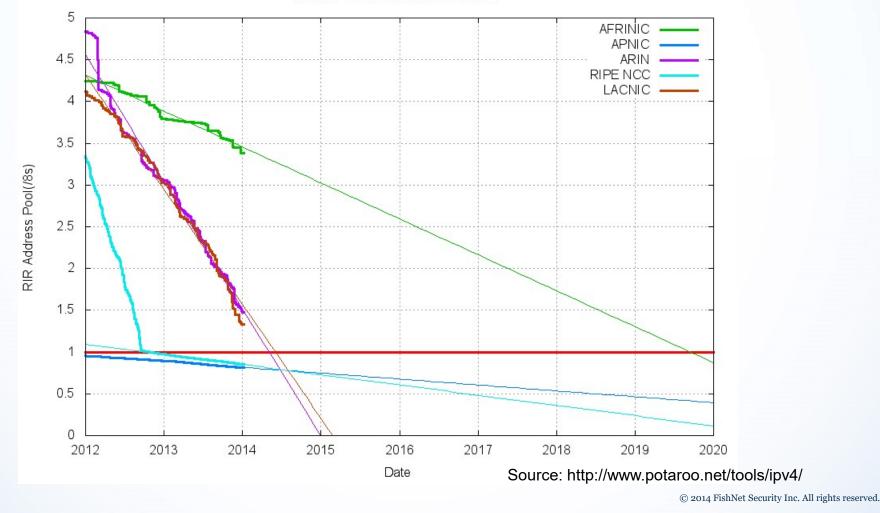


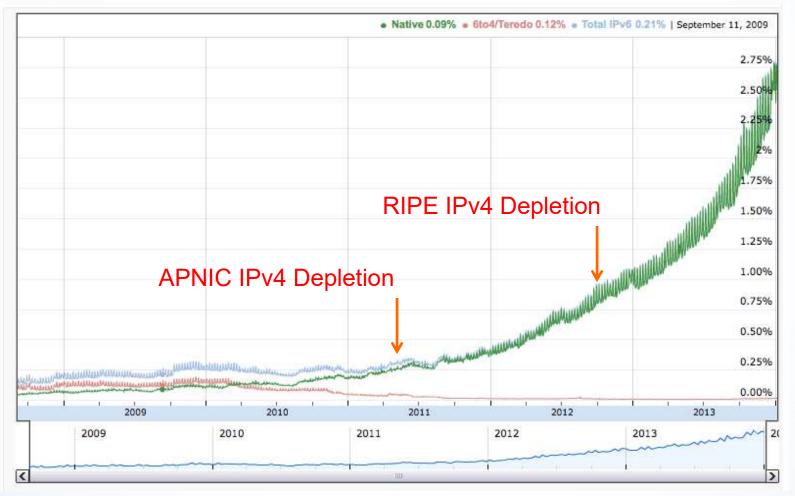
### IPv6 Address Design Practical Considerations

Jeff Doyle Principal Architect FishNet Security




SECURELY ENABLING YOUR BUSINESS




# **Obligatory IPv4 Depletion Slide**

RIR IPv4 Address Run-Down Model





## Public IPv6 Traffic



Source: http://www.google.com/ipv6/statistics.html

© 2014 FishNet Security Inc. All rights reserved.



# It's All About the Address Space

#### **Some Perspective:**

```
1 picometer = 10^{-12} (one trillionth) meter
```

```
2<sup>32</sup> picometers = 4.29 millimeters
- length of a small ant
```

```
2^{128} picometers = 3.4 x 10^{23} kilometers
```

