarly, there are other tree-related operations with nodes in MPTT. It might be too
complicated to manage all this by yourself for every hierarchical structure in your project.
Luckily, there is a Django app called django-mptt that handles these algorithms and
provides an easy API to handle the tree structures. In this chapter, you will learn how
to use this helper app.

Creating hierarchical categories
To illustrate how to deal with MPTT, we will create a movies app that will have a hierarchical
Category model and a Movie model with a many-to-many relationship with the categories.

Getting ready
To get started, perform the following steps:

1. Install django-mptt in your virtual environment using the following command:
(myproject_env)$ pip install django-mptt

2. Then, create a movies app. Add the movies app as well as mptt to INSTALLED_
APPS in the settings, as follows:
conf/base.py or settings.py
INSTALLED_APPS = (
 # ...
 "mptt",
 "movies",
)

Hierarchical Structures

234

How to do it...
We will create a hierarchical Category model and a Movie model, which will have a many-to-
many relationship with the categories, as follows:

1. Open the models.py file and add a Category model that extends mptt.models.
MPTTModel and CreationModificationDateMixin, which we defined in
Chapter 2, Database Structure. In addition to the fields coming from the mixins, the
Category model will need to have a parent field of the TreeForeignKey type and
a title field:
movies/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.utils.encoding import \
 python_2_unicode_compatible
from utils.models import CreationModificationDateMixin
from mptt.models import MPTTModel
from mptt.fields import TreeForeignKey, TreeManyToManyField

@python_2_unicode_compatible
class Category(MPTTModel, CreationModificationDateMixin):
 parent = TreeForeignKey("self", blank=True, null=True)
 title = models.CharField(_("Title"), max_length=200)

 def __str__(self):
 return self.title

 class Meta:
 ordering = ["tree_id", "lft"]
 verbose_name = _("Category")
 verbose_name_plural = _("Categories")

2. Then, create the Movie model that extends CreationModificationDateMixin.
Also, include a title field and a categories field of the TreeManyToManyField type:
@python_2_unicode_compatible
class Movie(CreationModificationDateMixin):
 title = models.CharField(_("Title"), max_length=255)
 categories = TreeManyToManyField(Category,
 verbose_name=_("Categories"))

 def __str__(self):

Chapter 8

235

 return self.title

 class Meta:
 verbose_name = _("Movie")
 verbose_name_plural = _("Movies")

How it works...
The MPTTModel mixin will add the tree_id, lft, rght, and level fields to the Category
model. The tree_id field is used as you can have multiple trees in the database table. In
fact, each root category is saved in a separate tree. The lft and rght fields store the left and
right values used in the MPTT algorithms. The level field stores the node's depth in the tree.
The root node will be level 0.

Besides new fields, the MPTTModel mixin adds methods to navigate through the tree
structure similar to how you would navigate through DOM elements using JavaScript. These
methods are listed as follows:

 f If you want to get the ancestors of a category, use the following code:
ancestor_categories = category.get_ancestors(
 ascending=False,
 include_self=False,
)

The ascending parameter defines from which direction to read the nodes (the default
is False). The include_self parameter defines whether to include the category
itself in QuerySet (the default is False).

 f To just get the root category, use the following code:
root = category.get_root()

 f If you want to get the direct children of a category, use the following code:
children = category.get_children()

 f To get all the descendants of a category, use the following code:
descendants = category.get_descendants(include_self=False)

Here, the include_self parameter again defines whether or not to include the
category itself in QuerySet.

 f If you want to get the descendant count without querying the database, use the
following code:
descendants_count = category.get_descendant_count()

Hierarchical Structures

236

 f To get all the siblings, call the following method:
siblings = category.get_siblings(include_self=False)

Root categories are considered to be siblings of other root categories.

 f To just get the previous and next siblings, call the following methods:
previous_sibling = category.get_previous_sibling()
next_sibling = category.get_next_sibling()

 f Also, there are methods to check whether the category is a root, child, or leaf,
as follows:
category.is_root_node()
category.is_child_node()
category.is_leaf_node()

All these methods can be used either in the views, templates, or management commands. If
you want to manipulate the tree structure, you can also use the insert_at() and move_
to() methods. In this case, you can read about them and the tree manager methods at
http://django-mptt.github.io/django-mptt/models.html.

In the preceding models, we used TreeForeignKey and TreeManyToManyField. These
are similar to ForeignKey and ManyToManyField, except that they show the choices
indented in hierarchies in the administration interface.

Also, note that in the Meta class of the Category model, we order the categories by tree_
id and then by the lft value in order to show the categories naturally in the tree structure.

See also
 f The Creating a model mixin to handle creation and modification dates recipe in

Chapter 2, Database Structure

 f The Structuring the page menu recipe in Chapter 7, Django CMS

 f The Creating a category administration interface with django-mptt-admin recipe

Creating a category administration interface
with django-mptt-admin

The django-mptt app comes with a simple model administration mixin that allows you to
create the tree structure and list it with indentation. To reorder trees, you need to either create
this functionality yourself or use a third-party solution. Currently, there are two apps that can
help you to create a draggable administration interface for hierarchical models. One of them
is django-mptt-admin. Let's take a look at it in this recipe.

http://django-mptt.github.io/django-mptt/models.html

Chapter 8

237

Getting ready
First, we need to have the django-mptt-admin app installed by performing the
following steps:

1. To start, install the app in your virtual environment using the following command:
(myproject_env)$ pip install django-mptt-admin

2. Then, put it in INSTALLED_APPS in the settings, as follows:
conf/base.py or settings.py
INSTALLED_APPS = (
 # ...
 "django_mptt_admin"
)

How to do it...
Create an administration interface for the Category model that extends DjangoMpttAdmin
instead of admin.ModelAdmin, as follows:

movies/admin.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.contrib import admin
from django_mptt_admin.admin import DjangoMpttAdmin
from .models import Category

class CategoryAdmin(DjangoMpttAdmin):
 list_display = ["title", "created", "modified"]
 list_filter = ["created"]

admin.site.register(Category, CategoryAdmin)

Hierarchical Structures

238

How it works...
The administration interface for the categories will have two modes: Tree view and Grid view.
The Tree view looks similar to the following screenshot:

Chapter 8

239

The Tree view uses the jqTree jQuery library for node manipulation. You can expand and
collapse categories for a better overview. To reorder them or change the dependencies, you
can drag and drop the titles in this list view. During reordering, the user interface looks similar
to the following screenshot:

Note that any usual list-related settings such as list_display
or list_filter will be ignored.

If you want to filter categories, sort or filter them by a specific field, or apply admin actions, you
can switch to the Grid view, which shows the default category change list.

See also
 f The Creating hierarchical categories recipe

 f The Creating a category administration interface with django-mptt-tree-editor recipe

Hierarchical Structures

240

Creating a category administration interface
with django-mptt-tree-editor

If you want to use the common functionality of the change list, such as columns, admin
actions, editable fields, or filters, in your administration interface as well as manipulate the
tree structure in the same view, you need to use another third-party app called django-
mptt-tree-editor. Let's see how to do that.

Getting ready
First, we need to have the django-mptt-tree-editor app installed. Perform the
following steps:

1. To start, install the app in your virtual environment using the following command:
(myproject_env)$ pip install django-mptt-tree-editor

2. Then, put it in INSTALLED_APPS in the settings, as follows:
conf/base.py or settings.py
INSTALLED_APPS = (
 # ...
 "mptt_tree_editor"
)

How to do it...
Create an administration interface for the Category model that extends TreeEditor
instead of admin.ModelAdmin. Make sure that you add indented_short_title and
actions_column at the beginning of the list_display setting, as follows:

movies/admin.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.contrib import admin
from mptt_tree_editor.admin import TreeEditor
from .models import Category

class CategoryAdmin(TreeEditor):
 list_display = ["indented_short_title", "actions_column",
 "created", "modified"]
 list_filter = ["created"]

admin.site.register(Category, CategoryAdmin)

Chapter 8

241

How it works...
The administration interface for your categories now looks similar to the following screenshot:

Hierarchical Structures

242

The category administration interface allows you to expand or collapse the categories.
The indented_short_title column will either return the indented short title from
the short_title() method of the category (if there is one) or the indented Unicode
representation of the category. The column defined as actions_column will be rendered
as a handle to reorder or restructure the categories by dragging and dropping them. As the
dragging handle is in a different column than the category title, it might feel weird to work with
it. During reordering, the user interface looks similar to the following screenshot:

As you can see, it is possible to use all the list-related features of the default Django
administration interface in the same view.

In django-mptt-tree-editor, the tree-editing functionality is ported from FeinCMS,
another content management system made with Django.

Chapter 8

243

See also
 f The Creating hierarchical categories recipe

 f The Creating a category administration interface with django-mptt-admin recipe

Rendering categories in a template
Once you have created categories in your app, you need to display them hierarchically in a
template. The easiest way to do this is to use the {% recursetree %} template tag from
the django-mptt app. I will show you how to do that in this recipe.

Getting ready
Make sure that you have the Category model created and some categories entered in
the database.

How to do it...
Pass QuerySet of your hierarchical categories to the template and then use the {%
recursetree %} template tag as follows:

1. Create a view that loads all the categories and passes them to a template:
movies/views.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.shortcuts import render
from .models import Category

def movie_category_list(request):
 context = {
 "categories": Category.objects.all(),
 }
 return render(
 request,
 "movies/movie_category_list.html",
 context
)

2. Create a template with the following content:
{# templates/movies/movie_category_list.html #}
{% extends "base_single_column.html" %}

Hierarchical Structures

244

{% load i18n utility_tags mptt_tags %}

{% block sidebar %}
{% endblock %}

{% block content %}
<ul class="root">
 {% recursetree categories %}

 {{ node.title }}
 {% if not node.is_leaf_node %}
 <ul class="children">
 {{ children }}

 {% endif %}

 {% endrecursetree %}

{% endblock %}

3. Create a URL rule to show the view.

How it works...
The template will be rendered as nested lists, as shown in the following screenshot:

Chapter 8

245

The {% recursetree %} block template tag takes QuerySet of the categories and renders
the list using the template content in the tag. There are two special variables used here: node
and children. The node variable is an instance of the Category model. You can use its
fields or methods such as {{ node.get_descendant_count }}, {{ node.level }},
or {{ node.is_root }} to add specific CSS classes or HTML5 data-* attributes for
JavaScript. The second variable, children, defines where to place the children of the
current category.

There's more...
If your hierarchical structure is very complex, with more than 20 depth levels, it is
recommended to use the non-recursive template filter, tree_info. For more information on
how to do this, refer to the official documentation at http://django-mptt.github.io/
django-mptt/templates.html#tree-info-filter.

See also
 f The Using HTML5 data attributes recipe in Chapter 4, Templates and JavaScript

 f The Creating hierarchical categories recipe

 f The Using a single selection field to choose a category in forms recipe

Using a single selection field to choose a
category in forms

What happens if you want to show category selection in a form? How will the hierarchy be
presented? In django-mptt, there is a special TreeNodeChoiceField form field that
you can use to show the hierarchical structures in a selected field. Let's take a look at how
to do this.

Getting ready
We will start with the movies app that we defined in the previous recipes.

How to do it...
Let's create a form with the category field and then show it in a view:

1. In the forms.py file of the app, create a form with a category field as follows:
movies/forms.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals

http://django-mptt.github.io/django-mptt/templates.html#tree-info-filter
http://django-mptt.github.io/django-mptt/templates.html#tree-info-filter

Hierarchical Structures

246

from django import forms
from django.utils.translation import ugettext_lazy as _
from django.utils.html import mark_safe
from mptt.forms import TreeNodeChoiceField
from .models import Category

class MovieFilterForm(forms.Form):
 category = TreeNodeChoiceField(
 label=_("Category"),
 queryset=Category.objects.all(),
 required=False,
 level_indicator=mark_safe(
 " "
),
)

2. Then, create a URL rule, view, and template to show this form.

How it works...
The category selection will look similar to the following:

Chapter 8

247

The TreeNodeChoiceField acts like ModelChoiceField; however, it shows hierarchical
choices as indented. By default, TreeNodeChoiceField represents each deeper level
prefixed by three dashes, ---. In our example, we will change the level indicator to be four
nonbreakable spaces (the HTML entities) by passing the level_indicator
parameter to the field. To ensure that the nonbreakable spaces aren't escaped, we use the
mark_safe() function.

See also
 f The Using a checkbox list to choose multiple categories in forms recipe

Using a checkbox list to choose multiple
categories in forms

When more than one category needs to be selected in a form, you can use the
TreeNodeMultipleChoiceField multiple selection field that is provided by django-mptt.
However, multiple selection fields are not very user-friendly from GUI point of view as the user
needs to scroll and hold the control keys while clicking in order to make multiple choices. That's
really awful. A much better way will be to provide a checkbox list to choose the categories. In
this recipe, we will create a field that allows you to show the indented checkboxes in the form.

Getting ready
We will start with the movies app that we defined in the previous recipes and also the utils
app that you should have in your project.

How to do it...
To render an indented list of categories with checkboxes, create and use a new
MultipleChoiceTreeField form field and also create an HTML template for this field. The
specific template will be passed to the crispy forms layout in the form. To do this, perform the
following steps:

1. In the utils app, add a fields.py file and create a MultipleChoiceTreeField
form field that extends ModelMultipleChoiceField, as follows:
utils/fields.py
-*- coding: utf-8 -*-
from __future__ import unicode_literals
from django import forms

class MultipleChoiceTreeField(

Hierarchical Structures

248

 forms.ModelMultipleChoiceField
):
 widget = forms.CheckboxSelectMultiple

 def label_from_instance(self, obj):
 return obj

2. Use the new field with the categories to choose from in the form for movie creation.
Also, in the form layout, pass a custom template to the categories field, as shown in
the following:
movies/forms.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django import forms
from django.utils.translation import ugettext_lazy as _
from crispy_forms.helper import FormHelper
from crispy_forms import layout, bootstrap
from utils.fields import MultipleChoiceTreeField
from .models import Movie, Category

class MovieForm(forms.ModelForm):
 categories = MultipleChoiceTreeField(
 label=_("Categories"),
 required=False,
 queryset=Category.objects.all(),
)
 class Meta:
 model = Movie

 def __init__(self, *args, **kwargs):
 super(MovieForm, self).__init__(*args, **kwargs)
 self.helper = FormHelper()
 self.helper.form_action = ""
 self.helper.form_method = "POST"
 self.helper.layout = layout.Layout(
 layout.Field("title"),
 layout.Field(
 "categories",
 template="utils/"\
 "checkbox_select_multiple_tree.html"
),
 bootstrap.FormActions(
 layout.Submit("submit", _("Save")),
)
)

Chapter 8

249

3. Create a template for a Bootstrap-style checkbox list, as shown in the following:
{# templates/utils/checkbox_select_multiple_tree.html #}
{% load crispy_forms_filters %}
{% load l10n %}

<div id="div_{{ field.auto_id }}" class="form-group{% if wrapper_
class %} {{ wrapper_class }}{% endif %}{% if form_show_errors%}
{% if field.errors %} has-error{% endif %}{% endif %}{% if field.
css_classes %} {{ field.css_classes }}{% endif %}">
 {% if field.label and form_show_labels %}
 <label for="{{ field.id_for_label }}" class="control-label
{{ label_class }}{% if field.field.required %} requiredField{%
endif %}">
 {{ field.label|safe }}{% if field.field.required
%}*{% endif %}
 </label>
 {% endif %}
 <div class="controls {{ field_class }}"{% if flat_attrs %} {{
flat_attrs|safe }}{% endif %}>
 {% include 'bootstrap3/layout/field_errors_block.html' %}

 {% for choice_value, choice_instance in field.field.
choices %}
 <label class="checkbox{% if inline_class %}-{{ inline_
class }}{% endif %} level-{{ choice_instance.level }}">
 <input type="checkbox"{% if choice_value in
field.value or choice_value|stringformat:"s" in field.value or
choice_value|stringformat:"s" == field.value|stringformat:"s" %}
checked="checked"{% endif %}

name="{{ field.html_name }}"id="id_{{ field.html_name }}_{{
forloop.counter }}"value="{{ choice_value|unlocalize }}"{{ field.
field.widget.attrs|flatatt }}>
 {{ choice_instance }}
 </label>
 {% endfor %}
 {% include "bootstrap3/layout/help_text.html" %}
 </div>
</div>

4. Create a URL rule, view, and template to show the form with the {% crispy %}
template tag. To see how to use this template tag, refer to the Creating a form
layout with django-crispy-forms recipe in Chapter 3, Forms and Views.

Hierarchical Structures

250

5. Lastly, add a rule to your CSS file to indent the labels with classes, such as
.level-0, .level-1, .level-2, and so on, by setting the margin-left parameter.
Make sure that you have a reasonable amount of these CSS classes for a possible
maximal depth of the tree in your context, as follows:
/* style.css */
.level-0 {
 margin-left: 0;
}
.level-1 {
 margin-left: 20px;
}
.level-2 {
 margin-left: 40px;
}

How it works...
As a result, we get the following form:

Chapter 8

251

Contrary to the default behavior of Django, which hardcodes field generation in the Python
code, the django-crispy-forms app uses templates to render the fields. You can browse
them under crispy_forms/templates/bootstrap3 and copy some of them to an
analogous path in your project's template directory and overwrite them when necessary.

In our movie creation form, we pass a custom template for the categories field that will add
the .level-* CSS classes to the <label> tag, wrapping the checkboxes. One problem with
the normal CheckboxSelectMultiple widget is that when rendered, it only uses choice
values and choice texts, and in our case, we need other properties of the category such
as the depth level. To solve this, we will created a custom MultipleChoiceTreeField
form field, which extends ModelMultipleChoiceField and overrides the label_from_
instance method to return the category itself instead of its Unicode representation.
The template for the field looks complicated; however, it is just a combination of a
common field template (crispy_forms/templates/bootstrap3/field.html) and
multiple checkbox field template (crispy_forms/templates/bootstrap3/layout/
checkboxselectmultiple.html), with all the necessary Bootstrap 3 markup. We just
made a slight modification to add the .level-* CSS classes.

See also
 f The Creating a form layout with django-crispy-forms recipe in Chapter 3, Forms

and Views

 f The Using a single selection field to choose a category in forms recipe

253

9
Data Import and Export

In this chapter, we will cover the following recipes:

 f Importing data from a local CSV file

 f Importing data from a local Excel file

 f Importing data from an external JSON file

 f Importing data from an external XML file

 f Creating filterable RSS feeds

 f Using Tastypie to create API

 f Using Django REST framework to create API

Introduction
There are times when your data needs to be transported from a local format to the database,
imported from external resources, or provided to third parties. In this chapter, we will take a
look at some practical examples of how to write management commands and APIs to do this.

Importing data from a local CSV file
The comma-separated values (CSV) format is probably the simplest way to store tabular data
in a text file. In this recipe, we will create a management command that imports data from
CSV to a Django database. We will need a CSV list of movies with a title, URL, and release
year. You can easily create such files with Excel, Calc, or another spreadsheet application.

Data Import and Export

254

Getting ready
Create a movies app with the Movie model containing the following fields: title, url, and
release_year. Place the app under INSTALLED_APPS in the settings.

How to do it...
Follow these steps to create and use a management command that imports movies from a
local CSV file:

1. In the movies app, create a management directory and then a commands directory
in the new management directory. Put the empty __init__.py files in both new
directories to make them Python packages.

