

Unix

i

About the Tutorial

Unix is a computer Operating System which is capable of handling activities from multiple

users at the same time. The development of Unix started around 1969 at AT&T Bell Labs

by Ken Thompson and Dennis Ritchie. This tutorial gives a very good understanding on

Unix.

Audience

This tutorial has been prepared for the beginners to help them understand the basics to

advanced concepts covering Unix commands, Unix shell scripting and various utilities.

Prerequisites

We assume you have adequate exposure to Operating Systems and their functionalities.

A basic understanding on various computer concepts will also help you in understanding

the various exercises given in this tutorial.

Execute Unix Shell Programs

If you are willing to learn the Unix/Linux basic commands and Shell script but you do not

have a setup for the same, then do not worry — The CodingGround is available on a high-

end dedicated server giving you real programming experience with the comfort of single-

click execution. Yes! It is absolutely free and online.

Copyright & Disclaimer

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

http://www.tutorialspoint.com/codingground.htm
mailto:contact@tutorialspoint.com

Unix

ii

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Execute Unix Shell Programs .. i
Copyright & Disclaimer ... i
Table of Contents .. ii

UNIX FOR BEGINNERS ... 1

 Unix — Getting Started ... 2
What is Unix? ... 2
Unix Architecture... 2

 Unix — File Management .. 8
Listing Files .. 8
Metacharacters ... 10
Hidden Files ... 10
Creating Files ... 11
Editing Files .. 11
Display Content of a File .. 12
Counting Words in a File ... 12
Copying Files .. 13
Renaming Files ... 13
Deleting Files ... 13
Standard Unix Streams .. 14

 Unix — Directory Management .. 15
Home Directory ... 15
Absolute/Relative Pathnames ... 15
Listing Directories .. 16
Creating Directories ... 16
Creating Parent Directories ... 17
Removing Directories .. 18
Changing Directories ... 18
Renaming Directories .. 18
The directories . (dot) and .. (dot dot) ... 19

 Unix — File Permission / Access Modes .. 20
The Permission Indicators ... 20
File Access Modes .. 20
Directory Access Modes .. 21
Changing Permissions .. 21
Using chmod with Absolute Permissions .. 22
Changing Owners and Groups ... 23
Changing Ownership ... 24
Changing Group Ownership .. 24
SUID and SGID File Permission .. 24

Unix

iii

 Unix — Environment ... 26
The .profile File .. 27
Setting the Terminal Type ... 27
Setting the PATH .. 27
PS1 and PS2 Variables ... 28
Environment Variables .. 30

 Unix — Basic Utilities .. 32
Printing Files .. 32
Sending Email .. 35

 Unix — Pipes and Filters ... 37
The grep Command ... 37
The Sort Command .. 38
The pg and more Commands .. 39

 Unix — Processes Management .. 41
Starting a Process .. 41
Background Processes ... 42
Listing Running Processes .. 42
Stopping Processes .. 44
Parent and Child Processes ... 44
Zombie and Orphan Processes .. 44
Daemon Processes .. 45
The top Command ... 45
Job ID Versus Process ID .. 45

 Unix — Network Communication Utilities .. 46
The ping Utility .. 46
The ftp Utility ... 47
The telnet Utility .. 49
The finger Utility .. 50

 Unix — The vi Editor ... 52
Starting the vi Editor .. 52
Operation Modes .. 53
Getting Out of vi .. 53
Moving within a File .. 54
Control Commands .. 56
Editing Files .. 57
Deleting Characters ... 57
Change Commands .. 58
Copy and Paste Commands ... 58
Advanced Commands .. 59
Word and Character Searching.. 60
Set Commands ... 61
Running Commands .. 62
Replacing Text ... 62
IMPORTANT ... 62

Unix

iv

UNIX SHELL PROGRAMMING .. 63

 Unix — What is Shell? ... 64
Shell Prompt .. 64
Shell Types ... 64
Shell Scripts ... 65
Example Script ... 65
Shell Comments ... 66
Extended Shell Scripts ... 66

 Unix — Using Shell Variables .. 68
Variable Names ... 68
Defining Variables .. 68
Accessing Values .. 69
Read-only Variables ... 69
Unsetting Variables ... 70
Variable Types ... 70