- 34 billion light years
- Furthest visible object in universe: 13.2B LYs



iverse

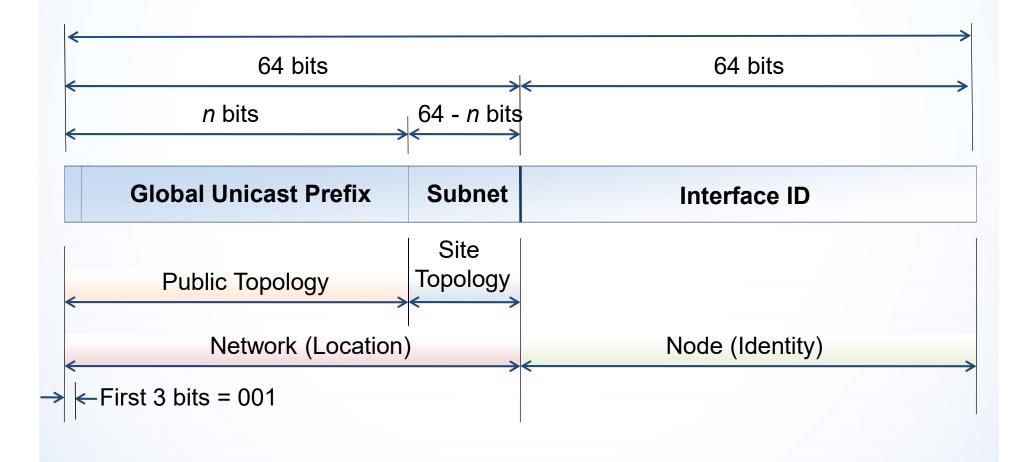


# Abandon IPv4 Thinking!

Foremost IPv4 design consideration: Conservation

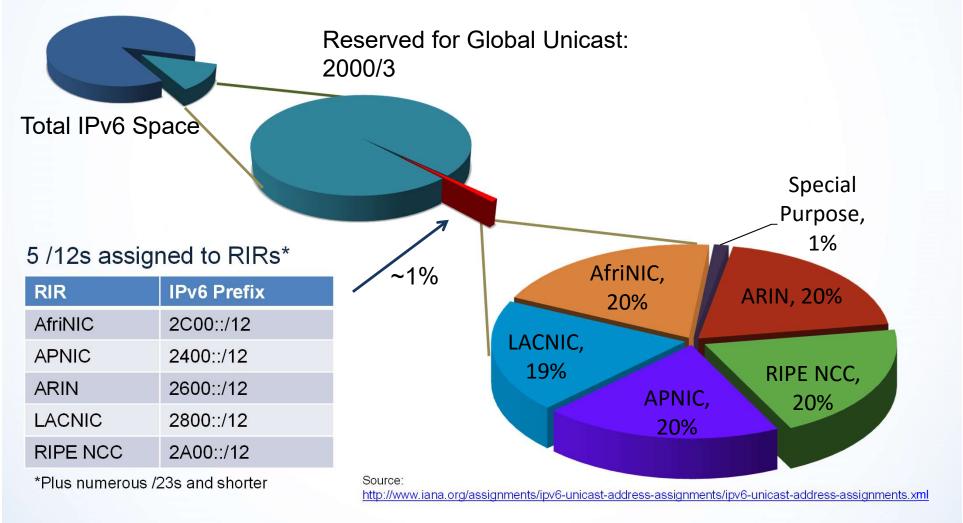
#### Balancing act between:

- Number of available subnets
- Number of hosts per subnet


#### **Result: VLSM**

- Complex
- Difficult to manage

2001:0db8:1234:abcd:5401:473c:0015:ea85/64




### Global IPv6 Unicast Address Structure





# **Global IPv6 Prefix Allocations**



© 2014 FishNet Security Inc. All rights reserved.



# **IPv6 Prefix Assignments**

#### Typical IPv6 prefix assignments:

- Service provider (LIR): /32
- Large end user: /48
- Medium end user: /56
- Small/ Home/ SOHO: /64 or /60
- → 2<sup>32</sup> /64 subnets
- → 65,536 /64 subnets
- → 256 /64 subnets
- → 1 or 16 /64 subnets

vation

#### Address

- Is tł
- Yes!

lf you do right pre

# Is this really practical?

#### have the



### What Prefix Size is Right for You?

**ARIN Number Resource Policy Manual:** 

#### 2.10. End Site

"The term End Site shall mean a single structure or service delivery address, or, in the case of a multi-tenant structure, a single tenant within said structure (a single customer location)."