2. Add an import_movies_from_csv.py file there with the following content:
movies/management/commands/import_movies_from_csv.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import csv
from django.core.management.base import BaseCommand
from movies.models import Movie

SILENT, NORMAL, VERBOSE, VERY_VERBOSE = 0, 1, 2, 3

class Command(BaseCommand):
 help = (
 "Imports movies from a local CSV file. "
 "Expects title, URL, and release year."
)

 def add_arguments(self, parser):
 # Positional arguments
 parser.add_argument(
 "file_path",
 nargs=1,
 type=unicode,
)

 def handle(self, *args, **options):
 verbosity = options.get("verbosity", NORMAL)
 file_path = options["file_path"][0]

 if verbosity >= NORMAL:

Chapter 9

255

 self.stdout.write("=== Movies imported ===")

 with open(file_path) as f:
 reader = csv.reader(f)
 for rownum, (title, url, release_year) in \
 enumerate(reader):
 if rownum == 0:
 # let's skip the column captions
 continue
 movie, created = \
 Movie.objects.get_or_create(
 title=title,
 url=url,
 release_year=release_year,
)
 if verbosity >= NORMAL:
 self.stdout.write("{}. {}".format(
 rownum, movie.title
))

3. To run the import, call the following in the command line:
(myproject_env)$ python manage.py import_movies_from_csv \

data/movies.csv

How it works...
For a management command, we need to create a Command class deriving from
BaseCommand and overwriting the add_arguments() and handle() method. The help
attribute defines the help text for the management command. It can be seen when you type
the following in the command line:

(myproject_env)$ python manage.py help import_movies_from_csv

Django management commands use the built-in argparse module to parse the passed
arguments. The add_arguments() method defines what positional or named arguments
should be passed to the management command. In our case, we will add a positional
file_path argument of Unicode type. By nargs set to the 1 attribute, we allow only one
value. To learn about the other arguments that you can define and how to do this, refer to the
official argparse documentation at https://docs.python.org/2/library/argparse.
html#the-add-argument-method.

https://docs.python.org/2/library/argparse.html#the-add-argument-method
https://docs.python.org/2/library/argparse.html#the-add-argument-method

Data Import and Export

256

At the beginning of the handle() method, the verbosity argument is checked. Verbosity
defines how verbose the command is, from 0 not giving any output to the command-line tool
to 3 being very verbose. You can pass this argument to the command as follows:

(myproject_env)$ python manage.py import_movies_from_csv \

data/movies.csv --verbosity=0

Then, we also expect the filename as the first positional argument. The options["file_
path"] returns a list of the values defined in the nargs, therefore, it is one value in this case.

We open the given file and pass its pointer to csv.reader. Then, for each line in the file,
we will create a new Movie object if a matching movie doesn't exist yet. The management
command will print out the imported movie titles to the console, unless you set the verbosity
to 0.

If you want to debug the errors of a management command while
developing it, pass the --traceback parameter for it. If an error
occurs, you will see the full stack trace of the problem.

There's more...
You can learn more about the CSV library from the official documentation at https://docs.
python.org/2/library/csv.html.

See also
 f The Importing data from a local Excel file recipe

Importing data from a local Excel file
Another popular format to store tabular data is an Excel spread sheet. In this recipe, we will
import movies from a file of this format.

Getting ready
Let's start with the movies app that we created in the previous recipe. Install the xlrd
package to read Excel files, as follows:

(project_env)$ pip install xlrd

https://docs.python.org/2/library/csv.html
https://docs.python.org/2/library/csv.html

Chapter 9

257

How to do it...
Follow these steps to create and use a management command that imports movies from a
local XLS file:

1. If you haven't done that, in the movies app, create a management directory and
then a commands directory in the new management directory. Put the empty
__init__.py files in both the new directories to make them Python packages.

2. Add the import_movies_from_xls.py file with the following content:
movies/management/commands/import_movies_from_xls.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import xlrd
from django.utils.six.moves import range
from django.core.management.base import BaseCommand
from movies.models import Movie

SILENT, NORMAL, VERBOSE, VERY_VERBOSE = 0, 1, 2, 3

class Command(BaseCommand):
 help = (
 "Imports movies from a local XLS file. "
 "Expects title, URL, and release year."
)

 def add_arguments(self, parser):
 # Positional arguments
 parser.add_argument(
 "file_path",
 nargs=1,
 type=unicode,
)

 def handle(self, *args, **options):
 verbosity = options.get("verbosity", NORMAL)
 file_path = options["file_path"][0]

 wb = xlrd.open_workbook(file_path)
 sh = wb.sheet_by_index(0)

 if verbosity >= NORMAL:
 self.stdout.write("=== Movies imported ===")
 for rownum in range(sh.nrows):

Data Import and Export

258

 if rownum == 0:
 # let's skip the column captions
 continue
 (title, url, release_year) = \
 sh.row_values(rownum)
 movie, created = Movie.objects.get_or_create(
 title=title,
 url=url,
 release_year=release_year,
)
 if verbosity >= NORMAL:
 self.stdout.write("{}. {}".format(
 rownum, movie.title
))

3. To run the import, call the following in the command line:
(myproject_env)$ python manage.py import_movies_from_xls \

data/movies.xls

How it works...
The principle of importing from an XLS file is the same as with CSV. We open the file, read it
row by row, and create the Movie objects from the provided data. A detailed explanation is
as follows.

 f Excel files are workbooks containing sheets as different tabs.

 f We are using the xlrd library to open a file passed as a positional argument to the
command. Then, we will read the first sheet from the workbook.

 f Afterwards, we will read the rows one by one (except the first row with the column
titles) and create the Movie objects from them. Once again, the management
command will print out the imported movie titles to the console, unless you set the
verbosity to 0.

There's more...
You can learn more about how to work with Excel files at http://www.python-excel.org/.

See also
 f The Importing data from a local CSV file recipe

http://www.python-excel.org/

Chapter 9

259

Importing data from an external JSON file
The Last.fm music website has an API under the http://ws.audioscrobbler.com/
domain that you can use to read the albums, artists, tracks, events, and more. The API allows
you to either use the JSON or XML format. In this recipe, we will import the top tracks tagged
disco using the JSON format.

Getting ready
Follow these steps in order to import data in the JSON format from Last.fm:

1. To use Last.fm, you need to register and get an API key. The API key can be created
at http://www.last.fm/api/account/create.

2. The API key has to be set in the settings as LAST_FM_API_KEY.

3. Also, install the requests library in your virtual environment using the following
command:
(myproject_env)$ pip install requests

4. Let's check the structure of the JSON endpoint (http://ws.audioscrobbler.
com/2.0/?method=tag.gettoptracks&tag=disco&api_
key=xxx&format=json):

{
 "tracks":{
 "track":[
 {
 "name":"Billie Jean",
 "duration":"293",
 "mbid":"f980fc14-e29b-481d-ad3a-5ed9b4ab6340",
 "url":"http://www.last.fm/music/Michael+Jackson/_/
Billie+Jean",
 "streamable":{
 "#text":"0",
 "fulltrack":"0"
 },
 "artist":{
 "name":"Michael Jackson",
 "mbid":"f27ec8db-af05-4f36-916e-3d57f91ecf5e",
 "url":"http://www.last.fm/music/Michael+Jackson"
 },
 "image":[
 {

http://ws.audioscrobbler.com/
http://www.last.fm/api/account/create
http://ws.audioscrobbler.com/2.0/?method=tag.gettoptracks&tag=disco&api_key=xxx&format=json
http://ws.audioscrobbler.com/2.0/?method=tag.gettoptracks&tag=disco&api_key=xxx&format=json
http://ws.audioscrobbler.com/2.0/?method=tag.gettoptracks&tag=disco&api_key=xxx&format=json

Data Import and Export

260

 "#text":"http://img2-ak.lst.fm/i/u/34s/114a4599f3bd451
ca915f482345bc70f.png",
 "size":"small"
 },
 {
 "#text":"http://img2-ak.lst.fm/i/u/64s/114a4599f3bd451
ca915f482345bc70f.png",
 "size":"medium"
 },
 {
 "#text":"http://img2-ak.lst.fm/i/u/174s/114a4599f3bd45
1ca915f482345bc70f.png",
 "size":"large"
 },
 {
 "#text":"http://img2-ak.lst.fm/i/u/300x300/114a4599f3b
d451ca915f482345bc70f.png",
 "size":"extralarge"
 }
],
 "@attr":{
 "rank":"1"
 }
 },
 ...
],
 "@attr":{
 "tag":"disco",
 "page":"1",
 "perPage":"50",
 "totalPages":"26205",
 "total":"1310249"
 }
 }
}

We want to read the track name, artist, URL, and medium-sized images.

Chapter 9

261

How to do it...
Follow these steps to create a Track model and management command, which imports top
tracks from Last.fm to the database:

1. Let's create a music app with a simple Track model, as follows:
music/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import os
from django.utils.translation import ugettext_lazy as _
from django.db import models
from django.utils.text import slugify
from django.utils.encoding import \
 python_2_unicode_compatible

def upload_to(instance, filename):
 filename_base, filename_ext = \
 os.path.splitext(filename)
 return "tracks/%s--%s%s" % (
 slugify(instance.artist),
 slugify(instance.name),
 filename_ext.lower(),
)

@python_2_unicode_compatible
class Track(models.Model):
 name = models.CharField(_("Name"), max_length=250)
 artist = models.CharField(_("Artist"), max_length=250)
 url = models.URLField(_("URL"))
 image = models.ImageField(_("Image"),
 upload_to=upload_to, blank=True, null=True)

 class Meta:
 verbose_name = _("Track")
 verbose_name_plural = _("Tracks")

 def __str__(self):
 return "%s - %s" % (self.artist, self.name)

2. Then, create the management command as shown in the following:
music/management/commands/import_music_from_lastfm_as_json.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals

Data Import and Export

262

import os
import requests
from StringIO import StringIO
from django.utils.six.moves import range
from django.core.management.base import BaseCommand
from django.utils.encoding import force_text
from django.conf import settings
from django.core.files import File
from music.models import Track

SILENT, NORMAL, VERBOSE, VERY_VERBOSE = 0, 1, 2, 3

class Command(BaseCommand):
 help = "Imports top tracks from last.fm as XML."

 def add_arguments(self, parser):
 # Named (optional) arguments
 parser.add_argument(
 "--max_pages",
 type=int,
 default=0,
)

 def handle(self, *args, **options):
 self.verbosity = options.get("verbosity", NORMAL)
 max_pages = options["max_pages"]

 params = {
 "method": "tag.gettoptracks",
 "tag": "disco",
 "api_key": settings.LAST_FM_API_KEY,
 "format": "json",
 }

 r = requests.get(
 "http://ws.audioscrobbler.com/2.0/",
 params=params
)

 response_dict = r.json()
 total_pages = int(
 response_dict["tracks"]["@attr"]["totalPages"]
)
 if max_pages > 0:

Chapter 9

263

 total_pages = max_pages

 if self.verbosity >= NORMAL:
 self.stdout.write("=== Tracks imported ===")

 self.save_page(response_dict)
 for page_number in range(2, total_pages + 1):
 params["page"] = page_number
 r = requests.get(
 "http://ws.audioscrobbler.com/2.0/",
 params=params
)
 response_dict = r.json()
 self.save_page(response_dict)

3. As the list is paginated, we will add the save_page() method to the Command class
to save a single page of tracks. This method takes the dictionary with the top tracks
from a single page as a parameter, as follows:
 def save_page(self, d):
 for track_dict in d["tracks"]["track"]:
 track, created = Track.objects.get_or_create(
 name=force_text(track_dict["name"]),
 artist=force_text(
 track_dict["artist"]["name"]
),
 url=force_text(track_dict["url"]),
)
 image_dict = track_dict.get("image", None)
 if created and image_dict:
 image_url = image_dict[1]["#text"]
 image_response = requests.get(image_url)
 track.image.save(
 os.path.basename(image_url),
 File(StringIO(image_response.content))
)
 if self.verbosity >= NORMAL:
 self.stdout.write(" - {} - {}".format(
 track.artist, track.name
))

4. To run the import, call the following in the command line:
(myproject_env)$ python manage.py \

import_music_from_lastfm_as_json --max_pages=3

Data Import and Export

264

How it works...
The optional named max_pages argument limits the imported data to three pages. Just skip
it if you want to download all the available top tracks; however, beware that there are above
26,000 pages as detailed in the totalPages value and this will take a while.

Using the requests.get() method, we read the data from Last.fm, passing the params
query parameters. The response object has a built-in method called json(), which converts
a JSON string and returns a parsed dictionary.

We read the total pages value from this dictionary and then save the first page of results.
Then, we get the second and later pages one by one and save them. One interesting part
in the import is downloading and saving the image. Here, we also use request.get() to
retrieve the image data and then we pass it to File through StringIO, which is accordingly
used in the image.save() method. The first parameter of image.save() is a filename that
will be overwritten anyway by the value from the upload_to function and is necessary only
for the file extension.

See also
 f The Importing data from an external XML file recipe

Importing data from an external XML file
The Last.fm file also allows you to take data from their services in XML format. In this
recipe, I will show you how to do this.

Getting ready
To prepare importing top tracks from Last.fm in the XML format, follow these steps:

1. Start with the first three steps from the Getting ready section in the Importing data
from an external JSON file recipe.

2. Then, let's check the structure of the XML endpoint (http://
ws.audioscrobbler.com/2.0/?method=tag.
gettoptracks&tag=disco&api_key=xxx&format=xml), as follows:
<?xml version="1.0" encoding="UTF-8"?>
<lfm status="ok">
 <tracks tag="disco" page="1" perPage="50" totalPages="26205"
total="1310249">
 <track rank="1">
 <name>Billie Jean</name>
 <duration>293</duration>

http://ws.audioscrobbler.com/2.0/?method=tag.gettoptracks&tag=disco&api_key=xxx&format=xml
http://ws.audioscrobbler.com/2.0/?method=tag.gettoptracks&tag=disco&api_key=xxx&format=xml
http://ws.audioscrobbler.com/2.0/?method=tag.gettoptracks&tag=disco&api_key=xxx&format=xml

Chapter 9

265

 <mbid>f980fc14-e29b-481d-ad3a-5ed9b4ab6340</mbid>
 <url>http://www.last.fm/music/Michael+Jackson/_/
Billie+Jean</url>
 <streamable fulltrack="0">0</streamable>
 <artist>
 <name>Michael Jackson</name>
 <mbid>f27ec8db-af05-4f36-916e-3d57f91ecf5e</mbid>
 <url>http://www.last.fm/music/Michael+Jackson</url>
 </artist>
 <image size="small">http://img2-ak.lst.fm/i/u/34s/114a4599f3
bd451ca915f482345bc70f.png</image>
 <image size="medium">http://img2-ak.lst.fm/i/u/64s/114a4599f
3bd451ca915f482345bc70f.png</image>
 <image size="large">http://img2-ak.lst.fm/i/u/174s/114a4599f
3bd451ca915f482345bc70f.png</image>
 <image size="extralarge">http://img2-ak.lst.fm/i/u/300x300/1
14a4599f3bd451ca915f482345bc70f.png</image>
 </track>
 ...
 </tracks>
</lfm>

How to do it...
Execute the following steps one by one to import the top tracks from Last.fm in the
XML format:

1. Create a music app with a Track model similar to the previous recipe, if you've not
already done this.

2. Then, create an import_music_from_lastfm_as_xml.py management
command. We will be using the ElementTree XML API that comes with Python
to parse the XML nodes, as follows:
music/management/commands/import_music_from_lastfm_as_xml.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import os
import requests
from xml.etree import ElementTree
from StringIO import StringIO
from django.utils.six.moves import range
from django.core.management.base import BaseCommand
from django.utils.encoding import force_text
from django.conf import settings
from django.core.files import File

Data Import and Export

266

from music.models import Track

SILENT, NORMAL, VERBOSE, VERY_VERBOSE = 0, 1, 2, 3

class Command(BaseCommand):
 help = "Imports top tracks from last.fm as XML."

 def add_arguments(self, parser):
 # Named (optional) arguments
 parser.add_argument(
 "--max_pages",
 type=int,
 default=0,
)

 def handle(self, *args, **options):
 self.verbosity = options.get("verbosity", NORMAL)
 max_pages = options["max_pages"]

 params = {
 "method": "tag.gettoptracks",
 "tag": "disco",
 "api_key": settings.LAST_FM_API_KEY,
 "format": "xml",
 }

 r = requests.get(
 "http://ws.audioscrobbler.com/2.0/",
 params=params
)

 root = ElementTree.fromstring(r.content)
 total_pages = int(
 root.find("tracks").attrib["totalPages"]
)
 if max_pages > 0:
 total_pages = max_pages

 if self.verbosity >= NORMAL:
 self.stdout.write("=== Tracks imported ===")

 self.save_page(root)
 for page_number in range(2, total_pages + 1):
 params["page"] = page_number

Chapter 9

267

 r = requests.get(
 "http://ws.audioscrobbler.com/2.0/",
 params=params
)
 root = ElementTree.fromstring(r.content)
 self.save_page(root)

3. As the list is paginated, we will add a save_page() method to the Command class
to save a single page of tracks. This method takes the root node of the XML as a
parameter, as shown in the following:
 def save_page(self, root):
 for track_node in root.findall("tracks/track"):
 track, created = Track.objects.get_or_create(
 name=force_text(
 track_node.find("name").text
),
 artist=force_text(
 track_node.find("artist/name").text
),
 url=force_text(
 track_node.find("url").text
),
)
 image_node = track_node.find(
 "image[@size='medium']"
)
 if created and image_node is not None:
 image_response = \
 requests.get(image_node.text)
 track.image.save(
 os.path.basename(image_node.text),
 File(StringIO(image_response.content))
)
 if self.verbosity >= NORMAL:
 self.stdout.write(" - {} - {}".format(
 track.artist, track.name
))

4. To run the import, call the following in the command line:
(myproject_env)$ python manage.py \

import_music_from_lastfm_as_xml --max_pages=3

Data Import and Export

268

How it works...
The process is analogous to the JSON approach. Using the requests.get() method, we
read the data from Last.fm, passing the query parameters as params. The XML content of
the response is passed to the ElementTree parser and the root node is returned.

The ElementTree nodes have the find() and findall() methods, where you can pass
XPath queries to filter out specific subnodes.

The following is a table of the available XPath syntax supported by ElementTree:

XPath Syntax Component Meaning
tag This selects all the child elements with the given tag.
* This selects all the child elements.
. This selects the current node.
// This selects all the subelements on all the levels beneath the

current element.
.. This selects the parent element.
[@attrib] This selects all the elements that have the given attribute.
[@attrib='value'] This selects all the elements for which the given attribute has

the given value.
[tag] This selects all the elements that have a child named tag. Only

immediate children are supported.
[position] This selects all the elements that are located at the given

position. The position can either be an integer (1 is the first
position), the last()expression (for the last position), or a
position relative to the last position (for example, last()-1).

Therefore, using root.find("tracks").attrib["totalPages"], we read the total
amount of pages. We will save the first page and then go through the other pages one by
one and save them too.

In the save_page() method, root.findall("tracks/track") returns an
iterator through the <track> nodes under the <tracks> node. With track_node.
find("image[@size='medium']"), we get the medium-sized image.

There's more...
You can learn more about XPath at https://en.wikipedia.org/wiki/XPath.

The full documentation of ElementTree can be found at https://docs.python.org/2/
library/xml.etree.elementtree.html.

https://en.wikipedia.org/wiki/XPath
https://docs.python.org/2/library/xml.etree.elementtree.html
https://docs.python.org/2/library/xml.etree.elementtree.html

Chapter 9

269

See also
 f The Importing data from an external JSON file recipe

Creating filterable RSS feeds
Django comes with a syndication feed framework that allows you to create RSS and Atom
feeds easily. RSS and Atom feeds are XML documents with specific semantics. They can be
subscribed in an RSS reader such as Feedly or they can be aggregated in other websites,
mobile applications, or desktop applications. In this recipe, we will create BulletinFeed,
which provides a bulletin board with images. Moreover, the results will be filterable by URL
query parameters.

Getting ready
Create a new bulletin_board app and put it under INSTALLED_APPS in the settings.