 Unix — Special Variables ... 71
Command-Line Arguments .. 72
Special Parameters $* and $@ .. 72
Exit Status .. 73

 Unix — Using Shell Arrays ... 74
Defining Array Values .. 74
Accessing Array Values .. 75

 Unix — Shell Basic Operators .. 77
Arithmetic Operators... 77
Unix - Shell Arithmetic Operators Example ... 78
Relational Operators ... 80
Unix - Shell Relational Operators Example .. 80
Boolean Operators .. 82
Unix - Shell Boolean Operators Example ... 82
String Operators .. 84
Unix - Shell String Operators Example ... 84
File Test Operators .. 86
Unix - Shell File Test Operators Example ... 87
C Shell Operators ... 89
Unix - C Shell Operators ... 89
Korn Shell Operators ... 92
Unix - Korn Shell Operators ... 92

 Unix — Shell Decision Making ... 94
The if...else statements ... 94
Unix Shell - The if...fi statement .. 94
Unix Shell - The if...else...fi statement ... 95
Unix Shell - The if...elif...fi statement .. 96
The case...esac Statement ... 97
Unix Shell - The case...esac Statement .. 98

Unix

v

 Unix — Shell Loop Types ... 101
Unix Shell - The while Loop ... 101
Unix Shell - The for Loop.. 102
Unix Shell - The until Loop ... 103
Unix Shell - The select Loop ... 104
Nesting Loops .. 107
Nesting while Loops... 107

 Unix — Shell Loop Control .. 109
The infinite Loop .. 109
The break statement ... 109
The continue statement .. 111

 Unix — Shell Substitution ... 113
What is Substitution? .. 113
Command Substitution .. 114
Variable Substitution ... 115

 Unix — Shell Quoting Mechanisms ... 117
The Metacharacters .. 117
The Single Quotes .. 118
The Double Quotes .. 119
The Backquotes ... 120

 Unix — Shell Input/Output Redirections ... 121
Output Redirection .. 121
Input Redirection ... 122
Here Document ... 122
Discard the output ... 124
Redirection Commands ... 125

 Unix — Shell Functions ... 126
Creating Functions ... 126
Pass Parameters to a Function .. 127
Returning Values from Functions .. 127
Nested Functions ... 128
Function Call from Prompt .. 129

 Unix — Shell Man Page Help ... 130
Man Page Sections .. 130
Useful Shell Commands ... 131
Unix - Useful Commands ... 131
Files and Directories .. 131
Manipulating data ... 132
Compressed Files ... 134
Getting Information ... 135
Network Communication .. 135
Messages between Users .. 136
Programming Utilities .. 136
Misc Commands .. 138

Unix

vi

ADVANCED UNIX ... 141

 Unix — Regular Expressions with SED ... 142
Invoking sed ... 142
The sed General Syntax ... 142
Deleting All Lines with sed ... 143
The sed Addresses ... 143
The sed Address Ranges .. 144
The Substitution Command ... 145
Substitution Flags .. 146
Using an Alternative String Separator ... 146
Replacing with Empty Space .. 146
Address Substitution ... 147
The Matching Command ... 148
Using Regular Expression .. 148
Matching Characters ... 149
Character Class Keywords ... 150
Ampersand Referencing .. 151
Using Multiple sed Commands .. 152
Back References .. 152

 Unix — File System Basics ... 154
Directory Structure .. 154
Navigating the File System .. 155
The df Command ... 157
The du Command .. 157
Mounting the File System .. 158
Unmounting the File System ... 159
User and Group Quotas ... 159

 Unix — User Administration ... 161
Managing Users and Groups ... 161
Create a Group .. 162
Modify a Group ... 163
Delete a Group .. 163
Create an Account ... 163
Modify an Account .. 165
Delete an Account ... 165

 Unix — System Performance... 166
Performance Components .. 166
Performance Tools .. 167

 Unix — System Logging ... 168
Syslog Facilities .. 169
Syslog Priorities ... 170
The /etc/syslog.conf file .. 171
Logging Actions .. 172
The logger Command .. 172
Log Rotation .. 173
Important Log Locations .. 173

Unix

vii

 Unix — Signals and Traps .. 174
List of Signals ... 174
Default Actions .. 175
Sending Signals .. 175
Trapping Signals ... 176
Cleaning Up Temporary Files ... 176
Ignoring Signals .. 177
Resetting Traps .. 177

Unix for Beginners

Unix

2

What is Unix?