#### 6.5.8.2.1.Standard Sites

"An organization may request up to a /48 for each site in its network, and any sites that will be operational within 12 months."

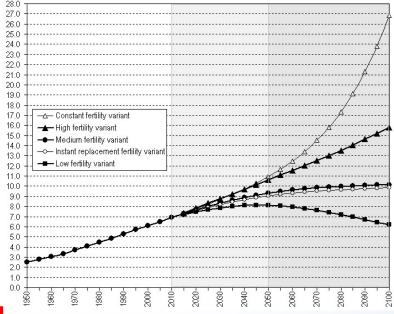
or



# Are You Ready for IPv7?

#### All current IPv6 global unicast prefixes start with 001

This is 1/8 of the entire IPv6 address space  $2^{45} = 35$  trillion /48 prefixes


#### UN projections for 2100 world population:

Median figure 10 billion High end: 16 billion

#### 2<sup>45</sup> / 16 billion = 2199 /48s per person

And, we still have 85% of the IPv6 space held in reserve

#### Opinion: IP will become obsolete before IPv6 is depleted





### What About Subnet Assignments?

#### RFC 4291 specifies that Interface-IDs are 64 bits

- Several IPv6 functions depend on this

#### All subnets should be /64

- Including point-to-point links
- Simplifies address management
- Random addressing improves security

#### Trend is to use stateful (DHCPv6) addressing



### What About Point-to-Point Links?

#### 18 million trillion addresses in a /64 link

- And I will only ever use 2 of them?
- Are you kidding???

#### People have a very hard time accepting this

- Again: This is not IPv4!
- What else are you going to do with those addresses?

#### It's a matter of comprehending the scale

- 5000 out of 2<sup>64</sup> is not really any bigger than 2 out of 2<sup>64</sup>



### Point-to-Point Subnets (Battling RFCs)

#### Reasons for using /64

- RFC 3627
- RFC 5375 => /64 usage endorsed and encouraged
- Design consistency
- Anycast problems are not significant on PtP links
  - Subnet-Router Anycast
  - MIPv6 Home Agent Anycast

#### Reasons for using /127

- RFC 6164
- Ping-pong vulnerability
  - This is an issue with older version of ICMPv6 (RFC 2463)
  - Issue is corrected in newer version of ICMPv6 (RFC 4443)
  - Vendors: Upgrade your code!
- Neighbor cache exhaustion vulnerability



### Point-to-Point Subnets (cont.)

**Insist** that your vendors use current ICMPv6!

#### Don't use /126

- This is IPv4 thinking
- "Subnet number" is meaningless in IPv6
- IPv6 does not use broadcast addresses

#### **Potential compromise:**

- Assign /64 per PtP subnet
- Address /127 out of the /64



### What Do I Get in Exchange for "Waste"?

#### Simplicity

One-size-fits-all subnets

#### Manageability

Hex is much easier to interpret (binary) than decimal

#### Scalability

– Room to grow

#### Flexibility

Room to change



# **Designing for Simplicity**

#### Start by mapping "working" bits

Generally the bits between assigned prefix and Interface-ID

#### Group by hex digit (nibble)

4 bits per hex digit

#### **Define "meanings" you need to operate**

Geographic area? Logical topology? Type designation? User ID?

#### Try to keep "meanings" on hex boundaries

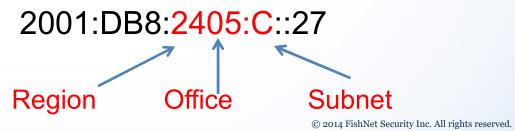
Defined meanings will then be some multiple of 2<sup>4n</sup> Ex: 16, 256, 4096, 65536...