How to do it...
We will create a Bulletin model and an RSS feed for it. We will be able to filter the RSS
feed by type or category so that it is possible to only subscribe to the bulletins that are, for
example, offering used books:

1. In the models.py file of this app, add the Category and Bulletin models with a
foreign key relationship between them, as follows:
bulletin_board/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.core.urlresolvers import reverse
from django.utils.encoding import \
 python_2_unicode_compatible
from utils.models import CreationModificationDateMixin
from utils.models import UrlMixin

TYPE_CHOICES = (
 ("searching", _("Searching")),
 ("offering", _("Offering")),
)

@python_2_unicode_compatible

Data Import and Export

270

class Category(models.Model):
 title = models.CharField(_("Title"), max_length=200)

 def __str__(self):
 return self.title

 class Meta:
 verbose_name = _("Category")
 verbose_name_plural = _("Categories")

@python_2_unicode_compatible
class Bulletin(CreationModificationDateMixin, UrlMixin):
 bulletin_type = models.CharField(_("Type"),
 max_length=20, choices=TYPE_CHOICES)
 category = models.ForeignKey(Category,
 verbose_name=_("Category"))

 title = models.CharField(_("Title"), max_length=255)
 description = models.TextField(_("Description"),
 max_length=300)

 contact_person = models.CharField(_("Contact person"),
 max_length=255)
 phone = models.CharField(_("Phone"), max_length=50,
 blank=True)
 email = models.CharField(_("Email"), max_length=254,
 blank=True)

 image = models.ImageField(_("Image"), max_length=255,
 upload_to="bulletin_board/", blank=True)

 class Meta:
 verbose_name = _("Bulletin")
 verbose_name_plural = _("Bulletins")
 ordering = ("-created",)

 def __str__(self):
 return self.title

 def get_url_path(self):
 try:
 path = reverse(
 "bulletin_detail",
 kwargs={"pk": self.pk}

Chapter 9

271

)
 except:
 # the apphook is not attached yet
 return ""
 else:
 return path

2. Then, create BulletinFilterForm that allows the visitor to filter the bulletins by
type and category, as follows:
bulletin_board/forms.py
-*- coding: UTF-8 -*-
from django import forms
from django.utils.translation import ugettext_lazy as _
from models import Category, TYPE_CHOICES

class BulletinFilterForm(forms.Form):
 bulletin_type = forms.ChoiceField(
 label=_("Bulletin Type"),
 required=False,
 choices=(("", "---------"),) + TYPE_CHOICES,
)
 category = forms.ModelChoiceField(
 label=_("Category"),
 required=False,
 queryset=Category.objects.all(),
)

3. Add a feeds.py file with the BulletinFeed class, as shown in the following:
bulletin_board/feeds.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.contrib.syndication.views import Feed
from django.core.urlresolvers import reverse
from .models import Bulletin, TYPE_CHOICES
from .forms import BulletinFilterForm

class BulletinFeed(Feed):
 description_template = \
 "bulletin_board/feeds/bulletin_description.html"

 def get_object(self, request, *args, **kwargs):
 form = BulletinFilterForm(data=request.REQUEST)
 obj = {}
 if form.is_valid():

Data Import and Export

272

 obj = {
 "bulletin_type": \
 form.cleaned_data["bulletin_type"],
 "category": form.cleaned_data["category"],
 "query_string": \
 request.META["QUERY_STRING"],
 }
 return obj

 def title(self, obj):
 t = "My Website - Bulletin Board"
 # add type "Searching" or "Offering"
 if obj.get("bulletin_type", False):
 tp = obj["bulletin_type"]
 t += " - %s" % dict(TYPE_CHOICES)[tp]
 # add category
 if obj.get("category", False):
 t += " - %s" % obj["category"].title
 return t

 def link(self, obj):
 if obj.get("query_string", False):
 return reverse("bulletin_list") + "?" + \
 obj["query_string"]
 return reverse("bulletin_list")

 def feed_url(self, obj):
 if obj.get("query_string", False):
 return reverse("bulletin_rss") + "?" + \
 obj["query_string"]
 return reverse("bulletin_rss")

 def item_pubdate(self, item):
 return item.created

 def items(self, obj):
 qs = Bulletin.objects.order_by("-created")
 if obj.get("bulletin_type", False):
 qs = qs.filter(
 bulletin_type=obj["bulletin_type"],
).distinct()
 if obj.get("category", False):
 qs = qs.filter(

Chapter 9

273

 category=obj["category"],
).distinct()
 return qs[:30]

4. Create a template for the bulletin description that will be provided in the feed, as
shown in the following:
{# templates/bulletin_board/feeds/bulletin_description.html #}
{% if obj.image %}
 <p><img src="http://{{ request.
META.HTTP_HOST }}{{ obj.image.url }}" alt="" /></p>
{% endif %}
<p>{{ obj.description }}</p>

5. Create a URL configuration for the bulletin board app and include it in the root URL
configuration, as follows:
templates/bulletin_board/urls.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.conf.urls import *
from .feeds import BulletinFeed

urlpatterns = patterns("bulletin_board.views",
 url(r"^$", "bulletin_list", name="bulletin_list"),
 url(r"^(?P<bulletin_id>[0-9]+)/$", "bulletin_detail",
 name="bulletin_detail"),
 url(r"^rss/$", BulletinFeed(), name="bulletin_rss"),
)

6. You will also need the views and templates for the filterable list and details of the
bulletins. In the Bulletin list page template, add the following link:
<a href="{% url "bulletin_rss" %}?{{ request.META.QUERY_STRING
}}">RSS Feed

How it works...
Therefore, if you have some data in the database and you open http://127.0.0.1:8000/
bulletin-board/rss/?bulletin_type=offering&category=4 in your browser, you
will get an RSS feed of bulletins with the Offering type and the 4 category ID.

The BulletinFeed class has the get_objects() method that takes the current
HttpRequest and defines the obj dictionary used in other methods of the same class.
The obj dictionary contains the bulletin type, category, and current query string.

Data Import and Export

274

The title() method returns the title of the feed. It can either be generic or related to the
selected bulletin type or category. The link() method returns the link to the original bulletin
list with the filtering done. The feed_url() method returns the URL of the current feed. The
items() method does the filtering itself and returns a filtered QuerySet of bulletins. Finally,
the item_pubdate() method returns the creation date of the bulletin.

To see all the available methods and properties of the Feed class that we are extending, refer
to the following documentation at https://docs.djangoproject.com/en/1.8/ref/
contrib/syndication/#feed-class-reference.

The other parts of the code are self-explanatory.

See also
 f The Creating a model mixin with URL-related methods recipe in Chapter 2,

Database Structure

 f The Creating a model mixin to handle creation and modification dates recipe in
Chapter 2, Database Structure

 f The Using Tastypie to create API recipe

Using Tastypie to create API
Tastypie is a framework for Django to create web service Application Program Interface
(API). It supports full GET/POST/PUT/DELETE/PATCH HTTP methods to deal with online
resources. It also supports different types of authentication and authorization, serialization,
caching, throttling, and so on. In this recipe, you will learn how to provide bulletins to third
parties for reading, that is, we will implement only the GET HTTP method.

Getting ready
First of all, install Tastypie in your virtual environment using the following command:

(myproject_env)$ pip install django-tastypie

Add Tastypie to INSTALLED_APPS in the settings. Then, enhance the bulletin_board app
that we defined in the Creating filterable RSS feeds recipe.

https://docs.djangoproject.com/en/1.8/ref/contrib/syndication/#feed-class-reference
https://docs.djangoproject.com/en/1.8/ref/contrib/syndication/#feed-class-reference

Chapter 9

275

How to do it...
We will create an API for bulletins and inject it in the URL configuration as follows:

1. In the bulletin_board app, create an api.py file with two resources,
CategoryResource and BulletinResource, as follows:
bulletin_board/api.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from tastypie.resources import ModelResource
from tastypie.resources import ALL, ALL_WITH_RELATIONS
from tastypie.authentication import ApiKeyAuthentication
from tastypie.authorization import DjangoAuthorization
from tastypie import fields
from .models import Category, Bulletin

class CategoryResource(ModelResource):
 class Meta:
 queryset = Category.objects.all()
 resource_name = "categories"
 fields = ["title"]
 allowed_methods = ["get"]
 authentication = ApiKeyAuthentication()
 authorization = DjangoAuthorization()
 filtering = {
 "title": ALL,
 }

class BulletinResource(ModelResource):
 category = fields.ForeignKey(CategoryResource,
 "category", full=True)

 class Meta:
 queryset = Bulletin.objects.all()
 resource_name = "bulletins"
 fields = [
 "bulletin_type", "category", "title",
 "description", "contact_person", "phone",
 "email", "image"
]
 allowed_methods = ["get"]
 authentication = ApiKeyAuthentication()
 authorization = DjangoAuthorization()
 filtering = {

Data Import and Export

276

 "bulletin_type": ALL,
 "title": ALL,
 "category": ALL_WITH_RELATIONS,
 }

2. In the main URL configuration, include the API URLs, as follows:
myproject/urls.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.conf.urls import patterns, include, url
from django.conf import settings
from django.conf.urls.static import static
from django.contrib.staticfiles.urls import \
 staticfiles_urlpatterns

from django.contrib import admin
admin.autodiscover()

from tastypie.api import Api
from bulletin_board.api import CategoryResource
from bulletin_board.api import BulletinResource

v1_api = Api(api_name="v1")
v1_api.register(CategoryResource())
v1_api.register(BulletinResource())

urlpatterns = patterns('',
 url(r"^admin/", include(admin.site.urls)),
 url(r"^api/", include(v1_api.urls)),
)

urlpatterns += staticfiles_urlpatterns()
urlpatterns += static(settings.MEDIA_URL,
 document_root=settings.MEDIA_ROOT)

Chapter 9

277

3. Create a Tastypie API key for the admin user in the model administration. To do this,
navigate to Tastypie | Api key | Add Api key, select the admin user, and save the
entry. This will generate a random API key, as shown in the following screenshot:

4. Then, you can open this URL to see the JSON response in action (simply replace xxx
with your API key): http://127.0.0.1:8000/api/v1/bulletins/?format=js
on&username=admin&api_key=xxx.

How it works...
Each endpoint of Tastypie should have a class extending ModelResource defined. Similar
to the Django models, the configuration of the resource is set in the Meta class:

 f The queryset parameter defines the QuerySet of objects to list.

 f The resource_name parameter defines the name of the URL endpoint.

 f The fields parameter lists out the fields of the model that should be shown in
the API.

 f The allowed_methods parameter lists out the request methods, such as get,
post, put, delete, and patch.

 f The authentication parameter defines how third parties can authenticate
themselves when connecting to the API. The available options are Authentication,
BasicAuthentication, ApiKeyAuthentication, SessionAuthentication,
DigestAuthentication, OAuthAuthentication, MultiAuthentication, or
your own custom authentication. In our case, we are using ApiKeyAuthentication
as we want each user to use username and api_key.

Data Import and Export

278

 f The authorization parameter answers the authorization question: is
permission granted to this user to take the stated action? The possible choices are
Authorization, ReadOnlyAuthorization, DjangoAuthorization, or your
own custom authorization. In our case, we are using ReadOnlyAuthorization as
we only want to allow read access to the users.

 f The filtering parameter defines by which fields one can filter the lists in the URL
query parameters. For example, with the current configuration, you can filter the
items by titles that contain the word "movie": http://127.0.0.1:8000/api/
v1/bulletins/?format=json&username=admin&api_key=xxx&title__
contains=movie.

Also, there is a category foreign key that is defined in BulletinResource with the
full=True argument, meaning that the full list of category fields will be shown in the
bulletin resource instead of an endpoint link.

Besides JSON, Tastypie allows you to use other formats such as XML, YAML, and bplist.

There is a lot more that you can do with APIs using Tastypie. To find out more details, check
the official documentation at http://django-tastypie.readthedocs.org/en/
latest/.

See also
 f The Creating filterable RSS feeds recipe

 f The Using Django REST framework to create API recipe

Using Django REST framework to create API
Besides Tastypie, there is a newer and fresher framework to create API for your data transfers
to and from third parties. That's Django REST Framework. This framework has more extensive
documentation and Django-ish implementation, it is also more maintainable. Therefore, if you
have to choose between Tastypie or Django REST Framework, I would recommend the latter
one. In this recipe, you will learn how to use Django REST Framework in order to allow your
project partners, mobile clients, or Ajax-based website to access data on your site to create,
read, update, and delete.

Getting ready
First of all, install Django REST Framework and its optional dependencies in your virtual
environment using the following commands:

(myproject_env)$ pip install djangorestframework

(myproject_env)$ pip install markdown

(myproject_env)$ pip install django-filter

http://django-tastypie.readthedocs.org/en/latest/
http://django-tastypie.readthedocs.org/en/latest/

Chapter 9

279

Add rest_framework to INSTALLED_APPS in the settings. Then, enhance the bulletin_
board app that we defined in the Creating filterable RSS feeds recipe.

How to do it...
To integrate a new REST API in our bulletin_board app, execute the following steps:

1. Add the specific configurations to the settings:
conf/base.py or settings.py
REST_FRAMEWORK = {
 "DEFAULT_PERMISSION_CLASSES": [
 "rest_framework.permissions."
 "DjangoModelPermissionsOrAnonReadOnly"
],
 "DEFAULT_PAGINATION_CLASS": \
 "rest_framework.pagination.LimitOffsetPagination",
 "PAGE_SIZE": 100,
}

2. In the bulletin_board app, create the serializers.py file with the
following content:
bulletin_board/serializers.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from rest_framework import serializers
from .models import Category, Bulletin

class CategorySerializer(serializers.ModelSerializer):
 class Meta:
 model = Category
 fields = ["id", "title"]

class BulletinSerializer(serializers.ModelSerializer):
 category = CategorySerializer()

 class Meta:
 model = Bulletin
 fields = [
 "id", "bulletin_type", "category", "title",
 "description", "contact_person", "phone",
 "email", "image"
]

 def create(self, validated_data):

Data Import and Export

280

 category_data = validated_data.pop('category')
 category, created = Category.objects.\
 get_or_create(title=category_data['title'])
 bulletin = Bulletin.objects.create(
 category=category, **validated_data
)
 return bulletin

 def update(self, instance, validated_data):
 category_data = validated_data.pop('category')
 category, created = Category.objects.get_or_create(
 title=category_data['title'],
)
 for fname, fvalue in validated_data.items():
 setattr(instance, fname, fvalue)
 instance.category = category
 instance.save()
 return instance

3. Add two new class-based views to the views.py file in the bulletin_board app:
bulletin_board/views.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from rest_framework import generics

from .models import Bulletin
from .serializers import BulletinSerializer

class RESTBulletinList(generics.ListCreateAPIView):
 queryset = Bulletin.objects.all()
 serializer_class = BulletinSerializer

class RESTBulletinDetail(
 generics.RetrieveUpdateDestroyAPIView
):
 queryset = Bulletin.objects.all()
 serializer_class = BulletinSerializer

4. Finally, plug in the new views to the URL configuration:
myproject/urls.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.conf.urls import patterns, include, url

Chapter 9

281

from bulletin_board.views import RESTBulletinList
from bulletin_board.views import RESTBulletinDetail

urlpatterns = [
 # ...
 url(
 r"^api-auth/",
 include("rest_framework.urls",
 namespace="rest_framework")
),
 url(
 r"^rest-api/bulletin-board/$",
 RESTBulletinList.as_view(),
 name="rest_bulletin_list"
),
 url(
 r"^rest-api/bulletin-board/(?P<pk>[0-9]+)/$",
 RESTBulletinDetail.as_view(),
 name="rest_bulletin_detail"
),
]

How it works...
What we created here is an API for the bulletin board, where one can read a paginated
bulletin list; create a new bulletin; and read, change, or delete a single bulletin by ID. Reading
is allowed without authentication; whereas, one has to have a user account with appropriate
permissions to add, change, or delete a bulletin.

Here's how you can approach the created API:

URL HTTP Method Description
http://127.0.0.1:8000/rest-api/
bulletin-board/

GET List bulletins paginated by
100

http://127.0.0.1:8000/rest-api/
bulletin-board/

POST Create a new bulletin if
the requesting user is
authenticated and authorized
to create bulletins

http://127.0.0.1:8000/rest-api/
bulletin-board/1/

GET Get a bulletin with the 1 ID

Data Import and Export

282

URL HTTP Method Description
http://127.0.0.1:8000/rest-api/
bulletin-board/1/

PUT Update a bulletin with
the 1 ID, if the user is
authenticated and authorized
to change bulletins

http://127.0.0.1:8000/rest-api/
bulletin-board/1/

DELETE Delete the bulletin with
the 1 ID, if the user is
authenticated and authorized
to delete bulletins

How to use the API practically? For example, if you have the requests library installed, you
can create a new bulletin in the Django shell as follows:

(myproject_env)$ python manage.py shell

>>> import requests

>>> response = requests.post("http://127.0.0.1:8000/rest-api/bulletin-
board/", auth=("admin", "admin"), data={"title": "TEST", "category.
title": "TEST", "contact_person": "TEST", "bulletin_type": "searching",
"description": "TEST"})

>>> response.status_code

201

>>> response.json()

{u'category': {u'id': 6, u'title': u'TEST'}, u'description': u'TEST',
u'title': u'TEST', u'image': None, u'email': u'', u'phone': u'',
u'bulletin_type': u'searching', u'contact_person': u'TEST', u'id': 3}

Chapter 9

283

Additionally, Django REST Framework provides you with a web-based API documentation that
is shown when you access the API endpoints in a browser. There you can also try out the APIs
by integrated forms, as shown in the following screenshot:

Let's take a quick look at how the code that we wrote works. In the settings, we have set the
access to be dependent on the permissions of the Django system. For anonymous requests,
only reading is allowed. Other access options include allowing any permission to everyone,
allowing any permission only to authenticated users, allowing any permission to staff users,
and so on. The full list can be found at http://www.django-rest-framework.org/
api-guide/permissions/.

Then, in the settings, pagination is set. The current option is to have the limit and offset
parameters like in an SQL query. Other options are to have either pagination by page numbers
for rather static content or cursor pagination for real-time data. We set the default pagination
to 100 items per page.

http://www.django-rest-framework.org/api-guide/permissions/
http://www.django-rest-framework.org/api-guide/permissions/

Data Import and Export

284

Later we define serializers for categories and bulletins. They handle the data that will be shown
in the output or validated by the input. In order to handle category retrieval or saving, we had
to overwrite the create() and update() methods of BulletinSerializer. There are
various ways to serialize relations in Django REST Framework and we chose the most verbose
one in our example. To read more about how to serialize relations, refer to the documentation
at http://www.django-rest-framework.org/api-guide/relations/.

After defining the serializers, we created two class-based views to handle the API endpoints
and plugged them in the URL configuration. In the URL configuration, we have a rule
(/api-auth/) for browsable API pages, login, and logout.

See also
 f The Creating filterable RSS feeds recipe

 f The Using Tastypie to create API recipe

 f The Testing API created using Django REST framework recipe in Chapter 11,
Testing and Deployment

http://www.django-rest-framework.org/api-guide/relations/

285

10
Bells and Whistles

In this chapter, we will cover the following recipes:

 f Using the Django shell

 f Using database query expressions

 f Monkey-patching the slugify() function for better internationalization support

 f Toggling the Debug Toolbar

 f Using ThreadLocalMiddleware

 f Caching the method return value

 f Using Memcached to cache Django views

 f Using signals to notify administrators about new entries

 f Checking for missing settings

Introduction
In this chapter, we will go through several other important bits and pieces that will help you
understand and utilize Django even better. You will get an overview of how to use the Django
shell to experiment with the code before writing it in the files. You will be introduced to
monkey patching, also known as guerrilla patching, which is a powerful feature of dynamical
languages such as Python and Ruby. You will learn how to debug your code and check its
performance. You will see how to access the currently logged in user and other request
parameters from any module. Also, you will learn how to cache values, handle signals, and
create system checks. Get ready for an interesting programming experience!

Bells and Whistles

286

Using the Django shell
With the virtual environment activated and your project directory selected as the current
directory, enter the following command in your command-line tool:

(myproject_env)$ python manage shell

By executing the preceding command, you will get in an interactive Python shell configured
for your Django project, where you can play around with the code, inspect classes, try out
methods, or execute scripts on the fly. In this recipe, we will go through the most important
functions that you need to know in order to work with the Django shell.

Getting ready
You can either install IPython or bpython using one of the following commands, which will
highlight the syntax for the output of your Django shell and add some other helpers:

(myproject_env)$ pip install ipython

(myproject_env)$ pip install bpython

How to do it...
Learn the basics of using the Django shell by following these instructions:

1. Run the Django shell by typing the following command:
(myproject_env)$ python manage.py shell

The prompt will change to In [1]: or >>>, depending on whether you use IPython
or not. If you use bpython, the shell will be shown in full terminal window with the
available shortcuts at the bottom (similar to the nano editor) and you will also get
code highlighting and text autocompletion when typing.