The Unix operating system is a set of programs that act as a link between the computer

and the user.

The computer programs that allocate the system resources and coordinate all the details

of the computer's internals is called the operating system or the kernel.

Users communicate with the kernel through a program known as the shell. The shell is a

command line interpreter; it translates commands entered by the user and converts them

into a language that is understood by the kernel.

 Unix was originally developed in 1969 by a group of AT&T employees Ken

Thompson, Dennis Ritchie, Douglas McIlroy, and Joe Ossanna at Bell Labs.

 There are various Unix variants available in the market. Solaris Unix, AIX, HP Unix

and BSD are a few examples. Linux is also a flavor of Unix which is freely available.

 Several people can use a Unix computer at the same time; hence Unix is called a

multiuser system.

 A user can also run multiple programs at the same time; hence Unix is a

multitasking environment.

Unix Architecture

Here is a basic block diagram of a Unix system –

 Unix — Getting Started

Unix

3

The main concept that unites all the versions of Unix is the following four basics −

 Kernel: The kernel is the heart of the operating system. It interacts with the

hardware and most of the tasks like memory management, task scheduling and file

management.

 Shell: The shell is the utility that processes your requests. When you type in a

command at your terminal, the shell interprets the command and calls the program

that you want. The shell uses standard syntax for all commands. C Shell, Bourne

Shell and Korn Shell are the most famous shells which are available with most of

the Unix variants.

 Commands and Utilities: There are various commands and utilities which you

can make use of in your day to day activities. cp, mv, cat and grep, etc. are few

examples of commands and utilities. There are over 250 standard commands plus

numerous others provided through 3rd party software. All the commands come

along with various options.

 Files and Directories: All the data of Unix is organized into files. All files are then

organized into directories. These directories are further organized into a tree-like

structure called the filesystem.

System Bootup

If you have a computer which has the Unix operating system installed in it, then you simply

need to turn on the system to make it live.

As soon as you turn on the system, it starts booting up and finally it prompts you to log

into the system, which is an activity to log into the system and use it for your day-to-day

activities.

Login Unix

When you first connect to a Unix system, you usually see a prompt such as the following:

login:

To log in

 Have your userid (user identification) and password ready. Contact your system

administrator if you don't have these yet.

 Type your userid at the login prompt, then press ENTER. Your userid is case-

sensitive, so be sure you type it exactly as your system administrator has

instructed.

 Type your password at the password prompt, then press ENTER. Your password is

also case-sensitive.

 If you provide the correct userid and password, then you will be allowed to enter

into the system. Read the information and messages that comes up on the screen,

which is as follows.

Unix

4

login : amrood

amrood's password:

Last login: Sun Jun 14 09:32:32 2009 from 62.61.164.73

$

[[

You will be provided with a command prompt (sometime called the $ prompt) where you

type all your commands. For example, to check calendar, you need to type the

cal command as follows –

$ cal

 June 2009

Su Mo Tu We Th Fr Sa

 1 2 3 4 5 6

 7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30

$

Change Password

All Unix systems require passwords to help ensure that your files and data remain your

own and that the system itself is secure from hackers and crackers. Following are the

steps to change your password –

Step 1: To start, type password at the command prompt as shown below.

Step 2: Enter your old password, the one you're currently using.

Step 3: Type in your new password. Always keep your password complex enough so that

nobody can guess it. But make sure, you remember it.

Step 4: You must verify the password by typing it again.

$ passwd

Changing password for amrood

(current) Unix password:******

New Unix password:*******

Retype new Unix password:*******

passwd: all authentication tokens updated successfully

$

Unix

5

Note − We have added asterisk (*) here just to show the location where you need to

enter the current and new passwords otherwise at your system. It does not show you any

character when you type.