#### Don't get carried away with meanings

No need for 10 layers of address hierarchy if 4 will do

© 2014 FishNet Security Inc. All rights reserved.




# Designing for Simplicity (cont.)

#### Use zero space as much as possible

- Which address is easier to read?
  - 2001:DB8:2405:83FC:72A6:3452:19ED:4727
  - 2001:DB8:2405:C::27

# Benefit: Operations quickly learns to focus on meaningful bits

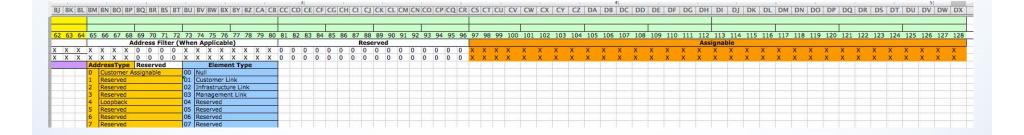
- Ignore public prefix (usually)
- Ignore Interface-ID (usually)
- A few hex digits tell operations most of what they need to know





# **Designing for Scale**

### Leave "zero" space whenever possible


Designate as Reserved Both vertical and horizontal

### Insert between "meaningful" digits or bits

Allows future expansion in two directions

| 1 | 35 54    | 35 36<br>POP | = 2  | 56  |     | 40   | 100 | - | -   | State |     | 10  | 1 10 | Ass | igna | ble ( | ust | omer | Pre | fixe | s   |    |   | 00  |     | 02 0 |   | T   | 00 00 | 0/    | Ad        | dress  | Filte | er (W | /her     | App              | licab  | le)   | 10  | // 0 | 0.01 | 02 |   |
|---|----------|--------------|------|-----|-----|------|-----|---|-----|-------|-----|-----|------|-----|------|-------|-----|------|-----|------|-----|----|---|-----|-----|------|---|-----|-------|-------|-----------|--------|-------|-------|----------|------------------|--------|-------|-----|------|------|----|---|
|   | X X      | X X          | X    | X   | X   | X    | х   | X | х   | X     | X   | K X |      |     | X    |       |     | x x  | X   | X    | X   | X  | X | XX  | K ) | < X  | X | X   |       | X )   | ( 0       | 0 (    | 0     | 0     | X        | XX               | X      | X     | X   | XX   | 0    | 0  | 0 |
|   | X X      | X X          | X    |     |     |      | х   | х |     |       |     |     | X    | Х   | X    | Х     | X   | ΧХ   | X   | X    | X   | X  | Х | X > | X > | < X  | X | X   | X     | XX    | ( 0       | 0 (    | 0     | 0     | X        |                  |        |       |     | хх   | 0    | 0  | 0 |
|   | HEX      | PO           | or o | Seg | men | It 👘 |     |   | BR/ | AS N  | umb | er  |      |     |      |       |     |      |     | Cus  | tom | er |   |     |     |      |   | 1   | ddres |       |           |        |       |       |          | E                | leme   | ent T | ype |      |      |    |   |
|   | 00       | CORE         |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   | 0   |       | tome  |           | signal | oie   |       | 00       | Null             | merl   |       | 385 |      | 3    |    |   |
|   | 01       | LAB          |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   | 1   |       | erved |           |        |       |       | 01       | Custo            | mer    | Link  |     |      |      |    |   |
|   | 02       | Reserv       |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   | 2   |       | erved |           |        |       |       |          |                  | struct |       |     |      |      |    |   |
|   | 03       | Reserv       |      |     |     |      |     |   |     |       |     | _   | _    | _   |      |       | _   | _    |     | -    | _   |    |   | _   | _   |      |   | 3   |       | erved |           |        |       |       | 03       |                  | geme   | nt Li | nk  |      | 1    | -  | - |
|   | 04       | Reserv       |      |     |     |      |     |   |     |       |     | _   | _    |     |      |       |     |      |     | _    | _   | -  |   |     | _   |      | _ | 4   |       | pback |           |        |       |       | 04       | Rese             | ved    |       |     |      |      | _  | _ |
|   | 05       | Reserv       |      |     |     |      |     |   |     |       |     | _   |      |     |      | _     | _   |      |     |      | -   |    |   |     | _   |      |   | 5   |       | erved |           |        |       | _     | 05       | Reser            | ved    |       |     |      |      |    | + |
|   | 06       | Reserv       |      |     |     |      |     |   |     |       | -   | _   | _    | -   |      |       | _   | _    | _   | _    | _   | -  |   | _   | _   | _    |   | 6   |       | erved |           |        |       |       |          | Rese             |        |       |     |      |      |    | + |
|   | 07       | Reserv       |      |     |     |      |     |   |     |       |     | _   | _    | -   | -    |       | _   | _    | _   | _    | _   | -  |   |     | _   | _    | _ | - 2 |       | erved | <u>12</u> |        |       | _     | 07       | Rese             | rved   |       |     |      | -    | -  | - |
|   | 08<br>09 | Reserv       |      |     |     |      |     |   |     |       | -   | -   | _    | -   |      | -     | -   | _    | -   | -    | -   | -  |   | -   | -   | -    | - | 0   | Lin   | erved |           |        |       | _     |          | TG<br>RA10<br>RT |        |       |     |      | -    | -  | + |
|   | 09<br>0A | Reserv       |      |     |     |      |     |   |     |       |     | -   | -    |     |      |       | -   |      | -   | -    | -   | -  |   | -   | -   | -    | - |     |       | erved |           |        |       | _     | 09       | RAIU             |        |       |     |      | -    | -  | + |
|   | OB       | Reserv       |      |     |     |      |     |   |     |       | -   | -   |      | -   |      |       | -   | -    | -   | -    | -   | -  |   | -   | -   | -    |   | E   |       | erved |           |        |       |       |          |                  |        |       |     |      | 77   | -  | + |