2. Now, you can import classes, functions, or variables and play around with them. For
example, to see the version of an installed module, you can import the module and
then try to read its __version__, VERSION, or version variables, as follows:
>>> import re

>>> re.__version__

'2.2.1'

3. To get a comprehensive description of a module, class, function, method, keyword, or
documentation topic, use the help() function. You can either pass a string with the
path to a specific entity, or the entity itself, as follows:
>>> help("django.forms")

Chapter 10

287

This will open the help page for the django.forms module. Use the arrow keys to
scroll the page up and down. Press Q to get back to the shell.

If you run help() without the parameters, it opens an interactive help.
Here you can enter any path of a module, class, function, and so on and
get information on what it does and how to use it. To quit the interactive
help press Ctrl + D.

4. This is an example of passing an entity to the help() function. This will open a help
page for the ModelForm class, as follows:
>>> from django.forms import ModelForm

>>> help(ModelForm)

5. To quickly see what fields and values are available for a model instance, use the
__dict__ attribute. Also, use the pprint() function to get the dictionaries
printed in a more readable format (not just one long line), as shown in the following:
>>> from pprint import pprint

>>> from django.contrib.contenttypes.models import ContentType

>>> pprint(ContentType.objects.all()[0].__dict__)

{'_state': <django.db.models.base.ModelState object at
0x10756d250>,

 'app_label': u'bulletin_board',

 'id': 11,

 'model': u'bulletin',

 'name': u'Bulletin'}

Note that using __dict__, we don't get many-to-many relationships. However, this
might be enough for a quick overview of the fields and values.

6. To get all the available properties and methods of an object, you can use the dir()
function, as follows:
>>> dir(ContentType())

['DoesNotExist', 'MultipleObjectsReturned', '__class__', '__
delattr__', '__dict__', '__doc__', '__eq__', '__format__',
'__getattribute__', '__hash__', '__init__', u'__module__', '__
ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__
unicode__', '__weakref__', '_base_manager', '_default_manager',
'_deferred', '_do_insert', '_do_update', '_get_FIELD_display', '_
get_next_or_previous_by_FIELD', '_get_next_or_previous_in_order',
'_get_pk_val', '_get_unique_checks', '_meta', '_perform_date_
checks', '_perform_unique_checks', '_save_parents', '_save_table',
'_set_pk_val', '_state', 'app_label', 'clean', 'clean_fields',

Bells and Whistles

288

'content_type_set_for_comment', 'date_error_message', 'delete',
'full_clean', 'get_all_objects_for_this_type', 'get_object_for_
this_type', 'id', 'logentry_set', 'model', 'model_class', 'name',
'natural_key', 'objects', 'permission_set', 'pk', 'prepare_
database_save', 'save', 'save_base', 'serializable_value',
'unique_error_message', 'validate_unique']

To get these attributes printed one per line, you can use the following:
>>> pprint(dir(ContentType()))

7. The Django shell is useful to experiment with QuerySets or regular expressions
before putting them in your model methods, views, or management commands. For
example, to check the e-mail validation regular expression, you can type the following
in the Django shell:
>>> import re

>>> email_pattern = re.compile(r"[^@]+@[^@]+\.[^@]+")

>>> email_pattern.match("aidas@bendoraitis.lt")

<_sre.SRE_Match object at 0x1075681d0>

8. If you want to try out different QuerySets, you need to execute the setup of the
models and apps in your project, as shown in the following:
>>> import django

>>> django.setup()

>>> from django.contrib.auth.models import User

>>> User.objects.filter(groups__name="Editors")

[<User: admin>]

9. To exit the Django shell, press Ctrl + D or type the following command:
>>> exit()

How it works...
The difference between a normal Python shell and the Django shell is that when you run the
Django shell, manage.py sets the DJANGO_SETTINGS_MODULE environment variable to the
project's settings path, and then all the code in the Django shell is handled in the context of
your project.

See also
 f The Using database query expressions recipe

 f The Monkey-patching the slugify() function for better internationalization support recipe

Chapter 10

289

Using database query expressions
Django Object-relational mapping (ORM) comes with special abstraction constructs that can
be used to build complex database queries. They are called Query Expressions and they allow
you to filter data, order it, annotate new columns, and aggregate relations. In this recipe, we
will see how that can be used in practice. We will create an app that shows viral videos and
counts how many times each video has been seen on mobile and desktop devices.

Getting ready
To start with, install django-mobile to your virtual environment. This module will be
necessary to differentiate between desktop devices and mobile devices:

(myproject_env)$ pip install django-mobile

To configure it, you will need to modify several project settings as follows. Besides that, let's
create the viral_videos app. Put both of them under INSTALLED_APPS:

conf/base.py or settings.py
INSTALLED_APPS = (
 # ...
 # third party
 "django_mobile",

 # project-specific
 "utils",
 "viral_videos",
)

TEMPLATE_CONTEXT_PROCESSORS = (
 # ...
 "django_mobile.context_processors.flavour",
)

TEMPLATE_LOADERS = (
 # ...
 "django_mobile.loader.Loader",
)

MIDDLEWARE_CLASSES = (
 # ...
 "django_mobile.middleware.MobileDetectionMiddleware",
 "django_mobile.middleware.SetFlavourMiddleware",
)

Bells and Whistles

290

Next, create a model for viral videos with a creation and modification timestamps, title,
embedded code, impressions on desktop devices, and impressions on mobile devices,
as follows:

viral_videos/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.utils.encoding import python_2_unicode_compatible
from utils.models import CreationModificationDateMixin, UrlMixin

@python_2_unicode_compatible
class ViralVideo(CreationModificationDateMixin, UrlMixin):
 title = models.CharField(
 _("Title"), max_length=200, blank=True)
 embed_code = models.TextField(_("YouTube embed code"), blank=True)
 desktop_impressions = models.PositiveIntegerField(
 _("Desktop impressions"), default=0)
 mobile_impressions = models.PositiveIntegerField(
 _("Mobile impressions"), default=0)

 class Meta:
 verbose_name = _("Viral video")
 verbose_name_plural = _("Viral videos")

 def __str__(self):
 return self.title

 def get_url_path(self):
 from django.core.urlresolvers import reverse
 return reverse(
 "viral_video_detail",
 kwargs={"id": str(self.id)}
)

How to do it...
To illustrate the query expressions, let's create the viral video detail view and plug it in the URL
configuration, as shown in the following:

1. Create the viral_video_detail() view in the views.py, as follows:
viral_videos/views.py
-*- coding: UTF-8 -*-

Chapter 10

291

from __future__ import unicode_literals
import datetime
from django.shortcuts import render, get_object_or_404
from django.db import models
from django.conf import settings
from .models import ViralVideo

POPULAR_FROM = getattr(
 settings, "VIRAL_VIDEOS_POPULAR_FROM", 500
)

def viral_video_detail(request, id):
 yesterday = datetime.date.today() - \
 datetime.timedelta(days=1)

 qs = ViralVideo.objects.annotate(
 total_impressions=\
 models.F("desktop_impressions") + \
 models.F("mobile_impressions"),
 label=models.Case(
 models.When(
 total_impressions__gt=OPULAR_FROM,
 then=models.Value("popular")
),
 models.When(
 created__gt=yesterday,
 then=models.Value("new")
),
 default=models.Value("cool"),
 output_field=models.CharField(),
),
)

 # DEBUG: check the SQL query that Django ORM generates
 print(qs.query)

 qs = qs.filter(pk=id)
 if request.flavour == "mobile":
 qs.update(
 mobile_impressions=\
 models.F("mobile_impressions") + 1
)
 else:
 qs.update(

Bells and Whistles

292

 desktop_impressions=\
 models.F("desktop_impressions") + 1
)

 video = get_object_or_404(qs)

 return render(
 request,
 "viral_videos/viral_video_detail.html",
 {'video': video}
)

2. Define the URL configuration for the app, as shown in the following:
viral_videos/urls.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.conf.urls import *
urlpatterns = [
 url(
 r"^(?P<id>\d+)/",
 "viral_videos.views.viral_video_detail",
 name="viral_video_detail"
),
]

3. Include the URL configuration of the app in the project's root URL configuration,
as follows:
myproject/urls.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.conf.urls import include, url
from django.conf import settings
from django.conf.urls.i18n import i18n_patterns

urlpatterns = i18n_patterns("",
 # ...
 url(r"^viral-videos/", include("viral_videos.urls")),
)

4. Create a template for the viral_video_detail() view, as shown in the following:
{# templates/viral_videos/viral_video_detail.html #}
{% extends "base.html" %}

Chapter 10

293

{% load i18n %}

{% block content %}
 <h1>{{ video.title }}
 {{ video.label }}
 </h1>
 <div>{{ video.embed_code|safe }}</div>
 <div>
 <h2>{% trans "Impressions" %}</h2>

 {% trans "Desktop impressions" %}:
 {{ video.desktop_impressions }}
 {% trans "Mobile impressions" %}:
 {{ video.mobile_impressions }}
 {% trans "Total impressions" %}:
 {{ video.total_impressions }}

 </div>
{% endblock %}

5. Set up administration for the viral_videos app and add some videos to
the database.

How it works...
You might have noticed the print() statement in the view. It is there temporarily for
debugging purposes. If you run local development server and access the first video in the
browser at http://127.0.0.1:8000/en/viral-videos/1/, you will see the following
SQL query printed in the console:

SELECT "viral_videos_viralvideo"."id", "viral_videos_
viralvideo"."created", "viral_videos_viralvideo"."modified", "viral_
videos_viralvideo"."title", "viral_videos_viralvideo"."embed_code",
"viral_videos_viralvideo"."desktop_impressions", "viral_videos_
viralvideo"."mobile_impressions", ("viral_videos_viralvideo"."desktop_
impressions" + "viral_videos_viralvideo"."mobile_impressions") AS
"total_impressions", CASE WHEN ("viral_videos_viralvideo"."desktop_
impressions" + "viral_videos_viralvideo"."mobile_impressions") >
500 THEN popular WHEN "viral_videos_viralvideo"."created" > 2015-
11-06 00:00:00 THEN new ELSE cool END AS "label" FROM "viral_videos_
viralvideo"

Bells and Whistles

294

Then, in the browser, you will see a simple page similar to the following image, showing the
title of a video, label of the video, embedded video, and impressions on desktop devices,
mobile devices and in total:

The annotate() method in Django QuerySets allows you to add extra columns to the
SELECT SQL statement as well as on-the-fly created properties for the objects retrieved from
QuerySets. With models.F(), we can reference different field values from the selected
database table. In this example, we will create the total_impressions property, which is
the sum of the impressions on the desktop devices and the impressions on mobile devices.

With models.Case() and models.When(), we can return the values depending on
different conditions. To mark the values, we are using models.Value(). In our example,
we will create the label column for SQL query and the property for the objects returned by
QuerySet. It will be set to popular if it has more than 500 impressions, new if it has been
created today, and cool otherwise.

Chapter 10

295

At the end of the view, we have the qs.update() methods called. They increment mobile_
impressions or desktop_impressions of the current video, depending on the device
used by the visitor. The incrementation happens at the SQL level. This solves the so-called
race conditions, when two or more visitors are accessing the view at the same time and try to
increase the impressions count simultaneously.

See also
 f The Using the Django shell recipe

 f The Creating a model mixin with URL-related methods recipe in Chapter 2,
Database Structure

 f The Creating a model mixin to handle creation and modification dates recipe in
Chapter 2, Database Structure

Monkey-patching the slugify() function for
better internationalization support

Monkey patch or guerrilla patch is a piece of code that extends or modifies another piece of
code at runtime. It is not recommended to use monkey patch often; however, sometimes, it is
the only possible way to fix a bug in third-party modules without creating a separate branch of
the module. Also, monkey patching might be used to prepare functional or unit tests without
using complex database or file manipulations. In this recipe, you will learn how to exchange
the default slugify() function with the one from the third-party awesome-slugify
module, which handles German, Greek, and Russian words smarter and allows to create
customized slugs for other languages. As a quick reminder, we uses the slugify() function
to create a URL-friendly version of the object's title or the uploaded filename; it strips the
leading and trailing whitespace, converts the text to lowercase, removes nonword characters,
and converts spaces to hyphens.

Getting ready
To get started, execute the following steps:

1. Install awesome-slugify in your virtual environment, as follows:
(myproject_env)$ pip install awesome-slugify

2. Create a guerrilla_patches app in your project and put it under INSTALLED_
APPS in the settings.

Bells and Whistles

296

How to do it...
In the models.py file of the guerrilla_patches app, add the following content:

guerrilla_patches/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.utils import text
from slugify import slugify_de as awesome_slugify
awesome_slugify.to_lower = True
text.slugify = awesome_slugify

How it works...
The default Django slugify() function handles German diacritical symbols incorrectly. To
see this for yourself, run the following code in the Django shell without the monkey patch:

(myproject_env)$ python manage.py shell

>>> from django.utils.text import slugify

>>> slugify("Heizölrückstoßabdämpfung")

u'heizolruckstoabdampfung'

This is incorrect in German as the letter ß is totally stripped out instead of substituting it with
ss and the letters ä, ö, and ü are changed to a, o, and u; whereas, they should be substituted
with ae, oe, and ue.

The monkey patch that we did loads the django.utils.text module at initialization and
assigns the callable instance of the Slugify class as the slugify() function. Now, if you
run the same code in the Django shell, you will get different but correct results, as follows:

(myproject_env)$ python manage.py shell

>>> from django.utils.text import slugify

>>> slugify("Heizölrückstoßabdämpfung")

u'heizoelrueckstossabdaempfung'

To read more about how to utilize the awesome-slugify module, refer to the following:
https://pypi.python.org/pypi/awesome-slugify.

https://pypi.python.org/pypi/awesome-slugify

Chapter 10

297

There's more...
Before creating any monkey patch, we need to completely understand how the code that
we want to modify works. This can be done by analyzing the existing code and inspecting
the values of different variables. To do this, there is a useful built-in Python debugger pdb
module, which can temporarily be added to the Django code or any third-party module to stop
the execution of a development server at any breakpoint. Use the following code to debug an
unclear part of a Python module:

import pdb
pdb.set_trace()

This launches the interactive shell, where you can type the variables to see their values. If you
type c or continue, the code execution will continue until the next breakpoint. If you type q
or quit, the management command will be aborted. You can learn more commands of the
Python debugger and how to inspect the traceback of the code at https://docs.python.
org/2/library/pdb.html.

Another quick way to see a value of a variable in the development server is to raise a warning
with the variable as a message, as follows:

raise Warning, some_variable

When you are in the DEBUG mode, the Django logger will provide you with the traceback and
other local variables.

Don't forget to remove the debugging functions before
committing the code to a repository.

See also
 f The Using the Django shell recipe

https://docs.python.org/2/library/pdb.html
https://docs.python.org/2/library/pdb.html

Bells and Whistles

298

Toggling the Debug Toolbar
While developing with Django, you will want to inspect request headers and parameters,
check the current template context, or measure the performance of SQL queries. All this
and more is possible with the Django Debug Toolbar. It is a configurable set of panels that
displays various debug information about the current request and response. In this recipe, I
will guide you on how to toggle the visibility of the Debug Toolbar, depending on a cookie, set
by bookmarklet. A bookmarklet is a bookmark of a small piece of JavaScript code that you can
run on any page in a browser.

Getting ready
To get started with toggling the visibility of the Debug Toolbar, take a look at the following steps:

1. Install the Django Debug Toolbar to your virtual environment:
(myproject_env)$ pip install django-debug-toolbar==1.4

2. Put debug_toolbar under INSTALLED_APPS in the settings.

How to do it...
Follow these steps to set up the Django Debug Toolbar, which can be switched on or off using
bookmarklets in the browser:

1. Add the following project settings:
MIDDLEWARE_CLASSES = (
 # ...
 "debug_toolbar.middleware.DebugToolbarMiddleware",
)

DEBUG_TOOLBAR_CONFIG = {
 "DISABLE_PANELS": [],
 "SHOW_TOOLBAR_CALLBACK": \
 "utils.misc.custom_show_toolbar",
 "SHOW_TEMPLATE_CONTEXT": True,
}

DEBUG_TOOLBAR_PANELS = [
 "debug_toolbar.panels.versions.VersionsPanel",
 "debug_toolbar.panels.timer.TimerPanel",

Chapter 10

299

 "debug_toolbar.panels.settings.SettingsPanel",
 "debug_toolbar.panels.headers.HeadersPanel",
 "debug_toolbar.panels.request.RequestPanel",
 "debug_toolbar.panels.sql.SQLPanel",
 "debug_toolbar.panels.templates.TemplatesPanel",
 "debug_toolbar.panels.staticfiles.StaticFilesPanel",
 "debug_toolbar.panels.cache.CachePanel",
 "debug_toolbar.panels.signals.SignalsPanel",
 "debug_toolbar.panels.logging.LoggingPanel",
 "debug_toolbar.panels.redirects.RedirectsPanel",
]

2. In the utils module, create a misc.py file with the custom_show_toolbar()
function, as follows:
utils/misc.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals

def custom_show_toolbar(request):
 return "1" == request.COOKIES.get("DebugToolbar", False)

3. Open the Chrome or Firefox browser and go to Bookmark Manager. Then, create two
new JavaScript links. The first link shows the toolbar. It looks similar to the following:
Name: Debug Toolbar On
URL: javascript:(function(){document.cookie="DebugToolbar=1;
path=/";location.reload();})();

4. The second JavaScript link hides the toolbar and looks similar to the following:
Name: Debug Toolbar Off
URL: javascript:(function(){document.cookie="DebugToolbar=0;
path=/";location.reload();})();

How it works...
The DEBUG_TOOLBAR_PANELS setting defines the panels to show in the toolbar. The
DEBUG_TOOLBAR_CONFIG dictionary defines the configuration for the toolbar, including
a path to the function that is used to check whether or not to show the toolbar.

Bells and Whistles

300

By default, when you browse through your project the Django Debug Toolbar will not be shown.
However, as you click on your bookmarklet, Debug Toolbar On, the DebugToolbar cookie will
be set to 1, the page will be refreshed, and you will see the toolbar with debugging panels. For
example, you will be able to inspect the performance of SQL statements for optimization, as
shown in the following screenshot:

Chapter 10

301

You will also be able to check the template context variables for the current view, as shown in
the following screenshot:

See also
 f The Getting detailed error reporting via e-mail recipe in Chapter 11,

Testing and Deployment

Using ThreadLocalMiddleware
The HttpRequest object contains useful information about the current user, language,
server variables, cookies, session, and so on. As a matter of fact, HttpRequest is provided
in the views and middlewares, and then you can pass it or its attribute values to forms,
model methods, model managers, templates, and so on. To make life easier, you can use the
ThreadLocalMiddleware middleware that stores the current HttpRequest object in the
globally-accessed Python thread. Therefore, you can access it from model methods, forms,
signal handlers, and any other place that didn't have direct access to the HttpRequest
object previously. In this recipe, we will define this middleware.

Bells and Whistles

302

Getting ready
Create the utils app and put it under INSTALLED_APPS in the settings.

How to do it...
Execute the following two steps:

1. Add a middleware.py file in the utils app with the following content:
utils/middleware.py
-*- coding: UTF-8 -*-
from threading import local
_thread_locals = local()

def get_current_request():
 """ returns the HttpRequest object for this thread """
 return getattr(_thread_locals, "request", None)

def get_current_user():
 """ returns the current user if it exists
 or None otherwise """
 request = get_current_request()
 if request:
 return getattr(request, "user", None)

class ThreadLocalMiddleware(object):
 """ Middleware that adds the HttpRequest object
 to thread local storage """
 def process_request(self, request):
 _thread_locals.request = request

2. Add this middleware to MIDDLEWARE_CLASSES in the settings:
MIDDLEWARE_CLASSES = (
 # ...
 "utils.middleware.ThreadLocalMiddleware",
)

Chapter 10

303

How it works...
The ThreadLocalMiddleware processes each request and stores the current
HttpRequest object in the current thread. Each request-response cycle in Django is single
threaded. There are two functions: get_current_request() and get_current_user().
These functions can be used from anywhere to grab the current HttpRequest object or the
current user.