Listing Directories and Files

All data in Unix is organized into files. All files are organized into directories. These

directories are organized into a tree-like structure called the filesystem.

You can use the ls command to list out all the files or directories available in a directory.

Following is the example of using ls command with -l option.

$ ls -l

total 19621

drwxrwxr-x 2 amrood amrood 4096 Dec 25 09:59 uml

-rw-rw-r-- 1 amrood amrood 5341 Dec 25 08:38 uml.jpg

drwxr-xr-x 2 amrood amrood 4096 Feb 15 2006 univ

drwxr-xr-x 2 root root 4096 Dec 9 2007 urlspedia

-rw-r--r-- 1 root root 276480 Dec 9 2007 urlspedia.tar

drwxr-xr-x 8 root root 4096 Nov 25 2007 usr

-rwxr-xr-x 1 root root 3192 Nov 25 2007 webthumb.php

-rw-rw-r-- 1 amrood amrood 20480 Nov 25 2007 webthumb.tar

-rw-rw-r-- 1 amrood amrood 5654 Aug 9 2007 yourfile.mid

-rw-rw-r-- 1 amrood amrood 166255 Aug 9 2007 yourfile.swf

$

Here entries starting with d..... represent directories. For example, uml, univ and urlspedia

are directories and rest of the entries are files.

Who Are You?

While you're logged into the system, you might be willing to know : Who am I?

The easiest way to find out "who you are" is to enter the whoami command −

$ whoami

 amrood

$

Try it on your system. This command lists the account name associated with the current

login. You can try who am i command as well to get information about yourself.

Who is Logged in?

Unix

6

Sometime you might be interested to know who is logged in to the computer at the same

time.

There are three commands available to get you this information, based on how much you

wish to know about the other users: users, who, and w.

$ users

 amrood bablu qadir

$ who

amrood ttyp0 Oct 8 14:10 (limbo)

bablu ttyp2 Oct 4 09:08 (calliope)

qadir ttyp4 Oct 8 12:09 (dent)

$

Try the w command on your system to check the output. This lists down information

associated with the users logged in the system.

Logging Out

When you finish your session, you need to log out of the system. This is to ensure that

nobody else accesses your files.

To log out

 Just type the logout command at the command prompt, and the system will clean

up everything and break the connection.

System Shutdown

The most consistent way to shut down a Unix system properly via the command line is to

use one of the following commands −

Command Description

halt Brings the system down immediately

init 0 Powers off the system using predefined scripts to synchronize and

clean up the system prior to shutting down

init 6 Reboots the system by shutting it down completely and then

restarting it

poweroff Shuts down the system by powering off

Unix

7

reboot Reboots the system

shutdown Shuts down the system

You typically need to be the super user or root (the most privileged account on a Unix

system) to shut down the system. However, on some standalone or personally-owned Unix

boxes, an administrative user and sometimes regular users can do so.

Unix

8

In this chapter, we will discuss in detail about file management in Unix. All data in Unix is

organized into files. All files are organized into directories. These directories are organized

into a tree-like structure called the filesystem.

When you work with Unix, one way or another, you spend most of your time working with

files. This tutorial will help you understand how to create and remove files, copy and

rename them, create links to them, etc.

In Unix, there are three basic types of files –

 Ordinary Files − An ordinary file is a file on the system that contains data, text,

or program instructions. In this tutorial, you look at working with ordinary files.

 Directories − Directories store both special and ordinary files. For users familiar

with Windows or Mac OS, Unix directories are equivalent to folders.

 Special Files − Some special files provide access to hardware such as hard drives,

CD-ROM drives, modems, and Ethernet adapters. Other special files are similar to

aliases or shortcuts and enable you to access a single file using different names.