|   | 0C       | Reserv       |      |     |     |      |     |   |     |       |     |     |      | -   |      |       |     |      |     | -    | -   | -  |   | -   | -   | -    | - | - 6 |       | vice  | -         |        |       | _     | OB<br>OC | PA               |        |       |     |      | -    | -  | + |
|   | 0D       | Reserv       |      |     |     |      | -   |   |     |       |     | -   |      |     |      |       | -   |      |     |      |     |    |   | -   | -   |      |   | - C |       | erved | 1         |        |       | -     | on       | Swite            | h      |       |     |      |      | -  | + |
|   | OE       | Reserv       |      |     |     |      |     |   |     |       |     |     | -    |     |      |       |     |      |     |      |     |    |   |     |     |      |   | Ē   |       | erved |           |        |       | _     | OF       | Switc            |        |       |     |      |      |    | ÷ |
|   | OF       | Reserv       |      |     |     |      |     |   |     |       |     |     |      |     |      |       | -   |      |     | -    |     | -  |   | -   |     | -    | - | -   |       | erved |           |        |       | _     | OF       | Rese             | neve   |       |     |      | -    | -  | ÷ |
|   | 10       | ARCXN        |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   |     |       |       |           | _      |       |       |          | Rese             |        |       |     |      | 3    |    | t |
|   | 11       | ARCXN        |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   |     |       |       |           |        |       |       |          | Rese             |        |       |     |      |      |    | t |
|   | 12       | ARCXN        |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   |     |       |       |           |        |       |       |          | Reser            |        |       |     |      |      |    | Ŧ |
|   | 13       | AROFI        |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   |     |       |       |           |        |       |       |          | Rese             |        |       |     |      | 1    |    |   |
|   | 14       | AROFI        |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   |     |       |       |           |        |       |       | 14       | Rese             | ved    |       |     |      |      |    |   |
|   | 15       | ARQFI        |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   |     |       |       |           |        |       |       | 15       | Reser            | ved    |       |     |      | 3    |    |   |
|   | 16       | ASIRP        |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   |     |       |       |           |        |       |       |          | Rese             | ved    |       |     |      |      |    |   |
|   | 17       | ASIRP        |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   |     |       |       |           |        |       |       |          | Rese             |        |       |     |      |      |    |   |
|   | 18       | ASIRP        |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   |     |       |       |           |        |       |       |          | Rese             |        |       |     |      |      |    |   |
|   | 19       | AVRSC        |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   |     |       |       |           |        |       |       |          | Rese             |        |       |     |      |      |    |   |
|   | 1A       | AVRSC        |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   |     |       |       |           |        |       |       |          | Rese             |        |       |     |      |      |    |   |
|   | 18       | AVRSC        |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   |     |       |       |           |        |       |       |          | Rese             |        |       |     |      | 1    |    |   |
|   | 1C       | BDOJN        |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   |     |       |       |           |        |       |       |          | Rese             |        |       |     |      |      |    |   |
|   | 1D       | BDOJM        |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   |     |       |       |           |        |       |       | 1D       | Reser            |        |       |     |      | 3    |    |   |
|   | 1E       | BDOJN        |      |     |     |      |     |   |     |       | _   |     | _    |     |      |       | _   | _    | _   | _    | _   |    |   | _   | _   | _    |   | -   | _     |       |           | _      | _     |       |          | Rese             |        |       |     |      |      |    | + |
|   | 1F       | BREAL        |      |     |     |      |     |   |     |       |     | _   |      |     |      |       | _   |      |     | _    |     |    |   |     | _   | _    | _ |     |       |       | _         |        |       |       | 1F       | Rese             | ved    |       |     |      | _    |    | 4 |
|   | 20       | BREAL        |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   |     |       |       |           |        |       |       | 20       | DNS              |        |       |     |      | -    |    | 4 |
|   | 21       | BREAL        | 5    |     |     |      |     |   |     |       |     | _   | _    |     |      |       | _   |      |     | _    |     |    |   |     | _   | _    | _ |     |       |       | _         |        |       |       | 21       | DHCF             | 10     |       |     |      | -    |    | + |
|   | 77       | BRECH        |      |     |     |      |     |   |     |       |     |     |      |     |      |       |     |      |     |      |     |    |   |     |     |      |   |     |       |       |           |        |       |       | 221      | Radii            | IC.    |       |     |      |      |    |   |