For example, you can create and use CreatorMixin, which saves the current user as the
creator of a model, as follows:

utils/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db import models
from django.utils.translation import ugettext_lazy as _

class CreatorMixin(models.Model):
 """
 Abstract base class with a creator
 """
 creator = models.ForeignKey(
 "auth.User",
 verbose_name=_("creator"),
 editable=False,
 blank=True,
 null=True,
)

 def save(self, *args, **kwargs):
 from utils.middleware import get_current_user
 if not self.creator:
 self.creator = get_current_user()
 super(CreatorMixin, self).save(*args, **kwargs)
 save.alters_data = True

 class Meta:
 abstract = True

Bells and Whistles

304

See also
 f The Creating a model mixin with URL-related methods recipe in Chapter 2,

Database Structure

 f The Creating a model mixin to handle creation and modification dates recipe in
Chapter 2, Database Structure

 f The Creating a model mixin to take care of meta tags recipe in Chapter 2,
Database Structure

 f The Creating a model mixin to handle generic relations recipe in Chapter 2,
Database Structure

Caching the method return value
If you call the same model method with heavy calculations or database queries multiple times
in the request-response cycle, the performance of the view might be very slow. In this recipe,
you will learn about a pattern that you can use to cache the return value of a method for later
repetitive use. Note that we are not using the Django cache framework here, we are just using
what Python provides us by default.

Getting ready
Choose an app with a model that has a time-consuming method that will be used repetitively
in the same request-response cycle.

How to do it...
This is a pattern that you can use to cache a method return value of a model for repetitive use
in views, forms, or templates, as follows:

class SomeModel(models.Model):
 # ...
 def some_expensive_function(self):
 if not hasattr(self, "_expensive_value_cached"):
 # do some heavy calculations...
 # ... and save the result to result variable
 self._expensive_value_cached = result
 return self._expensive_value_cached

Chapter 10

305

For example, let's create a get_thumbnail_url()method for the ViralVideo model that
we created in the Using database query expressions recipe earlier in this chapter:

viral_videos/models.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import re
... other imports ...

@python_2_unicode_compatible
class ViralVideo(CreationModificationDateMixin, UrlMixin):
 # ...
 def get_thumbnail_url(self):
 if not hasattr(self, "_thumbnail_url_cached"):
 url_pattern = re.compile(
 r'src="https://www.youtube.com/embed/([^"]+)"'
)
 match = url_pattern.search(self.embed_code)
 self._thumbnail_url_cached = ""
 if match:
 video_id = match.groups()[0]
 self._thumbnail_url_cached = \
 "http://img.youtube.com/vi/{}/0.jpg".format(
 video_id
)
 return self._thumbnail_url_cached

How it works...
The method checks whether the _expensive_value_cached attribute exists for the
model instance. If it doesn't exist, the time-consuming calculations are done and the result
is assigned to this new attribute. At the end of the method, the cached value is returned. Of
course, if you have several weighty methods, you will need to use different attribute names to
save each calculated value.

You can now use something like {{ object.some_expensive_function }} in the
header and footer of a template, and the time-consuming calculations will be done just once.

Bells and Whistles

306

In a template, you can use the function in both, the {% if %} condition, and output of the
value, as follows:

{% if object.some_expensive_function %}

 {{ object.some_expensive_function }}

{% endif %}

In this example, we are checking the thumbnail of a YouTube video by parsing the URL of
the video's embed code, getting its ID, and then composing the URL of the thumbnail image.
Then, you can use it in a template as follows:

{% if video.get_thumbnail_url %}
 <figure>
 <img src="{{ video.get_thumbnail_url }}"
 alt="{{ video.title }}" />
 <figcaption>{{ video.title }}</figcaption>
 </figure>
{% endif %}

See also
 f Refer to Chapter 4, Templates and JavaScript for more details

Using Memcached to cache Django views
Django provides a possibility to speed up the request-response cycle by caching the
most expensive parts such as database queries or template rendering. The fastest and
most reliable caching natively supported by Django is the memory-based cache server,
Memcached. In this recipe, you will learn how to use Memcached to cache a view for our
viral_videos app that we created in the Using database query expressions recipe earlier
in this chapter.

Getting ready
There are several things to do in order to prepare caching for your Django project:

1. Install Memcached server, as follows:
$ wget http://memcached.org/files/memcached-1.4.23.tar.gz

$ tar -zxvf memcached-1.4.23.tar.gz

$ cd memcached-1.4.23

$./configure && make && make test && sudo make install

Chapter 10

307

2. Start Memcached server, as shown in the following:
$ memcached -d

3. Install Memcached Python bindings in your virtual environment, as follows:
(myproject_env)$ pip install python-memcached

How to do it...
To integrate caching for your specific views, perform the following steps:

1. Set CACHES in the project settings, as follows:
CACHES = {
 "default": {
 "BACKEND": "django.core.cache.backends."
 "memcached.MemcachedCache",
 "LOCATION": "127.0.0.1:11211",
 "TIMEOUT": 60, # 1 minute
 "KEY_PREFIX": "myproject_production",
 }
}

2. Modify the views of the viral_videos app, as follows:
viral_videos/views.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.views.decorators.vary import vary_on_cookie
from django.views.decorators.cache import cache_page

@vary_on_cookie
@cache_page(60)
def viral_video_detail(request, id):
 # ...

How it works...
Now, if you access the first viral video at http://127.0.0.1:8000/en/viral-
videos/1/ and refresh the page a few times, you will see that the number of impressions
changes only once a minute. This is because for every visitor, caching is enabled for
60 seconds. Caching is set for the view using the @cache_page decorator.

Memcached is a key-value store and by default for each cached page, the full URL is used to
generate the key. When two visitors access the same page simultaneously, the first visitor will
get the page generated by the Python code and the second one will get the HTML code from
the Memcached server.

Bells and Whistles

308

In our example, to ensure that each visitor gets treated separately even if they access the
same URL, we are using the @vary_on_cookie decorator. This decorator checks the
uniqueness of the Cookie header of the HTTP request.

Learn more about Django's cache framework from the official documentation at
https://docs.djangoproject.com/en/1.8/topics/cache/.

See also
 f The Using database query expressions recipe

 f The Caching the method return value recipe

Using signals to notify administrators about
new entries

Django framework has a concept of signals, which are similar to events in JavaScript. There is
a handful of built-in signals that you can use to trigger actions before and after initialization of
a model, saving or deleting an instance, migrating the database schema, handling a request,
and so on. Moreover, you can create your own signals in your reusable apps and handle them
in other apps. In this recipe, you will learn how to use signals to send emails to administrators
whenever a specific model is saved.

Getting ready
Let's start with the viral_videos app that we created in the Using database query
expressions recipe.

How to do it...
Follow these steps to create notifications to administrators:

1. Create the signals.py file with the following content:
viral_videos/signals.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.db.models.signals import post_save
from django.dispatch import receiver
from .models import ViralVideo

@receiver(post_save, sender=ViralVideo)
def inform_administrators(sender, **kwargs):

https://docs.djangoproject.com/en/1.8/topics/cache/

Chapter 10

309

 from django.core.mail import mail_admins
 instance = kwargs["instance"]
 created = kwargs["created"]
 if created:
 context = {
 "title": instance.title,
 "link": instance.get_url(),
 }
 plain_text_message = """
A new viral video called "%(title)s" has been created.
You can preview it at %(link)s.""" % context
 html_message = """
<p>A new viral video called "%(title)s" has been created.</p>
<p>You can preview it here.</p>""" %
context

 mail_admins(
 subject="New Viral Video Added at example.com",
 message=plain_text_message,
 html_message=html_message,
 fail_silently=True,
)

2. Create the apps.py file with the following content:
viral_videos/apps.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.apps import AppConfig
from django.utils.translation import ugettext_lazy as _

class ViralVideosAppConfig(AppConfig):
 name = "viral_videos"
 verbose_name = _("Viral Videos")

 def ready(self):
 from .signals import inform_administrators

3. Update the __init__.py file with the following content:
viral_videos/__init__.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals

default_app_config = \
 "viral_videos.apps.ViralVideosAppConfig"

Bells and Whistles

310

4. Make sure that you have ADMINS set in the project settings, as follows:
ADMINS = (
 ("Aidas Bendoraitis", "aidas.bendoraitis@example.com"),
)

How it works...
The ViralVideosAppConfig app configuration class has the ready() method, which
will be called when all the models of the project are loaded in the memory. According to the
Django documentation, signals allow certain senders to notify a set of receivers that some
action has taken place. In the ready() method, we will import, therefore, registering the
inform_administrators() signal receiver for the post_save signal, and limiting it to
handle only signals, where the ViralVideo model is the sender. Therefore, whenever we
save the ViralVideo model, the inform_administrators() function will be called.
The function checks whether a video is newly created. In that case, it sends an e-mail to the
system administrators that are listed in ADMINS in the settings.

Learn more about Django's signals from the official documentation at https://docs.
djangoproject.com/en/1.8/topics/signals/.

See also
 f The Using database query expressions recipe

 f The Creating app configuration recipe in Chapter 1, Getting Started with Django 1.8

 f The Checking for missing settings recipe

Checking for missing settings
Since Django 1.7, you can use an extensible System Check Framework, which replaces the
old validate management command. In this recipe, you will learn how to create a check if the
ADMINS setting is set. Similarly, you will be able to check whether different secret keys or
access tokens are set for the APIs that you are using.

Getting ready
Let's start with the viral_videos app that we created in the Using database query
expressions recipe and extended in the previous recipe.

https://docs.djangoproject.com/en/1.8/topics/signals/
https://docs.djangoproject.com/en/1.8/topics/signals/

Chapter 10

311

How to do it...
To use System Check Framework, follow these simple steps:

1. Create the checks.py file with the following content:
viral_videos/checks.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.core.checks import Warning, register, Tags

@register(Tags.compatibility)
def settings_check(app_configs, **kwargs):
 from django.conf import settings
 errors = []
 if not settings.ADMINS:
 errors.append(
 Warning(
 """The system admins are not set in the project
settings""",
 hint="""In order to receive notifications when new
videos are created, define system admins like ADMINS=(("Admin",
"admin@example.com"),) in your settings""",
 id="viral_videos.W001",
)
)
 return errors

2. Import the checks in the ready() method of the app configuration, as follows:
viral_videos/apps.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.apps import AppConfig
from django.utils.translation import ugettext_lazy as _

class ViralVideosAppConfig(AppConfig):
 name = "viral_videos"
 verbose_name = _("Viral Videos")

 def ready(self):
 from .signals import inform_administrators
 from .checks import settings_check

Bells and Whistles

312

3. To try the check that you just created, remove or comment out the ADMINS setting
and run the check management command in your virtual environment, as shown in
the following:
(myproject_env)$ python manage.py check

System check identified some issues:

WARNINGS:

?: (viral_videos.W001) The system admins are not set in the
project settings

 HINT: define system admins like ADMINS=(("Admin", "admin@
example.com"),) in your settings

System check identified 1 issue (0 silenced).

How it works...
The System Check Framework has a bunch of checks in the models, fields, database,
administration, authentication, content types, and security, where it raises errors or warnings
if something in the project is not set correctly. Additionally, you can create your own checks
similar to what we did in this recipe.

We have registered the settings_check() function, which returns a list with a warning if
there is no ADMINS setting defined for the project.

Besides the Warning instances from the django.core.checks module, the returned list
can also contain instances of the Debug, Info, Error, and Critical classes or any other
class inheriting from django.core.checks.CheckMessage. Debugs, infos, and warnings
would fail silently; whereas, errors and criticals would prevent the project from running.

In this example, the check is tagged as a compatibility check. The other options are:
models, signals, admin, and security.

Learn more about System Check Framework from the official documentation at
https://docs.djangoproject.com/en/1.8/topics/checks/.

See also
 f The Using database query expressions recipe

 f The Using signals to notify administrators about new entries recipe

 f The Creating app configuration recipe in Chapter 1, Getting Started with Django 1.8

https://docs.djangoproject.com/en/1.8/topics/checks/

313

11
Testing and Deployment

In this chapter, we will cover the following recipes:

 f Testing pages with Selenium

 f Testing views with mock

 f Testing API created using Django REST framework

 f Releasing a reusable Django app

 f Getting detailed error reporting via e-mail

 f Deploying on Apache with mod_wsgi

 f Setting up cron jobs for regular tasks

 f Creating and using the Fabric deployment script

Introduction
At this point, I expect you to have one or more Django projects or reusable apps developed
and ready to show to the public. For the concluding steps of development cycle, we will take a
look at how to test your project, distribute reusable apps to others, and publish your website
on a remote server. Stay tuned for the final bits and pieces!

Testing and Deployment

314

Testing pages with Selenium
Django provides a possibility to write test suites for your website. Test suites automatically
check your website or its components to see whether everything is working correctly. When
you modify your code, you can run tests to check whether the changes didn't affect the
application's behavior in a wrong way. The world of automated software testing can be divided
into five levels: unit testing, integration testing, component interface testing, system testing,
and operational acceptance testing. Acceptance tests check the business logic to know
whether the project works the way it is supposed to. In this recipe, you will learn how to write
acceptance tests with Selenium, which allows you to simulate activities such as filling in forms
or clicking on specific DOM elements in a browser.

Getting ready
Let's start with the locations and likes apps from the Implementing the Like widget
recipe in Chapter 4, Templates and JavaScript.

If you don't have it yet, install the Firefox browser from http://getfirefox.com.

Then, install Selenium in your virtual environment, as follows:

(myproject_env)$ pip install selenium

How to do it...
We will test the Ajax-based liking functionality with Selenium by performing the following steps:

1. Create the tests.py file in your locations app with the following content:
locations/tests.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from time import sleep
from django.test import LiveServerTestCase
from django.contrib.contenttypes.models import ContentType
from django.contrib.auth.models import User
from selenium import webdriver
from selenium.webdriver.support.ui import WebDriverWait
from likes.models import Like
from .models import Location

class LiveLocationTest(LiveServerTestCase):
 @classmethod
 def setUpClass(cls):

http://getfirefox.com

Chapter 11

315

 super(LiveLocationTest, cls).setUpClass()
 cls.browser = webdriver.Firefox()
 cls.browser.delete_all_cookies()
 cls.location = Location.objects.create(
 title="Haus der Kulturen der Welt",
 slug="hkw",
 small_image="locations/2015/11/"
 "20151116013056_small.jpg",
 medium_image="locations/2015/11/"
 "20151116013056_medium.jpg",
 large_image="locations/2015/11/"
 "20151116013056_large.jpg",
)
 cls.username = "test-admin"
 cls.password = "test-admin"
 cls.superuser = User.objects.create_superuser(
 username=cls.username,
 password=cls.password,
 email="",
)

 @classmethod
 def tearDownClass(cls):
 super(LiveLocationTest, cls).tearDownClass()
 cls.browser.quit()
 cls.location.delete()
 cls.superuser.delete()

 def test_login_and_like(self):
 # login
 self.browser.get("%(website)s/admin/login/"
 "?next=/locations/%(slug)s/" % {
 "website": self.live_server_url,
 "slug": self.location.slug,
 })
 username_field = \
 self.browser.find_element_by_id("id_username")
 username_field.send_keys(self.username)
 password_field = \
 self.browser.find_element_by_id("id_password")
 password_field.send_keys(self.password)
 self.browser.find_element_by_css_selector(
 'input[type="submit"]'
).click()

Testing and Deployment

316

 WebDriverWait(self.browser, 10).until(
 lambda x: self.browser.\
 find_element_by_css_selector(
 ".like-button"
)
)
 # click on the "like" button
 like_button = self.browser.\
 find_element_by_css_selector('.like-button')
 is_initially_active = \
 "active" in like_button.get_attribute("class")
 initial_likes = int(self.browser.\
 find_element_by_css_selector(
 ".like-badge"
).text)

 sleep(2) # remove this after the first run

 like_button.click()
 WebDriverWait(self.browser, 10).until(
 lambda x: int(
 self.browser.find_element_by_css_selector(
 ".like-badge"
).text
) != initial_likes
)
 likes_in_html = int(
 self.browser.find_element_by_css_selector(
 ".like-badge"
).text
)
 likes_in_db = Like.objects.filter(
 content_type=ContentType.objects.\
 get_for_model(Location),
 object_id=self.location.pk,
).count()

 sleep(2) # remove this after the first run

 self.assertEqual(likes_in_html, likes_in_db)
 if is_initially_active:
 self.assertLess(likes_in_html, initial_likes)
 else:
 self.assertGreater(

Chapter 11

317

 likes_in_html, initial_likes
)

 # click on the "like" button again to switch back
 # to the previous state
 like_button.click()
 WebDriverWait(self.browser, 10).until(
 lambda x: int(
 self.browser.find_element_by_css_selector(
 ".like-badge"
).text
) == initial_likes
)

 sleep(2) # remove this after the first run

2. Tests will be running in the DEBUG = False mode; therefore, you have to ensure
that all the static files are accessible in your development environment. Make sure
that you add the following lines to your project's URL configuration:
myproject/urls.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
from django.conf.urls import patterns, include, url
from django.conf import settings
from django.conf.urls.static import static
from django.contrib.staticfiles.urls import \
 staticfiles_urlpatterns

urlpatterns = patterns("",
 # …
)

urlpatterns += staticfiles_urlpatterns()
urlpatterns += static(
 settings.STATIC_URL,
 document_root=settings.STATIC_ROOT
)
urlpatterns += static(
 settings.MEDIA_URL,
 document_root=settings.MEDIA_ROOT
)

3. Collect static files to make them accessible by the test server, as follows:
(myproject_env)$ python manage.py collectstatic --noinput

Testing and Deployment

318

4. Run the tests for the locations app, as shown in the following:
(myproject_env)$ python manage.py test locations

Creating test database for alias 'default'...

.

--

Ran 1 test in 19.158s

OK

Destroying test database for alias 'default'...

How it works...
When we run these tests, the Firefox browser will open and go to the administration login page
at http://localhost:8081/admin/login/?next=/locations/hkw/.

Then, the username and password fields will get filled in with test-admin and you will get
redirected to the detail page of the Haus der Kulturen der Welt location, as follows:
http://localhost:8081/locations/hkw/.

There you will see the Like button clicked twice, causing liking and unliking actions.

Let's see how this works in the test suite. We define a class extending
LiveServerTestCase. This creates a test suite that will run a local server under the 8081
port. The setUpClass()class method will be executed at the beginning of all the tests and
the tearDownClass()class method will be executed after the tests have been run. In the
middle, the testing will execute all the methods of the suite whose names start with test. For
each passed test, you will see a dot (.) in the command-line tool, for each failed test there will
be the letter F, and for each error in the tests you will see the letter E. At the end, you will see
hints about the failed and erroneous tests. As we currently have only one test in the suite for
the locations app, you will only see one dot there.

When we start testing, a new test database is created. In setUpClass(), we create a
browser object, one location, and one super user. Then, the test_login_and_like()
method is executed, which opens the administration login page, finds the username field,
types in the administrator's username, finds the password field, types in administrator's
password, finds the submit button, and clicks on it. Then, it waits maximal ten seconds
until a DOM element with the.like-button CSS class can be found on the page.

Chapter 11

319

As you might remember from the Implementing the Like widget recipe in Chapter 4, Templates
and JavaScript, our widget consists of two elements: a Like button and a badge showing the
total number of likes. If a button is clicked, either your Like is added or removed from the
database by an Ajax call. Moreover, the badge count is updated to reflect the number of likes
in the database, as shown in the following image:

Further in the test, we check what is the initial state of the button is (whether it has the
.active CSS class or not), check the initial number of likes, and simulate a click on the
button. We wait maximal 10 seconds until the count in the badge changes. Then, we check
whether the count in the badge matches the total likes for the location in the database. We
will also check how the count in the badge has changed (increased or decreased). Lastly, we
will simulate the click on the button again to switch back to the previous state.

The sleep() functions are in the test just for you to be able to see the whole workflow. You
can safely remove them in order to make the tests run faster.

Finally, the tearDownClass() method is called, which closes the browser and removes the
location and the super user from the test database.