Listing Files

To list the files and directories stored in the current directory, use the following command:

$ls

Here is the sample output of the above command –

$ls

bin hosts lib res.03

ch07 hw1 pub test_results

ch07.bak hw2 res.01 users

docs hw3 res.02 work

The command ls supports the -l option which would help you to get more information

about the listed files –

$ls -l

total 1962188

drwxrwxr-x 2 amrood amrood 4096 Dec 25 09:59 uml

-rw-rw-r-- 1 amrood amrood 5341 Dec 25 08:38 uml.jpg

 Unix — File Management

Unix

9

drwxr-xr-x 2 amrood amrood 4096 Feb 15 2006 univ

drwxr-xr-x 2 root root 4096 Dec 9 2007 urlspedia

-rw-r--r-- 1 root root 276480 Dec 9 2007 urlspedia.tar

drwxr-xr-x 8 root root 4096 Nov 25 2007 usr

drwxr-xr-x 2 200 300 4096 Nov 25 2007 webthumb-1.01

-rwxr-xr-x 1 root root 3192 Nov 25 2007 webthumb.php

-rw-rw-r-- 1 amrood amrood 20480 Nov 25 2007 webthumb.tar

-rw-rw-r-- 1 amrood amrood 5654 Aug 9 2007 yourfile.mid

-rw-rw-r-- 1 amrood amrood 166255 Aug 9 2007 yourfile.swf

drwxr-xr-x 11 amrood amrood 4096 May 29 2007 zlib-1.2.3

$

Here is the information about all the listed columns –

 First Column: Represents the file type and the permission given on the file. Below

is the description of all type of files.

 Second Column: Represents the number of memory blocks taken by the file or

directory.

 Third Column: Represents the owner of the file. This is the Unix user who created

this file.

 Fourth Column: Represents the group of the owner. Every Unix user will have an

associated group.

 Fifth Column: Represents the file size in bytes.

 Sixth Column: Represents the date and the time when this file was created or

modified for the last time.

 Seventh Column: Represents the file or the directory name.

In the ls -l listing example, every file line begins with a d, -, or l. These characters indicate

the type of the file that's listed.

Prefix Description

- Regular file, such as an ASCII text file, binary executable, or hard link

b Block special file. Block input/output device file such as a physical hard

drive

c Character special file. Raw input/output device file such as a physical

hard drive

Unix

10

d Directory file that contains a listing of other files and directories

l Symbolic link file. Links on any regular file

p Named pipe. A mechanism for interprocess communications

s Socket used for interprocess communication

Metacharacters

Metacharacters have a special meaning in Unix. For example, * and ? are metacharacters.

We use * to match 0 or more characters, a question mark (?) matches with a single

character.

For Example −

$ls ch*.doc

Displays all the files, the names of which start with ch and end with .doc –

ch01-1.doc ch010.doc ch02.doc ch03-2.doc

ch04-1.doc ch040.doc ch05.doc ch06-2.doc

ch01-2.doc ch02-1.doc c

Here, * works as meta character which matches with any character. If you want to display

all the files ending with just .doc, then you can use the following command –

$ls *.doc

Hidden Files

An invisible file is one, the first character of which is the dot or the period character (.).

Unix programs (including the shell) use most of these files to store configuration

information.

Some common examples of the hidden files include the files −

 .profile − The Bourne shell (sh) initialization script

 .kshrc − The Korn shell (ksh) initialization script

 .cshrc − The C shell (csh) initialization script

 .rhosts − The remote shell configuration file

Unix

11

To list the invisible files, specify the -a option to ls –

$ ls -a

. .profile docs lib test_results

.. .rhosts hosts pub users

.emacs bin hw1 res.01 work

.exrc ch07 hw2 res.02

.kshrc ch07.bak hw3 res.03

$

 Single dot (.) − This represents the current directory.

 Double dot (..) − This represents the parent directory.

Creating Files

You can use the vi editor to create ordinary files on any Unix system. You simply need to

give the following command −

$ vi filename

The above command will open a file with the given filename. Now, press the key i to come

into the edit mode. Once you are in the edit mode, you can start writing your content in

the file as in the following program –

This is unix file....I created it for the first time.....

I'm going to save this content in this file.

Once you are done with the program, follow these steps −

 Press the key esc to come out of the edit mode.

 Press two keys Shift + Z together to come out of the file completely.

You will now have a file created with filename in the current directory.

$ vi filename

$

Editing Files

You can edit an existing file using the vi editor. We will discuss in short how to open an

existing file −

$ vi filename

Unix

12

Once the file is opened, you can come in the edit mode by pressing the key i and then you

can proceed by editing the file. If you want to move here and there inside a file, then first

you need to come out of the edit mode by pressing the key Esc. After this, you can use

the following keys to move inside a file –

 l key to move to the right side.

 h key to move to the left side.

 k key to move upside in the file.

 j key to move downside in the file.

