
80/20 Principle

Book:

Complexity

Focus

Subscribe to the 11x FREE Python Cheat Sheet Course:
https://blog.finxter.com/python-cheat-sheets/

Minimum Viable 
Product (MVP)

Clean Code Principles

Premature Optimization

Flow

Less Is More in Design

“A whole, made up 
of parts—difficult to 
analyze, understand, 
or explain".

Complexity appears in
• Project Lifecycle
• Code Development
• Algorithmic Theory
• Processes
• Social Networks
• Learning & Your Daily Life

Project Lifecycle Cyclomatic Complexity Runtime Complexity

→ Complexity reduces productivity and focus. It’ll consume your precious time. Keep it simple!

Majority of effects come 
from the minority of causes.

Pareto Tips
1. Figure out your success metrics.
2. Figure out your big goals in life. 
3. Look for ways to achieve the same 

things with fewer resources. 
4. Reflect on your own successes
5. Reflect on your own failures 
6. Read more books in your industry. 
7. Spend much of your time 

improving and tweaking existing 
products

8. Smile. 
9. Don't do things that reduce value
Maximize Success Metric: 
#lines of code written

A minimum viable 
product in the 
software sense is code 
that is stripped from 
all features to focus on 
the core functionality. 

How to MVP?
• Formulate 

hypothesis
• Omit needless 

features
• Split test to validate 

each new feature
• Focus on product-

market fit
• Seek high-value and 

low-cost features

1. You Ain't Going to Need It
2. The Principle of Least Surprise
3. Don't Repeat Yourself
4. Code For People Not Machines
5. Stand on the Shoulders of Giants
6. Use the Right Names
7. Single-Responsibility Principle
8. Use Comments
9. Avoid Unnecessary Comments
10. Be Consistent
11. Test
12. Think in Big Pictures
13. Only Talk to Your Friends
14. Refactor
15. Don’t Overengineer
16. Don’t Overuse Indentation
17. Small is Beautiful
18. Use Metrics
19. Boy Scout Rule: Leave Camp 

Cleaner Than You Found It

1. Simple’s Better Than 
Complex

2. Small is Beautiful (Again)
3. Make Each Program Do One 

Thing Well
4. Build a Prototype First
5. Portability Over Efficiency
6. Store Data in Flat Text Files
7. Use Software Leverage
8. Avoid Captive User 

Interfaces
9. Program = Filter
10. Worse is Better
11. Clean > Clever Code
12. Design Connected Programs
13. Make Your Code Robust
14. Repair What You Can — But 

Fail Early and Noisily 
15. Write Programs to Write 

Programs

"Programmers waste enormous 
amounts of time thinking about […] 
the speed of noncritical parts of their 
programs. We should forget about 
small efficiencies, say about 97 % of 
the time: premature optimization is 
the root of all evil." – Donald Knuth

Performance Tuning 101
1. Measure, then improve
2. Focus on the slow 20%
3. Algorithmic optimization 

wins
4. All hail to the cache
5. Solve an easier problem 

version
6. Know when to stop

“… the source code of ultimate human performance" – Kotler

How to Achieve Flow? (1) clear 

goals, (2) immediate feedback, and 

(3) balance opportunity & capacity.

Flow Tips for Coders
1. Always work on an explicit 

practical code project
2. Work on fun projects that 

fulfill your purpose
3. Perform from your 

strengths
4. Big chunks of coding time
5. Reduce distractions: 

smartphone + social
6. Sleep a lot, eat healthily, 

read quality books, and 
exercise → garbage in, 
garbage out!

How to Simplify Design?
1. Use whitespace
2. Remove design elements
3. Remove features
4. Reduce variation of fonts, 

font types, colors
5. Be consistent across UIs

You can take raw resources and 
move them from a state of high 
entropy into a state of low entropy—
using focused effort towards the 
attainment of a greater plan. 

Figure: Same effort, different result.

3-Step Approach of 
Efficient Software Creation
1. Plan your code
2. Apply focused effort 

to make it real.
3. Seek feedback

Unix Philosophy

https://blog.finxter.com/python-cheat-sheets/