See also
 f The Implementing the Like widget recipe in Chapter 4, Templates and JavaScript

 f The Testing views with mock recipe

 f The Testing API created using Django REST Framework recipe

Testing views with mock
In this recipe, we will take a look at how to write unit tests. Unit tests are those that check
whether the functions or methods return correct results. We again take the likes app and
write tests checking whether posting to the json_set_like() view returns {"success";
false} in the response for unauthenticated users and returns {"action": "added",
"count": 1, "obj": "Haus der Kulturen der Welt", "success": true}
for authenticated users. We will use the Mock objects to simulate the HttpRequest and
AnonymousUser objects.

Testing and Deployment

320

Getting ready
Let's start with the locations and likes apps from the Implementing the Like widget
recipe in Chapter 4, Templates and JavaScript.

Install the mock module in your virtual environment, as follows:

(myproject_env)$ pip install mock

How to do it...
We will test the liking action with mock by performing the following steps:

1. Create the tests.py file in your likes app with the following content:
likes/tests.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals
import mock
import json
from django.contrib.contenttypes.models import ContentType
from django.contrib.auth.models import User
from django.test import SimpleTestCase
from locations.models import Location

class JSSetLikeViewTest(SimpleTestCase):
 @classmethod
 def setUpClass(cls):
 super(JSSetLikeViewTest, cls).setUpClass()
 cls.location = Location.objects.create(
 title="Haus der Kulturen der Welt",
 slug="hkw",
 small_image="locations/2015/11/"
 "20151116013056_small.jpg",
 medium_image="locations/2015/11/"
 "20151116013056_medium.jpg",
 large_image="locations/2015/11/"
 "20151116013056_large.jpg",
)
 cls.content_type = \
 ContentType.objects.get_for_model(Location)
 cls.username = "test-admin"
 cls.password = "test-admin"
 cls.superuser = User.objects.create_superuser(
 username=cls.username,

Chapter 11

321

 password=cls.password,
 email="",
)

 @classmethod
 def tearDownClass(cls):
 super(JSSetLikeViewTest, cls).tearDownClass()
 cls.location.delete()
 cls.superuser.delete()

 def test_authenticated_json_set_like(self):
 from .views import json_set_like
 mock_request = mock.Mock()
 mock_request.user = self.superuser
 mock_request.method = "POST"
 response = json_set_like(
 mock_request,
 self.content_type.pk,
 self.location.pk
)
 expected_result = json.dumps({
 "success": True,
 "action": "added",
 "obj": self.location.title,
 "count": Location.objects.count(),
 })
 self.assertJSONEqual(
 response.content,
 expected_result
)

 def test_anonymous_json_set_like(self):
 from .views import json_set_like
 mock_request = mock.Mock()
 mock_request.user.is_authenticated.return_value = \
 False
 mock_request.method = "POST"
 response = json_set_like(
 mock_request,
 self.content_type.pk,
 self.location.pk
)
 expected_result = json.dumps({
 "success": False,

Testing and Deployment

322

 })
 self.assertJSONEqual(
 response.content,
 expected_result
)

2. Run the tests for the likes app, as follows:
(myproject_env)$ python manage.py test likes

Creating test database for alias 'default'...

..

--

Ran 2 tests in 0.093s

OK

Destroying test database for alias 'default'...

How it works...
Just like in the previous recipe, when you run tests for the likes app, at first, a temporary
test database is created. Then, the setUpClass() method is called. Later, the methods
whose names start with test are executed, and finally the tearDownClass() method
is called.

Unit tests inherit from the SimpleTestCase class. In setUpClass(), we create a location
and a super user. Also, we find out the ContentType object for the Location model—we
will need it for the view that sets or removes likes for different objects. As a reminder, the view
looks similar to the following and returns the JSON string as a result:

def json_set_like(request, content_type_id, object_id):
 # ...all the view logic goes here...
 return HttpResponse(
 json_str,
 content_type="text/javascript; charset=utf-8"
)

In the test_authenticated_json_set_like() and test_anonymous_json_set_
like() methods, we use the Mock objects. They are objects that have any attributes or
methods. Each undefined attribute or method of a Mock object is another Mock object.
Therefore, in the shell, you can try chaining attributes as follows:

>>> import mock

>>> m = mock.Mock()

>>> m.whatever.anything().whatsoever

<Mock name='mock.whatever.anything().whatsoever' id='4464778896'>

Chapter 11

323

In our tests, we use the Mock objects to simulate the HttpRequest and AnonymousUser
objects. For the authenticated user, we still need the real User object as the view needs the
user's ID to save in the database for the Like object.

Therefore, we call the json_set_like() function and see if the returned JSON response is
correct: it returns {"success": false} in the response if the visitor is unauthenticated;
and returns something like {"action": "added", "count": 1, "obj": "Haus der
Kulturen der Welt", "success": true} for authenticated users.

In the end, the tearDownClass() class method is called that deletes the location and super
user from the test database.

See also
 f The Implementing the Like widget recipe in Chapter 4, Templates and JavaScript

 f The Testing pages with Selenium recipe

 f The Testing API created using Django REST Framework recipe

Testing API created using Django REST
framework

We already have an understanding about how to write operational acceptance and unit tests.
In this recipe, we will go through component interface testing for the REST API that we created
earlier in this book.

If you are not familiar with what REST API is and how to use it, you
can learn about it at http://www.restapitutorial.com/.

Getting ready
Let's start with the bulletin_board app from the Using Django REST framework to create
API recipe in Chapter 9, Data Import and Export.

How to do it...
To test REST API, perform the following steps:

1. Create a tests.py file in your bulletin_board app, as follows:
bulletin_board/tests.py
-*- coding: UTF-8 -*-
from __future__ import unicode_literals

http://www.restapitutorial.com/

Testing and Deployment

324

from django.contrib.auth.models import User
from django.core.urlresolvers import reverse
from rest_framework import status
from rest_framework.test import APITestCase
from .models import Category, Bulletin

class BulletinTests(APITestCase):
 @classmethod
 def setUpClass(cls):
 super(BulletinTests, cls).setUpClass()
 cls.superuser, created = User.objects.\
 get_or_create(
 username="test-admin",
)
 cls.superuser.is_active = True
 cls.superuser.is_superuser = True
 cls.superuser.save()

 cls.category = Category.objects.create(
 title="Movies"
)

 cls.bulletin = Bulletin.objects.create(
 bulletin_type="searching",
 category=cls.category,
 title="The Matrix",
 description="There is no Spoon.",
 contact_person="Aidas Bendoraitis",
)
 cls.bulletin_to_delete = Bulletin.objects.create(
 bulletin_type="searching",
 category=cls.category,
 title="Animatrix",
 description="Trinity: "
 "There's a difference, Mr. Ash, "
 "between a trap and a test.",
 contact_person="Aidas Bendoraitis",
)

 @classmethod
 def tearDownClass(cls):
 super(BulletinTests, cls).tearDownClass()
 cls.category.delete()
 cls.bulletin.delete()
 cls.superuser.delete()

Chapter 11

325

2. Add a method to test the API call listing the bulletins as shown in the following:
def test_list_bulletins(self):
 url = reverse("rest_bulletin_list")
 data = {}
 response = self.client.get(url, data, format="json")
 self.assertEqual(
 response.status_code, status.HTTP_200_OK
)
 self.assertEqual(
 response.data["count"], Bulletin.objects.count()
)

3. Add a method to test the API call showing a single bulletin as follows:
def test_get_bulletin(self):
 url = reverse("rest_bulletin_detail", kwargs={
 "pk": self.bulletin.pk
 })
 data = {}
 response = self.client.get(url, data, format="json")
 self.assertEqual(
 response.status_code, status.HTTP_200_OK
)
 self.assertEqual(response.data["id"], self.bulletin.pk)
 self.assertEqual(
 response.data["bulletin_type"],
 self.bulletin.bulletin_type
)
 self.assertEqual(
 response.data["category"]["id"],
 self.category.pk
)
 self.assertEqual(
 response.data["title"],
 self.bulletin.title
)
 self.assertEqual(
 response.data["description"],
 self.bulletin.description
)
 self.assertEqual(
 response.data["contact_person"],
 self.bulletin.contact_person
)

Testing and Deployment

326

4. Add a method to test the API call creating a bulletin if the current user is
authenticated, as follows:
def test_create_bulletin_allowed(self):
 # login
 self.client.force_authenticate(user=self.superuser)

 url = reverse("rest_bulletin_list")
 data = {
 "bulletin_type": "offering",
 "category": {"title": self.category.title},
 "title": "Back to the Future",
 "description": "Roads? Where we're going, "
 "we don't need roads.",
 "contact_person": "Aidas Bendoraitis",
 }
 response = self.client.post(url, data, format="json")
 self.assertEqual(
 response.status_code, status.HTTP_201_CREATED
)
 self.assertTrue(Bulletin.objects.filter(
 pk=response.data["id"]
).count() == 1)

 # logout
 self.client.force_authenticate(user=None)

5. Add a method to test the API call trying to create a bulletin; however, failing as the
current visitor is anonymous, as shown in the following:
def test_create_bulletin_restricted(self):
 # make sure the user is logged out
 self.client.force_authenticate(user=None)

 url = reverse("rest_bulletin_list")
 data = {
 "bulletin_type": "offering",
 "category": {"title": self.category.title},
 "title": "Back to the Future",
 "description": "Roads? Where we're going, "
 "we don't need roads.",
 "contact_person": "Aidas Bendoraitis",
 }
 response = self.client.post(url, data, format="json")
 self.assertEqual(
 response.status_code, status.HTTP_403_FORBIDDEN
)

Chapter 11

327

6. Add a method to test the API call changing a bulletin if the current user is
authenticated, as follows:
def test_change_bulletin_allowed(self):
 # login
 self.client.force_authenticate(user=self.superuser)

 url = reverse("rest_bulletin_detail", kwargs={
 "pk": self.bulletin.pk
 })

 # change only title
 data = {
 "bulletin_type": self.bulletin.bulletin_type,
 "category": {
 "title": self.bulletin.category.title
 },
 "title": "Matrix Resurrection",
 "description": self.bulletin.description,
 "contact_person": self.bulletin.contact_person,
 }
 response = self.client.put(url, data, format="json")
 self.assertEqual(
 response.status_code, status.HTTP_200_OK
)
 self.assertEqual(response.data["id"], self.bulletin.pk)
 self.assertEqual(
 response.data["bulletin_type"], "searching"
)

 # logout
 self.client.force_authenticate(user=None)

7. Add a method to test the API call trying to change a bulletin; however, failing as the
current visitor is anonymous:
def test_change_bulletin_restricted(self):
 # make sure the user is logged out
 self.client.force_authenticate(user=None)

 url = reverse("rest_bulletin_detail", kwargs={
 "pk": self.bulletin.pk
 })
 # change only title
 data = {
 "bulletin_type": self.bulletin.bulletin_type,

Testing and Deployment

328

 "category": {
 "title": self.bulletin.category.title
 },
 "title": "Matrix Resurrection",
 "description": self.bulletin.description,
 "contact_person": self.bulletin.contact_person,
 }
 response = self.client.put(url, data, format="json")
 self.assertEqual(
 response.status_code, status.HTTP_403_FORBIDDEN
)

8. Add a method to test the API call deleting a bulletin if the current user is
authenticated, as shown in the following:
def test_delete_bulletin_allowed(self):
 # login
 self.client.force_authenticate(user=self.superuser)

 url = reverse("rest_bulletin_detail", kwargs={
 "pk": self.bulletin_to_delete.pk
 })
 data = {}
 response = self.client.delete(url, data, format="json")
 self.assertEqual(
 response.status_code, status.HTTP_204_NO_CONTENT
)

 # logout
 self.client.force_authenticate(user=None)

9. Add a method to test the API call trying to delete a bulletin; however, failing as the
current visitor is anonymous:
def test_delete_bulletin_restricted(self):
 # make sure the user is logged out
 self.client.force_authenticate(user=None)

 url = reverse("rest_bulletin_detail", kwargs={
 "pk": self.bulletin_to_delete.pk
 })
 data = {}
 response = self.client.delete(url, data, format="json")
 self.assertEqual(
 response.status_code, status.HTTP_403_FORBIDDEN
)

Chapter 11

329

10. Run the tests for the bulletin_board app, as follows:
(myproject_env)$ python manage.py test bulletin_board

Creating test database for alias 'default'...

........

--

Ran 8 tests in 0.081s

OK

Destroying test database for alias 'default'...

How it works...
REST API test suite extends the APITestCase class. Once again, we have the setUpClass()
and tearDownClass() class methods that will be executed before and after the different
tests. Also, the test suite has a client attribute of the APIClient type that can be used
to simulate API calls. It has methods for all standard HTTP calls: get(), post(), put(),
patch(), delete(), head(), and options(); whereas, in our tests, we are using the GET,
POST, and DELETE requests. Also, client has methods to authenticate a user by the login
credentials, token, or just the User object. In our tests, we are authenticating by the third way,
just passing a user directly to the force_authenticate() method.

The rest of the code is self-explanatory.

See also
 f The Using Django REST framework to create API recipe in Chapter 9, Data Import

and Export

 f The Testing pages with Selenium recipe

 f The Testing views with mock recipe

Releasing a reusable Django app
Django documentation has a tutorial about how to package your reusable apps so that they
can be installed later with pip in any virtual environment:

https://docs.djangoproject.com/en/1.8/intro/reusable-apps/

https://docs.djangoproject.com/en/1.8/intro/reusable-apps/

Testing and Deployment

330

However, there is an even better way to package and release a reusable Django app using
the Cookiecutter tool, which creates templates for different coding projects such as new
Django CMS website, Flask website, or jQuery plugin. One of the available project templates is
cookiecutter-djangopackage. In this recipe, you will learn how to use it to distribute the
reusable likes app.

Getting ready
Install Cookiecutter in your virtual environment:

(myproject_env)$ pip install cookiecutter

How to do it...
To release your likes app, follow these steps:

1. Start a new Django app project, as follows:
(myapp_env)$ cookiecutter \

https://github.com/pydanny/cookiecutter-djangopackage.git

2. Answer the questions to create the app template:
full_name [Your full name here]: Aidas Bendoraitis

email [you@example.com]: aidas@bendoraitis.lt

github_username [yourname]: archatas

project_name [dj-package]: django-likes

repo_name [dj-package]: django-likes

app_name [djpackage]: likes

project_short_description [Your project description goes here]:
Django-likes allows your website users to like any object.

release_date [2015-10-02]:

year [2015]:

version [0.1.0]:

Chapter 11

331

3. This will create a file structure, as shown in the following image:

4. Copy the files of the likes app from a Django project, where you are using it, to the
django-likes/likes directory.

5. Add the reusable app project to the Git repository under GitHub.

Testing and Deployment

332

6. Explore different files and complete the license, README, documentation,
configuration and other files.

7. Make sure that the app passes the tests:
(myapp_env)$ pip install -r requirements-test.txt

(myapp_env)$ python runtests.py

8. If your package is closed source, create a shareable release as a ZIP archive:
(myapp_env)$ python setup.py sdist

This will create a django-likes/dist/django-likes-0.1.0.tar.gz file that
can be installed or uninstalled with pip, as follows:
(myproject_env)$ pip install django-likes-0.1.0.tar.gz

(myproject_env)$ pip uninstall django-likes

9. If your package is open source, register and publish your app on Python Package
Index (PyPI):
(myapp_env)$ python setup.py register

(myapp_env)$ python setup.py publish

10. Also, to spread the word, add your app to Django packages by submitting a form at
https://www.djangopackages.com/packages/add/.

How it works...
Cookiecutter fills in the entered requested data in different parts of the Django app project
template. As a result, you get the setup.py file ready for distribution to Python Package
Index, Sphinx documentation, BSD as the default license, universal text editor configuration
for the project, static files and templates included in your app, and other goodies.

See also
 f The Creating a project file structure recipe in Chapter 1, Getting Started with

Django 1.8

 f The Handling project dependencies with pip recipe in Chapter 1, Getting Started with
Django 1.8

 f The Implementing the Like widget recipe in Chapter 4, Templates and JavaScript

https://www.djangopackages.com/packages/add/

Chapter 11

333

Getting detailed error reporting via e-mail
To perform system logging, Django uses Python's built-in logging module. The default Django
configuration seems to be quite complex. In this recipe, you will learn how to tweak it in order
to send error e-mails with complete HTML, similar to what is provided by Django in the DEBUG
mode when an error happens.

Getting ready
Locate the Django project in your virtual environment.

How to do it...
The following procedure will help you send detailed e-mails about errors:

1. Open the myproject_env/lib/python2.7/site-packages/django/utils/
log.py file in a text editor and copy the DEFAULT_LOGGING dictionary to your
project's settings as the LOGGING dictionary.

2. Add the include_html setting to the mail_admins handler, as follows:
myproject/conf/base.py or myproject/settings.py
LOGGING = {
 "version": 1,
 "disable_existing_loggers": False,
 "filters": {
 "require_debug_false": {
 "()": "django.utils.log.RequireDebugFalse",
 },
 "require_debug_true": {
 "()": "django.utils.log.RequireDebugTrue",
 },
 },
 "handlers": {
 "console": {
 "level": "INFO",
 "filters": ["require_debug_true"],
 "class": "logging.StreamHandler",
 },
 "null": {
 "class": "django.utils.log.NullHandler",
 },
 "mail_admins": {

Testing and Deployment

334

 "level": "ERROR",
 "filters": ["require_debug_false"],
 "class": "django.utils.log.AdminEmailHandler",
 "include_html": True,
 }
 },
 "loggers": {
 "django": {
 "handlers": ["console"],
 },
 "django.request": {
 "handlers": ["mail_admins"],
 "level": "ERROR",
 "propagate": False,
 },
 "django.security": {
 "handlers": ["mail_admins"],
 "level": "ERROR",
 "propagate": False,
 },
 "py.warnings": {
 "handlers": ["console"],
 },
 }
}

How it works...
Logging configuration consists of four parts: loggers, handlers, filters, and formatters. The
following is how they can be described:

 f Loggers are entry points in the logging system. Each logger can have a log level:
DEBUG, INFO, WARNING, ERROR, or CRITICAL. When a message is written to the
logger, the log level of the message is compared with the logger's level. If it meets
or exceeds the log level of the logger, it will be further processed by a handler.
Otherwise, the message will be ignored.

 f Handlers are engines that define what happens to each message in the logger. They
can be written to a console, sent by an e-mail to the administrator, saved to a log file,
sent to the Sentry error logging service, and so on. In our case, we set the include_
html parameter for the mail_admins handler as we want the full HTML with
traceback and local variables for the error messages that happen in our Django project.

Chapter 11

335

 f Filters provide additional control over the messages that are passed from the loggers
to handlers. For example, in our case, the e-mails will be sent only when the DEBUG
mode is set to False.

 f Formatters are used to define how to render a log message as a string. They are not
used in this example; however, for more information about logging, you can refer to
the official documentation at https://docs.djangoproject.com/en/1.8/
topics/logging/.

See also
 f The Deploying on Apache with mod_wsgi recipe

Deploying on Apache with mod_wsgi
There are many options as to how to deploy your Django project. In this recipe, I will guide you
through the deployment of a Django project on a dedicated Linux server with Virtualmin.

A dedicated server is a type of Internet hosting, where you lease the whole server that is not
shared with anyone else. Virtualmin is a web-hosting control panel that allows you to manage
virtual domains, mailboxes, databases, and entire servers without having deep knowledge of
the command-line routines of the server administration.

To run the Django project, we will be using the Apache web server with the mod_wsgi module
and a MySQL database.

Getting ready
Make sure that you have Virtualmin installed on your dedicated Linux server. For instructions,
refer to http://www.virtualmin.com/download.html.

https://docs.djangoproject.com/en/1.8/topics/logging/
https://docs.djangoproject.com/en/1.8/topics/logging/
http://www.virtualmin.com/download.html

Testing and Deployment

336

How to do it...
Follow these steps to deploy a Django project on a Linux server with Virtualmin:

1. Log in to Virtualmin as the root user and set bash instead of sh as the default
shell for the server's users. This can be done by navigating to Virtualmin | System
Customization | Custom Shells, as shown in the following screenshot:

2. Create a virtual server for your project by navigating to Virtualmin | Create Virtual
Server. Enable the following features: Setup website for domain? and Create MySQL
database?. The username and password that you set for the domain will also be
used for the SSH connections, FTP, and MySQL database access, as follows:

Chapter 11

337

3. Log in to your domain administration panel and set the A record for your domain to
the IP address of your dedicated server.