So using the above keys, you can position your cursor wherever you want to edit. Once

you are positioned, then you can use the i key to come in the edit mode. Once you are

done with the editing in your file, press Esc and finally two keys Shift + ZZ together to

come out of the file completely.

Display Content of a File

You can use the cat command to see the content of a file. Following is a simple example

to see the content of the above created file −

$ cat filename

This is unix file....I created it for the first time.....

I'm going to save this content in this file.

$

You can display the line numbers by using the -b option along with the cat command as

follows –

$ cat -b filename

1 This is unix file....I created it for the first time.....

2 I'm going to save this content in this file.

$

Counting Words in a File

You can use the wc command to get a count of the total number of lines, words, and

characters contained in a file. Following is a simple example to see the information about

the file created above −

$ wc filename

2 19 103 filename

$

Unix

13

Here is the detail of all the four columns −

 First Column: Represents the total number of lines in the file.

 Second Column: Represents the total number of words in the file.

 Third Column: Represents the total number of bytes in the file. This is the actual

size of the file.

 Fourth Column: Represents the file name.

You can give multiple files and get information about those files at a time. Following is

simple syntax −

$ wc filename1 filename2 filename3

Copying Files

To make a copy of a file use the cp command. The basic syntax of the command is −

$ cp source_file destination_file

Following is the example to create a copy of the existing file filename.

$ cp filename copyfile

$

You will now find one more file copyfile in your current directory. This file will exactly be

the same as the original file filename.

Renaming Files

To change the name of a file, use the mv command. Following is the basic syntax −

$ mv old_file new_file

The following program will rename the existing file filename to newfile.

$ mv filename newfile

$

The mv command will move the existing file completely into the new file. In this case, you

will find only newfile in your current directory.

Deleting Files

To delete an existing file, use the rm command. Following is the basic syntax −

$ rm filename

Unix

14

Caution: A file may contain useful information. It is always recommended to be careful

while using this Delete command. It is better to use the -i option along

with rm command.

Following is the example which shows how to completely remove the existing

file filename.

$ rm filename

$

You can remove multiple files at a time with the command given below –

$ rm filename1 filename2 filename3

$

Standard Unix Streams

Under normal circumstances, every Unix program has three streams (files) opened for it

when it starts up −

 stdin − This is referred to as the standard input and the associated file descriptor

is 0. This is also represented as STDIN. The Unix program will read the default

input from STDIN.

 stdout − This is referred to as the standard output and the associated file

descriptor is 1. This is also represented as STDOUT. The Unix program will write

the default output at STDOUT

 stderr − This is referred to as the standard error and the associated file descriptor

is 2. This is also represented as STDERR. The Unix program will write all the error

messages at STDERR.

Unix

15

In this chapter, we will discuss in detail about directory management in Unix.

A directory is a file the solo job of which is to store the file names and the related

information. All the files, whether ordinary, special, or directory, are contained in

directories.

Unix uses a hierarchical structure for organizing files and directories. This structure is often

referred to as a directory tree. The tree has a single root node, the slash character (/),

and all other directories are contained below it.

Home Directory

The directory in which you find yourself when you first login is called your home directory.

You will be doing much of your work in your home directory and subdirectories that you'll

be creating to organize your files.

You can go in your home directory anytime using the following command −

$cd ~

$

Here ~ indicates the home directory. Suppose you have to go in any other user's home

directory, use the following command –

$cd ~username

$

To go in your last directory, you can use the following command –

$cd -

$

Absolute/Relative Pathnames

Directories are arranged in a hierarchy with root (/) at the top. The position of any file

within the hierarchy is described by its pathname.

Elements of a pathname are separated by a /. A pathname is absolute, if it is described

in relation to root, thus absolute pathnames always begin with a /.

 Unix — Directory Management

Unix

16

Following are some examples of absolute filenames.