© 2014 FishNet Security Inc. All rights reserved.





# Designing for the Future

### Do not integrate IPv4 into an IPv6 design!

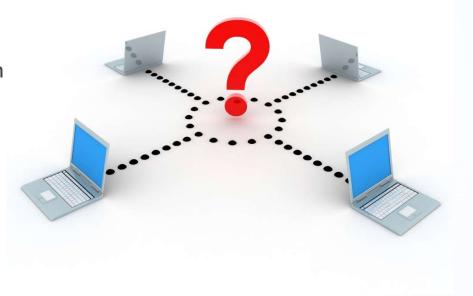
- Reading IPv4 in hex is (almost) meaningless
- IPv4 will (eventually) go away



### **Other Issues**

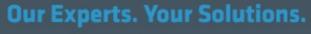
#### DNS design and management is critical DNS issues are well documented

#### **IP Address Management is critical**


IPv6 design is not easy to manage via spreadsheets IPAM deployment tends to be a part of IPv6 deployments

### **Abandon IPv4 thinking!**




Thank You

Jeff Doyle Principal Architect FishNet Security Jeff.Doyle@FishNetSecurity.com www.FishNetSecurity.com





Join the FishNet Security Online Community www.**FishNetSecurity**.com**/6Labs** 





/company/fishnet-security



/fishnet**security** 



/fishnet**security**