4. Connect to the dedicated server via Secure Shell as the root user and install Python
libraries, pip, virtualenv, MySQLdb, and Pillow system wide.

5. Ensure that the default MySQL database encoding is UTF-8:

1. Edit MySQL configuration file on the remote server, for example,
using the nano editor:
$ ssh root@myproject.com

root@myproject.com's password:

$ nano /etc/mysql/my.cnf

Add or edit the following configurations:
[client]

default-character-set=utf8

[mysql]

Testing and Deployment

338

default-character-set=utf8

[mysqld]

collation-server=utf8_unicode_ci

init-connect='SET NAMES utf8'

character-set-server=utf8

2. Press Ctrl + O to save the changes and Ctrl + X to exit the nano editor.

3. Then, restart the MySQL server, as follows:
$ /etc/init.d/mysql restart

4. Press Ctrl + D to exit Secure Shell.

6. When you create a domain with Virtualmin, the user for that domain is created
automatically. Connect to the dedicated server via Secure Shell as a user of your
Django project and create a virtual environment for your project, as follows:
$ ssh myproject@myproject.com

myproject@myproject.com's password:

$ virtualenv . --system-site-packages

$ echo source ~/bin/activate >> .bashrc

$ source ~/bin/activate

(myproject)myproject@server$

The .bashrc script will be called each time you connect to
your Django project via Secure Shell as a user related to the
domain. The .bashrc script will automatically activate the
virtual environment for this project.

7. If you host your project code on Bitbucket, you will need to set up SSH keys in order to
avoid password prompts when pulling from or pushing to the Git repository:

1. Execute the following commands one by one:
(myproject)myproject@server$ ssh-keygen

(myproject)myproject@server$ ssh-agent /bin/bash

(myproject)myproject@server$ ssh-add ~/.ssh/id_rsa

(myproject)myproject@server$ cat ~/.ssh/id_rsa.pub

2. This last command prints your SSH public key that you need to copy and
paste at Manage Account | SSH keys | Add Key on the Bitbucket website.

Chapter 11

339

8. Create a project directory, go to it, and clone your project's code as follows:
(myproject)myproject@server$ git clone \

git@bitbucket.org:somebitbucketuser/myproject.git myproject

Now, your project path should be something similar to the following:
/home/myproject/project/myproject

9. Install the Python requirements for your project, including a specified version of
Django, as follows:
(myproject)myproject@server$ pip install -r requirements.txt

10. Create the media, tmp, and static directories under your project's directory.

11. Also, create local_settings.py with settings similar to the following:
/home/myproject/project/myproject/myproject/local_settings.py
DATABASES = {
 "default": {
 "ENGINE": "django.db.backends.mysql",
 "NAME": "myproject",
 "USER": "myproject",
 "PASSWORD": "mypassword",
 }
}
PREPEND_WWW = True
DEBUG = False
ALLOWED_HOSTS = ["myproject.com"]

12. Import the database dump that you created locally. If you are using a Mac, you can
do that with an app, Sequel Pro (http://www.sequelpro.com/), using an SSH
connection. You can also upload the database dump to the server by FTP and then
run the following in Secure Shell:
(myproject)myproject@server$ python manage.py dbshell < \

~/db_backups/db.sql

13. Collect static files, as follows:
(myproject)myproject@server$ python manage.py collectstatic \

--noinput

14. Go to the ~/public_html directory and create a wsgi file using the nano editor (or
an editor of your choice):
/home/myproject/public_html/my.wsgi
#!/home/myproject/bin/python
-*- coding: utf-8 -*-

http://www.sequelpro.com/

Testing and Deployment

340

import os, sys, site
django_path = os.path.abspath(
 os.path.join(os.path.dirname(__file__),
 "../lib/python2.6/site-packages/"),
)
site.addsitedir(django_path)
project_path = os.path.abspath(
 os.path.join(os.path.dirname(__file__),
 "../project/myproject"),
)
sys.path += [project_path]
os.environ["DJANGO_SETTINGS_MODULE"] = "myproject.settings"
from django.core.wsgi import get_wsgi_application
application = get_wsgi_application()

15. Then, create the .htaccess file in the same directory. The .htaccess file will
redirect all the requests to your Django project set in the wsgi file, as shown in
the following:
/home/myproject/public_html/.htaccess
AddHandler wsgi-script .wsgi
DirectoryIndex index.html
RewriteEngine On
RewriteBase /
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME}/index.html !-f
RewriteCond %{REQUEST_URI} !^/media/
RewriteCond %{REQUEST_URI} !^/static/
RewriteRule ^(.*)$ /my.wsgi/$1 [QSA,L]

16. Copy .htaccess as .htaccess_live.

17. Then, also create .htaccess_maintenace for maintenance cases. This new
Apache configuration file will show temporarily-offline.html for all the users
except you, recognized by the IP address of your LAN or computer. You can check your
IP by googling what's my ip. The following is how the .htaccess_maintenance
will look:
/home/myproject/public_html/.htaccess_maintenance
AddHandler wsgi-script .wsgi
DirectoryIndex index.html
RewriteEngine On
RewriteBase /
RewriteCond %{REMOTE_HOST} !^1\.2\.3\.4$
RewriteCond %{REQUEST_URI} !/temporarily-offline\.html
RewriteCond %{REQUEST_URI} !^/media/
RewriteCond %{REQUEST_URI} !^/static/

Chapter 11

341

RewriteRule .* /temporarily-offline.html [R=302,L]
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME}/index.html !-f
RewriteCond %{REQUEST_URI} !^/media/
RewriteCond %{REQUEST_URI} !^/static/
RewriteRule ^(.*)$ /my.wsgi/$1 [QSA,L]

Replace the IP digits in this file with your own IP.

18. Then, create an HTML file that will be shown when your website is down:
<!-- /home/myproject/public_html/temporarily-offline.html -->
The site is being updated... Please come back later.

19. Log in to the server as the root user via Secure Shell and edit the Apache configuration:

1. Open the domain configuration file, as follows:
$ nano /etc/apache2/sites-available/myproject.mydomain.conf

2. Add the following lines before </VirtualHost>:
Options -Indexes
AliasMatch ^/static/\d+/(.*) \
 "/home/myproject/project/myproject/static/$1"
AliasMatch ^/media/(.*) \
 "/home/myproject/project/myproject/media/$1"
<FilesMatch "\.(ico|pdf|flv|jpe?g|png|gif|js|css|swf)$">
 ExpiresActive On
 ExpiresDefault "access plus 1 year"
</FilesMatch>

3. Restart Apache for the changes to take effect:
$ /etc/init.d/apache2 restart

20. Set the default scheduled cron jobs. For more information on how to do this, refer to
the Setting up cron jobs for regular tasks recipe.

How it works...
With this configuration, files in the media and static directories are served directly from
Apache; whereas, all the other URLs are handled by the Django project through the my.wsgi
file.

Testing and Deployment

342

Using the <FilesMatch> directive in the Apache site configuration, all media files are set to
be cached for one year. Static URL paths have a numbered prefix that changes whenever you
update the code from the Git repository.

When you need to update the website and want to set it down for maintenance, you'll have to
copy .htaccess_maintenance to .htaccess. When you want to set the website up again,
you'll have to copy .htaccess_live to .htaccess.

There's more...
To find other options for hosting your Django project, refer to: http://djangofriendly.
com/hosts/.

See also
 f The Creating a project file structure recipe in Chapter 1, Getting Started with

Django 1.8

 f The Handling project dependencies with pip recipe in Chapter 1, Getting Started with
Django 1.8

 f The Setting up STATIC_URL dynamically for Git users recipe in Chapter 1, Getting
Started with Django 1.8

 f The Setting UTF-8 as the default encoding for MySQL configuration recipe in Chapter
1, Getting Started with Django 1.8

 f The Creating and using the Fabric deployment script recipe

 f The Setting up cron jobs for regular tasks recipe

Setting up cron jobs for regular tasks
Usually websites have some management tasks to do in the background once in a week, day,
or every hour. This can be achieved using cron jobs that are also known as scheduled tasks.
These are scripts that run on the server for the specified period of time. In this recipe, we will
create two cron jobs: one to clear sessions from the database and another to back up the
database data. Both will be run every night.

Getting ready
To start with, deploy your Django project on to a remote server. Then, connect to the server
by SSH.

http://djangofriendly.com/hosts/
http://djangofriendly.com/hosts/

Chapter 11

343

How to do it...
Let's create the two scripts and make them run regularly by following these steps:

1. Create the commands, db_backups and logs directories in your project's
home directory:
(myproject)myproject@server$ mkdir commands

(myproject)myproject@server$ mkdir db_backups

(myproject)myproject@server$ mkdir logs

2. In the commands directory, create a cleanup.sh file with the following content:
/home/myproject/commands/cleanup.sh
#! /usr/bin/env bash
PROJECT_PATH=/home/myproject
CRON_LOG_FILE=${PROJECT_PATH}/logs/cleanup.log

echo "Cleaning up the database" > ${CRON_LOG_FILE}
date >> ${CRON_LOG_FILE}

cd ${PROJECT_PATH}
. bin/activate
cd project/myproject
python manage.py cleanup --traceback >> \
${CRON_LOG_FILE} 2>&1

3. Make the following file executable:
(myproject)myproject@server$ chmod +x cleanup.sh

4. Then, in the same directory, create a backup_db.sh file with the following content:
/home/myproject/commands/cleanup.sh
#! /usr/bin/env bash
PROJECT_PATH=/home/myproject
CRON_LOG_FILE=${PROJECT_PATH}/logs/backup_db.log
WEEK_DATE=$(LC_ALL=en_US.UTF-8 date +"%w-%A")
BACKUP_PATH=${PROJECT_PATH}/db_backups/${WEEK_DATE}.sql
DATABASE=myproject
USER=my_db_user
PASS=my_db_password

EXCLUDED_TABLES=(
django_session
)

IGNORED_TABLES_STRING=''

Testing and Deployment

344

for TABLE in "${EXCLUDED_TABLES[@]}"
do :
 IGNORED_TABLES_STRING+=\
 " --ignore-table=${DATABASE}.${TABLE}"
done

echo "Creating DB Backup" > ${CRON_LOG_FILE}
date >> ${CRON_LOG_FILE}

cd ${PROJECT_PATH}
mkdir -p db_backups

echo "Dump structure" >> ${CRON_LOG_FILE}
mysqldump -u ${USER} -p${PASS} --single-transaction \
--no-data ${DATABASE} > ${BACKUP_PATH} 2>> ${CRON_LOG_FILE}

echo "Dump content" >> ${CRON_LOG_FILE}
mysqldump -u ${USER} -p${PASS} ${DATABASE} \
${IGNORED_TABLES_STRING} >> ${BACKUP_PATH} 2>> \
${CRON_LOG_FILE}

5. Make the following file executable too:
(myproject)myproject@server$ chmod +x backup_db.sh

6. Test the scripts to see whether they are executed correctly by running the scripts and
then checking the *.log files in the logs directory, as follows:
(myproject)myproject@server$./cleanup.sh

(myproject)myproject@server$./backup_db.sh

7. In your project's home directory create a crontab.txt file with the following tasks:
00 01 * * * /home/myproject/commands/cleanup.sh

00 02 * * * /home/myproject/commands/backup_db.sh

8. Install the crontab tasks, as follows:
(myproject)myproject@server$ crontab -e crontab.txt

How it works...
With the current setup, every night cleanup.sh will be executed at 1 A.M. and backup_
db.sh will be executed at 2 A.M. The execution logs will be saved in cleanup.log and
backup_db.log. If you get any errors, you should check these files for the traceback.

Chapter 11

345

The database backup script is a little more complex. Every day of the week, it creates a
backup file for that day called 0-Sunday.sql, 1-Monday.sql, and so on. Therefore,
you will be able to restore data backed seven days ago or later. At first, the backup script
dumps the database schema for all the tables and then it dumps the data for all the tables,
except for the ones listed one under each other in EXCLUDED_TABLES (currently, that is,
django_session).

The crontab syntax is this: each line contains a specific period of time and then a task to run
at it. The time is defined in five parts separated by spaces, as shown in the following:

 f Minutes from 0 to 59

 f Hours from 0 to 23

 f Days of month from 1 to 31

 f Months from 1 to 12

 f Days of week from 0 to 7, where 0 is Sunday, 1 is Monday, and so on. 7 is
Sunday again.

An asterisk (*) means that every time frame will be used. Therefore, the following task defines
cleanup.sh to be executed at 1:00 AM every day of a month, every month, and every day of
the week:

00 01 * * * /home/myproject/commands/cleanup.sh

You can learn more about the specifics of the crontab at https://en.wikipedia.org/
wiki/Cron.

See also
 f The Deploying on Apache with mod_wsgi recipe

 f The Creating and using the Fabric deployment script recipe

Creating and using the Fabric deployment
script

Usually, to update your site, you have to perform repetitive tasks such as setting a
maintenance page, stopping cron jobs, creating a database backup, pulling new code from a
repository, migrating databases, collecting static files, testing, starting cron jobs again, and
unsetting the maintenance page. That's quite a tedious work, where mistakes can occur. Also,
you need not forget the different routines for staging site (the one where new features can
be tested) and production site (which is shown to the public). Fortunately, there is a Python
library called Fabric that allows you to automate these tasks. In this recipe, you will learn how
to create fabfile.py, the script for Fabric, and how to deploy your project on staging and
production environments.

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron

Testing and Deployment

346

The Fabric script can be called from the directory that contains it, as follows:

(myproject_env)$ fab staging deploy

This will deploy the project on the staging server.

Getting ready
Set up analogous staging and production websites using the instructions in the Deploying
on Apache with mod_wsgi recipe. Install Fabric on your computer globally or in your project's
virtual environment, as follows:

$ pip install fabric

How to do it...
We will start by creating a fabfile.py file in the Django project directory with several
functions, as follows:

fabfile.py
-*- coding: UTF-8 -*-
from fabric.api import env, run, prompt, local, get, sudo
from fabric.colors import red, green
from fabric.state import output

env.environment = ""
env.full = False
output['running'] = False

PRODUCTION_HOST = "myproject.com"
PRODUCTION_USER = "myproject"

def dev():
 """ chooses development environment """
 env.environment = "dev"
 env.hosts = [PRODUCTION_HOST]
 env.user = PRODUCTION_USER
 print("LOCAL DEVELOPMENT ENVIRONMENT\n")

def staging():
 """ chooses testing environment """
 env.environment = "staging"
 env.hosts = ["staging.myproject.com"]
 env.user = "myproject"

Chapter 11

347

 print("STAGING WEBSITE\n")

def production():
 """ chooses production environment """
 env.environment = "production"
 env.hosts = [PRODUCTION_HOST]
 env.user = PRODUCTION_USER
 print("PRODUCTION WEBSITE\n")

def full():
 """ all commands should be executed without questioning """
 env.full = True

def deploy():
 """ updates the chosen environment """
 if not env.environment:
 while env.environment not in ("dev", "staging",
 "production"):
 env.environment = prompt(red('Please specify target'
 'environment ("dev", "staging", or '
 '"production"): '))
 print
 globals()["_update_%s" % env.environment]()

The dev(), staging(), and production() functions set the appropriate environment
for the current task. Then, the deploy() function calls the _update_dev(), _update_
staging(), or _update_production() private functions, respectively. Let's define these
private functions in the same file, as follows:

 f The function for deploying in the development environment will optionally do the
following tasks:

 � Update the local database with data from the production database

 � Download media files from the production server

 � Update code from the Git repository

 � Migrate the local database

Let's create this function in the Fabric script file, as follows:
def _update_dev():
 """ updates development environment """
 run("") # password request
 print

 if env.full or "y" == prompt(red("Get latest "

Testing and Deployment

348

 "production database (y/n)?"), default="y"):
 print(green(" * creating production-database "
 "dump..."))
 run("cd ~/db_backups/ && ./backup_db.sh --latest")
 print(green(" * downloading dump..."))
 get("~/db_backups/db_latest.sql",
 "tmp/db_latest.sql")
 print(green(" * importing the dump locally..."))
 local("python manage.py dbshell < "
 "tmp/db_latest.sql && rm tmp/db_latest.sql")
 print
 if env.full or "y" == prompt("Call prepare_dev "
 "command (y/n)?", default="y"):
 print(green(" * preparing data for "
 "development..."))
 local("python manage.py prepare_dev")
 print

 if env.full or "y" == prompt(red("Download media "
 "uploads (y/n)?"), default="y"):
 print(green(" * creating an archive of media "
 "uploads..."))
 run("cd ~/project/myproject/media/ "
 "&& tar -cz -f "
 "~/project/myproject/tmp/media.tar.gz *")
 print(green(" * downloading archive..."))
 get("~/project/myproject/tmp/media.tar.gz",
 "tmp/media.tar.gz")
 print(green(" * extracting and removing archive "
 "locally..."))
 for host in env.hosts:
 local("cd media/ "
 "&& tar -xzf ../tmp/media.tar.gz "
 "&& rm tmp/media.tar.gz")
 print(green(" * removing archive from the "
 "server..."))
 run("rm ~/project/myproject/tmp/media.tar.gz")
 print

 if env.full or "y" == prompt(red("Update code (y/n)?"),
 default="y"):
 print(green(" * updating code..."))

Chapter 11

349

 local("git pull")
 print

 if env.full or "y" == prompt(red("Migrate database "
 "schema (y/n)?"), default="y"):
 print(green(" * migrating database schema..."))
 local("python manage.py migrate --no-initial-data")
 local("python manage.py syncdb")
 print

 f The function for deploying in a staging environment will optionally do the following
tasks:

 � Set a maintenance screen saying that the site is being updated and the
visitors should wait or come back later

 � Stop scheduled cron jobs

 � Get the latest data from the production database

 � Get the latest media files from the production database

 � Pull code from the Git repository

 � Collect static files

 � Migrate the database schema

 � Restart the Apache web server

 � Start scheduled cron jobs

 � Unset the maintenance screen

Let's create this function in the Fabric script, as follows:
def _update_staging():
 """ updates testing environment """
 run("") # password request
 print

 if env.full or "y" == prompt(red("Set under-"
 "construction screen (y/n)?"), default="y"):
 print(green(" * Setting maintenance screen"))
 run("cd ~/public_html/ "
 "&& cp .htaccess_under_construction .htaccess")
 print

 if env.full or "y" == prompt(red("Stop cron jobs "
 " (y/n)?"), default="y"):
 print(green(" * Stopping cron jobs"))
 sudo("/etc/init.d/cron stop")

Testing and Deployment

350

 print

 if env.full or "y" == prompt(red("Get latest "
 "production database (y/n)?"), default="y"):
 print(green(" * creating production-database "
 "dump..."))
 run("cd ~/db_backups/ && ./backup_db.sh --latest")
 print(green(" * downloading dump..."))
 run("scp %(user)s@%(host)s:"
 "~/db_backups/db_latest.sql "
 "~/db_backups/db_latest.sql" % {
 "user": PRODUCTION_USER,
 "host": PRODUCTION_HOST,
 }
)
 print(green(" * importing the dump locally..."))
 run("cd ~/project/myproject/ && python manage.py "
 "dbshell < ~/db_backups/db_latest.sql")
 print
 if env.full or "y" == prompt(red("Call "
 " prepare_staging command (y/n)?"),
 default="y"):
 print(green(" * preparing data for "
 " testing..."))
 run("cd ~/project/myproject/ "
 "&& python manage.py prepare_staging")
 print
 if env.full or "y" == prompt(red("Get latest media "
 " (y/n)?"), default="y"):
 print(green(" * updating media..."))
 run("scp -r %(user)s@%(host)s:"
 "~/project/myproject/media/* "
 " ~/project/myproject/media/" % {
 "user": PRODUCTION_USER,
 "host": PRODUCTION_HOST,
 }
)
 print

 if env.full or "y" == prompt(red("Update code (y/n)?"),
 default="y"):
 print(green(" * updating code..."))
 run("cd ~/project/myproject "
 "&& git pull")

Chapter 11

351

 print

 if env.full or "y" == prompt(red("Collect static "
 "files (y/n)?"), default="y"):
 print(green(" * collecting static files..."))
 run("cd ~/project/myproject "
 "&& python manage.py collectstatic --noinput")
 print

 if env.full or "y" == prompt(red('Migrate database "
 " schema (y/n)?'), default="y"):
 print(green(" * migrating database schema..."))
 run("cd ~/project/myproject "
 "&& python manage.py migrate "
 "--no-initial-data")
 run("cd ~/project/myproject "
 "&& python manage.py syncdb")
 print

 if env.full or "y" == prompt(red("Restart webserver "
 "(y/n)?"), default="y"):
 print(green(" * Restarting Apache"))
 sudo("/etc/init.d/apache2 graceful")
 print

 if env.full or "y" == prompt(red("Start cron jobs "
 "(y/n)?"), default="y"):
 print(green(" * Starting cron jobs"))
 sudo("/etc/init.d/cron start")
 print

 if env.full or "y" == prompt(red("Unset under-"
 "construction screen (y/n)?"), default="y"):
 print(green(" * Unsetting maintenance screen"))
 run("cd ~/public_html/ "
 "&& cp .htaccess_live .htaccess")
 print

 f The function for deploying in a production environment will optionally do the
following tasks:

 � Set the maintenance screen telling that the site is being updated and the
visitors should wait or come back later

 � Stop scheduled cron jobs

Testing and Deployment

352

 � Back up the database

 � Pull code from the Git repository

 � Collect static files

 � Migrate the database schema

 � Restart the Apache web server

 � Start scheduled cron jobs

 � Unset the maintenance screen

Let's create this function in the Fabric script, as follows:
def _update_production():
 """ updates production environment """
 if "y" != prompt(red("Are you sure you want to "
 "update " + red("production", bold=True) + \
 " website (y/n)?"), default="n"):
 return

 run("") # password request
 print

 if env.full or "y" == prompt(red("Set under-"
 "construction screen (y/n)?"), default="y"):
 print(green(" * Setting maintenance screen"))
 run("cd ~/public_html/ "
 "&& cp .htaccess_under_construction .htaccess")
 print
 if env.full or "y" == prompt(red("Stop cron jobs"
 " (y/n)?"), default="y"):
 print(green(" * Stopping cron jobs"))
 sudo("/etc/init.d/cron stop")
 print

 if env.full or "y" == prompt(red("Backup database "
 "(y/n)?"), default="y"):
 print(green(" * creating a database dump..."))
 run("cd ~/db_backups/ "
 "&& ./backup_db.sh")
 print

 if env.full or "y" == prompt(red("Update code (y/n)?"),
 default="y"):
 print(green(" * updating code..."))
 run("cd ~/project/myproject/ "

Chapter 11

353

 "&& git pull")
 print

 if env.full or "y" == prompt(red("Collect static "
 "files (y/n)?"), default="y"):
 print(green(" * collecting static files..."))
 run("cd ~/project/myproject "
 "&& python manage.py collectstatic --noinput")
 print

 if env.full or "y" == prompt(red("Migrate database "
 "schema (y/n)?"), default="y"):
 print(green(" * migrating database schema..."))
 run("cd ~/project/myproject "
 "&& python manage.py migrate "
 "--no-initial-data")
 run("cd ~/project/myproject "
 "&& python manage.py syncdb")
 print

 if env.full or "y" == prompt(red("Restart webserver "
 "(y/n)?"), default="y"):
 print(green(" * Restarting Apache"))
 sudo("/etc/init.d/apache2 graceful")
 print
 if env.full or "y" == prompt(red("Start cron jobs "
 "(y/n)?"), default="y"):
 print(green(" * Starting cron jobs"))
 sudo("/etc/init.d/cron start")
 print

 if env.full or "y" == prompt(red("Unset under-"
 "construction screen (y/n)?"), default="y"):
 print(green(" * Unsetting maintenance screen"))
 run("cd ~/public_html/ "
 "&& cp .htaccess_live .htaccess")
 print

Testing and Deployment

354

How it works...
Each non-private function in a fabfile.py file becomes a possible argument to be called
from the command-line tool. To see all the available functions, run the following command:

(myproject_env)$ fab --list

Available commands:

 deploy updates the chosen environment

 dev chooses development environment

 full all commands should be executed without questioning

 production chooses production environment

 staging chooses testing environment

These functions are called in the same order as they are passed to the Fabric script,
therefore you need to be careful about the order of the arguments when deploying to
different environments:

 f To deploy in a development environment, you would run the following command:
(myproject_env)$ fab dev deploy

This will ask you questions similar to the following:
Get latest production database (y/n)? [y] _

When answered positively, a specific step will be executed.

 f To deploy in a staging environment, you would run the following command:
(myproject_env)$ fab staging deploy

 f Finally, to deploy in a production environment, you would run the following command:
(myproject_env)$ fab production deploy

For each step of deployment, you will be asked whether you want to do it or skip it. If you want
to execute all the steps without any prompts (except the password requests), add a full
parameter to the deployment script, as follows:

(myproject_env)$ fab dev full deploy

The Fabric script utilizes several basic functions that can be described as follows:

 f local(): This function is used to run a command locally in the current computer

 f run(): This function is used to run a command as a specified user on a remote
server

Chapter 11

355

 f prompt(): This function is used to ask a question

 f get(): This function is used to download a file from a remote server to a local computer

 f sudo(): This function is used to run a command as the root (or other) user

Fabric uses the Secure Shell connection to perform tasks on remote servers. Each run() or
sudo() command is executed as a separate connection; therefore, when you want to execute
multiple commands at once, you have to either create a bash script on the server and call
it from Fabric or you have to separate the commands using the && shell operator, which
executes the next command only if the previous one was successful.

We are also using the scp command to copy files from the production server to the staging
server. The syntax of scp for recursively copying all the files from a specified directory is
similar to the following:

scp -r myproject_user@myproject.com:/path/on/production/server/* \

/path/on/staging/server/

To make the output more user-friendly, we are using colors, as follows:

print(green(" * migrating database schema..."))

The deployment script expects you to have two management commands: prepare_dev and
prepare_staging. It's up to you to decide what to put in these commands. Basically, you
could change the super user password to a simpler one and change the site domain there. If
you don't need such functionality, just remove that from the Fabric script.

The general rule of thumb is not to store any sensitive data in the Fabric script if it is saved
in the Git repository. Therefore, for example, to make a backup of the database, we call the
backup_db.sh script on the remote production server. The content of such a file could be
something similar to the following:

~/db_backups/backup_db.sh
#!/bin/bash
if [[$1 = '--latest']]
then
 today="latest"
else
 today=$(date +%Y-%m-%d-%H%M)
fi
mysqldump --opt -u my_db_user -pmy_db_password myproject > \
 db_$today.sql

You can make it executable with the following:

$ chmod +x backup_db.sh

Testing and Deployment

356

When the preceding command is run without parameters, it will create a database dump with
the date and time in the filename, for example, db_2014-04-24-1400.sql, as follows:

$./backup_db.sh

When the --latest parameter is passed, the filename of the dump will be db_latest.sql:

$./backup_db.sh --latest

There's more...
Fabric scripts can be used not only for deployment, but also for any routine that you need
to perform on remote servers, for example, collecting translatable strings when you are
using the Rosetta tool to translate *.po files online, rebuild search indexes when you are
using Haystack for full-text searches, create backups on demand, call custom management
commands, and so on.

To learn more about Fabric, refer to the following URL: http://docs.fabfile.org/
en/1.10/.

See also
 f The Deploying on Apache with mod_wsgi recipe

http://docs.fabfile.org/en/1.10/
http://docs.fabfile.org/en/1.10/

357

Index
A
add_arguments() method

about 255
URL 255

admin actions
creating 180-185

administrators
notifying, signals used 308-310

aggregation functions
URL 187

Ajax
images, uploading 141-149

Apache
deploying on, with mod_wsgi 335-342

API key
URL 259

app
configuration, creating 30-32
converting, to CMS app 214, 215

Application Program Interface (API)
creating, Django REST framework

used 278-284
creating, Tastypie used 274-278
testing, Django REST framework

used 323-329
attachable menus

URL 218
authorized files

downloading 79-82
awesome-slugify module

URL 296

B
base.html template

arranging 116-118
Bootstrap

URL 74

C
cache framework

URL 308
category administration interface

creating, with django-mptt-admin 236-239
creating, with

django-mptt-tree-editor 240-242
category selection

single selection field, used in forms 245-247
change form

map, inserting 192-203
change list page

columns, customizing 175-180
filters, developing 185-187

checkbox list
used, for multiple category selection

in forms 247-251
class-based views

composing 95-98
CMS app

app, converting 214, 215
CMS page

fields, adding 224-230
columns

customizing, in change list page 175-180

358

comma-separated values (CSV) 253
compatible code

creating, with Python 2.7 and Python 3 9
reference link 11

continuous scroll
implementing 132-134

Cookiecutter tool 330
cron jobs

reference link 345
setting up, for regular tasks 342-345

CSV library
URL 256

custom CMS plugin
creating 219-224

custom navigation
attaching 216-218

custom template filters
conventions, following 152, 153

custom template tags
conventions, following 152, 153

D
database query expressions

using 289-295
data importing

from external JSON file 259-264
from external XML file 264-268
from local CSV file 253-256
from local Excel file 256-258

data migration 57
Debug Toolbar

toggling 298-301
default admin settings

customizing 188-192
detailed error report

obtaining, via e-mail 333, 334
development environment

settings, configuring 14-16
Django CMS

about 205
templates, creating 206-210
URL 206

django-crispy-forms
used, for creating form layout 74-79

Django migrations
South migrations, switching to 58, 59

django-mptt app 233
django-mptt-admin

category administration interface,
creating with 236-239

django-mptt-tree-editor
category administration interface,

creating with 240-242
Django REST framework

URL 284
used, for creating API 278-284
used, for testing API 323-329

Django shell
using 286-288

E
ElementTree

reference link 268
XPath syntax component 268

e-mail
detailed error report, obtaining via 333, 334

external dependencies
including 12-14

external JSON file
data, importing 259-264

external XML file
data, importing 264-268

F
Fabric

about 345
deployment script, creating 345-356
deployment script, using 345-356
URL 356

filterable RSS feeds
creating 269-274

foreign key
modifying, to many-to-many field 59-61

form
checkbox list, used for multiple category

selection 247-251
HttpRequest, passing 64, 65
layout, creating with

django-crispy-forms 74-79
save method, utilizing 66-68
single selection field, used for category

selection 245-247

359

format() method
reference link 192

G
generic relations

model mixin, creating for 45-49
get function 354
Git ignore file

creating 26-28
Git users

STATIC_URL, setting 20-22
guerrilla patch. See monkey patch

H
Haystack

multilingual search, implementing 105-114
hierarchical categories

creating 233-236
rendering, in template 243-245

HTML5 data attributes
using 122-127

HttpRequest
passing, to form 64, 65

I
images

uploading 68-73
uploading, by Ajax 141-149

J
JavaScript settings

including 119-121
jScroll plugin

URL 132
JSON endpoint

URL 259

L
Like widget

implementing 134-141
local CSV file

data, importing 253-256

local Excel file
data, importing 256-258

local function 354
local settings

creating 17-19
including 17-19

M
many-to-many field

foreign key, modifying to 59-61
map

inserting, into change form 192-203
Memcached

used, for caching Django views 306, 307
method return value

caching 304, 305
migrations

data migration 57
schema migration 57
using 56, 57

mock
views, testing with 319-322

modal dialog
object details, opening 127-131

model mixin
creating, for creation and modification

dates 40-42
creating, for generic relations 45-49
creating, for meta tags 42-44
creating, URL-related methods used 37-39
using 36, 37

Modified Preorder Tree
Traversal (MPTT) 231-233

mod_wsgi
used, for deploying on Apache 335-342

monkey patch
about 295
used, with slugify() function 295-297

multilingual fields
handling 50-55

multilingual search
implementing, with Haystack 105-114

MySQL configuration
UTF-8, setting as default encoding 22, 23

360

N
NavigationNode class

attr parameter 218
parent_id parameter 218
parent_namespace parameter 218
visible parameter 218

O
object lists

filtering 83-91
Object-relational mapping (ORM) 289
overwritable app settings

defining 33, 34

P
page menu

structuring 210-213
paginated lists

managing 91-94
PDF documents

generating 98-104
pip

URL 2, 9
used, for handling project dependencies 7-9

production environment
settings, configuring 14-16

project dependencies
handling, with pip 7-9

project file structure
creating 4, 5

prompt function 354
Python 2.7

compatible code, creating 9-11
Python 3

compatible code, creating 9-11
Python-compiled files

deleting 28
Python files

import order, maintaining 29, 30
Python Package Index (PyPI) 12

Q
QueryDict objects

URL 172

Query Expressions 289

R
regular expressions

reference link 157
relative paths

defining, in settings 16, 17
REST API

URL 323
reusable Django app

releasing 329-332
URL 329

run function 354

S
save method

utilizing, of form 66-68
schema migration 57
Selenium

used, for testing pages 314-319
Sequel Pro

URL 339
signals

URL 310
used, for notifying administrators 308-310

single selection field
used, for category selection

in forms 245-247
slugify() function

monkey patch, used with 295-297
South migrations

switching, to Django migrations 58, 59
staging environment

settings, configuring 14-16
STATIC_URL

setting, dynamically for Git users 20-22
setting, dynamically for

Subversion users 19, 20
Subversion ignore property

setting 23-26
sudo function 354
System Check Framework

about 310
URL 312
used, for checking settings 310-312

361

T
Tastypie

about 274
URL 278
used, for creating API 274-278

template
creating, for Django CMS 206-210
hierarchical categories, rendering 243-245

template filter
creating, for calculation of time differences

since post was published 153-155
creating, for extraction of first

media object 155-157
creating, for humanization of URLs 157, 158

template tag
creating, for inclusion of another

template 158-161
creating, for loading QuerySet in

template 162-166
creating, for modification of request query

parameters 169-173
creating, for parsing content as

template 166-168
reference link 212

testing environment
settings, configuring 14-16

ThreadLocalMiddleware
using 301-303

tree data structure
about 231
ancestors node 232
descendants node 231
leaf node 232
parent node 231
siblings node 232

tree_info filter
URL 245

tree manager methods
URL 236

U
URL-related methods

used, for creating model mixin 37-40
UTF-8

setting, MySQL configuration 22, 23

V
views

testing, with mock 319-322
caching, Memcached used 306, 307

virtual environment
working with 2, 3

Virtualmin
about 335
URL 335

X
XPath

reference link 268
syntax component 268

Thank you for buying

Web Development with Django Cookbook
Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Web Development with
Django Cookbook
ISBN: 978-1-78328-689-8 Paperback: 294 pages

Over 70 practical recipes to create multilingual,
responsive, and scalable websites with Django

1. Improve your skills by developing models, forms,
views, and templates.

2. Create a rich user experience using Ajax and other
JavaScript techniques.

3. A practical guide to writing and using APIs to
import or export data.

Django Essentials
ISBN: 978-1-78398-370-4 Paperback: 172 pages

Develop simple web applications with the powerful
Django framework

1. Get to know MVC pattern and the structure
of Django.

2. Create your first webpage with Django
mechanisms.

3. Enable user interaction with forms.

4. Program extremely rapid forms with
Django features.

Please check www.PacktPub.com for information on our titles

Instant Django 1.5
Application Development
Starter
ISBN: 978-1-78216-356-5 Paperback: 78 pages

Jump into Django with this hands-on guide to practical
web application development with Python

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Work with the database API to create a
data-driven app.

3. Learn Django by creating a practical web
application.

4. Get started with Django's powerful and flexible
template system.

Django 1.2 E-commerce
ISBN: 978-1-84719-700-9 Paperback: 244 pages

Build powerful e-commerce applications using Django, a
leading Python web framework

1. Build all the components for an e-commerce
store, from product catalog to shopping cart to
checkout processor.

2. Build a high quality e-commerce site quickly and
start making money.

3. All the examples in the book will run smoothly for
all the versions of Django 1.x.

4. Follow a tutorial format to build many components
from scratch while leveraging the open-source
community to enhance functionality.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Django 1.8
	Introduction
	Working with a virtual environment
	Creating a project file structure
	Handling project dependencies with pip
	Making your code compatible with both Python 2.7 and Python 3
	Including external dependencies in your project
	Configuring settings for development, testing, staging, and production
	environments
	Defining relative paths in the settings
	Creating and including local settings
	Setting up STATIC_URL dynamically for Subversion users
	Setting up STATIC_URL dynamically for Git users
	Setting UTF-8 as the default encoding for MySQL configuration
	Setting the Subversion ignore property
	Creating the Git ignore file
	Deleting Python-compiled files
	Respecting the import order in Python files
	Creating app configuration
	Defining overwritable app settings

	Chapter 2: Database Structure
	Introduction
	Using model mixins
	Creating a model mixin with URL-related methods
	Creating a model mixin to handle creation and modification dates
	Creating a model mixin to take care of meta tags
	Creating a model mixin to handle generic relations
	Handling multilingual fields
	Using migrations
	Switching from South migrations to Django migrations
	Changing a foreign key to the many-to-many field

	Chapter 3: Forms and Views
	Introduction
	Passing HttpRequest to the form
	Utilizing the save method of the form
	Uploading images
	Creating a form layout with
django-crispy-forms
	Downloading authorized files
	Filtering object lists
	Managing paginated lists
	Composing class-based views
	Generating PDF documents
	Implementing a multilingual search with Haystack

	Chapter 4: Templates and JavaScript
	Introduction
	Arranging the base.html template
	Including JavaScript settings
	Using HTML5 data attributes
	Opening object details in a modal dialog
	Implementing a continuous scroll
	Implementing the Like widget
	Uploading images by Ajax

	Chapter 5: Custom Template Filters and Tags
	Introduction
	Following conventions for your own template filters and tags
	Creating a template filter to show how
many days have passed since a post was
	published
	Creating a template filter to extract the first media object
	Creating a template filter to humanize URLs
	Creating a template tag to include a template if it exists
	Creating a template tag to load a QuerySet in a template
	Creating a template tag to parse content as a template
	Creating a template tag to modify request query parameters

	Chapter 6: Model Administration
	Introduction
	Customizing columns on the change
list page
	Creating admin actions
	Developing change list filters
	Customizing default admin settings
	Inserting a map into a change form

	Chapter 7: Django CMS
	Introduction
	Creating templates for Django CMS
	Structuring the page menu
	Converting an app to a CMS app
	Attaching your own navigation
	Writing your own CMS plugin
	Adding new fields to the CMS page

	Chapter 8: Hierarchical Structures
	Introduction
	Creating hierarchical categories
	Creating a category administration interface with django-mptt-admin
	Creating a category administration interface with django-mptt-tree-editor
	Rendering categories in a template
	Using a single selection field to choose a category in forms
	Using a checkbox list to choose multiple categories in forms

	Chapter 9: Data Import and Export
	Introduction
	Importing data from a local CSV file
	Importing data from a local Excel file
	Importing data from an external JSON file
	Importing data from an external XML file
	Creating filterable RSS feeds
	Using Tastypie to create API
	Using Django REST framework to create API

	Chapter 10: Bells and Whistles
	Introduction
	Using the Django shell
	Using database query expressions
	Monkey-patching the slugify() function for better internationalization support
	Toggling the Debug Toolbar
	Using ThreadLocalMiddleware
	Caching the method return value
	Using Memcached to cache Django views
	Using signals to notify administrators about new entries
	Checking for missing settings

	Chapter 11: Testing and Deployment
	Introduction
	Testing pages with Selenium
	Testing views with mock
	Testing API created using Django REST framework
	Releasing a reusable Django app
	Getting detailed error reporting via e-mail
	Deploying on Apache with mod_wsgi
	Setting up cron jobs for regular tasks
	Creating and using the Fabric deployment script

	Index