/etc/passwd

/users/sjones/chem/notes

/dev/rdsk/Os3

A pathname can also be relative to your current working directory. Relative pathnames

never begin with /. Relative to user amrood's home directory, some pathnames might

look like this –

chem/notes

personal/res

To determine where you are within the filesystem hierarchy at any time, enter the

command pwd to print the current working directory –

$pwd

/user0/home/amrood

$

Listing Directories

To list the files in a directory, you can use the following syntax −

$ls dirname

Following is the example to list all the files contained in /usr/local directory –

$ls /usr/local

X11 bin gimp jikes sbin

ace doc include lib share

atalk etc info man ami

Creating Directories

We will now understand how to create directories. Directories are created by the following

command −

$mkdir dirname

Unix

17

Here, directory is the absolute or relative pathname of the directory you want to create.

For example, the command –

$mkdir mydir

$

Creates the directory mydir in the current directory. Here is another example –

$mkdir /tmp/test-dir

$

This command creates the directory test-dir in the /tmp directory. The mkdir command

produces no output if it successfully creates the requested directory.

If you give more than one directory on the command line, mkdir creates each of the

directories. For example, −

$mkdir docs pub

$

Creates the directories docs and pub under the current directory.

Creating Parent Directories

We will now understand how to create parent directories. Sometimes when you want to

create a directory, its parent directory or directories might not exist. In this case, mkdir

issues an error message as follows −

$mkdir /tmp/amrood/test

mkdir: Failed to make directory "/tmp/amrood/test";

No such file or directory

$

In such cases, you can specify the -p option to the mkdir command. It creates all the

necessary directories for you. For example –

$mkdir -p /tmp/amrood/test

$

The above command creates all the required parent directories.

Unix

18

Removing Directories

Directories can be deleted using the rmdir command as follows −

$rmdir dirname

$

Note − To remove a directory, make sure it is empty which means there should not be

any file or sub-directory inside this directory.

You can remove multiple directories at a time as follows −

$rmdir dirname1 dirname2 dirname3

$

The above command removes the directories dirname1, dirname2, and dirname3, if they

are empty. The rmdir command produces no output if it is successful.

Changing Directories

You can use the cd command to do more than just change to a home directory. You can

use it to change to any directory by specifying a valid absolute or relative path. The syntax

is as given below −

$cd dirname

$

Here, dirname is the name of the directory that you want to change to. For example, the

command –

$cd /usr/local/bin

$

Changes to the directory /usr/local/bin. From this directory, you can cd to the directory

/usr/home/amrood using the following relative path –

$cd ../../home/amrood

$

Renaming Directories

The mv (move) command can also be used to rename a directory. The syntax is as

follows:

$mv olddir newdir

$

Unix

19

You can rename a directory mydir to yourdir as follows –

$mv mydir yourdir

$

The directories . (dot) and .. (dot dot)

The filename . (dot) represents the current working directory; and the filename .. (dot

dot) represents the directory one level above the current working directory, often referred

to as the parent directory.

If we enter the command to show a listing of the current working directories/files and use

the -a option to list all the files and the -l option to provide the long listing, we will

receive the following result.

$ls -la

drwxrwxr-x 4 teacher class 2048 Jul 16 17.56 .

drwxr-xr-x 60 root 1536 Jul 13 14:18 ..

---------- 1 teacher class 4210 May 1 08:27 .profile

-rwxr-xr-x 1 teacher class 1948 May 12 13:42 memo

$

Unix

20

In this chapter, we will discuss in detail about file permission and access modes in Unix.

File ownership is an important component of Unix that provides a secure method for

storing files. Every file in Unix has the following attributes –

 Owner permissions − The owner's permissions determine what actions the owner

of the file can perform on the file.

 Group permissions − The group's permissions determine what actions a user,

who is a member of the group that a file belongs to, can perform on the file.

 Other (world) permissions − The permissions for others indicate what action all

other users can perform on the file.

The Permission Indicators

While using ls -l command, it displays various information related to file permission as

follows −

$ls -l /home/amrood

-rwxr-xr-- 1 amrood users 1024 Nov 2 00:10 myfile

drwxr-xr--- 1 amrood users 1024 Nov 2 00:10 mydir

Here, the first column represents different access modes, i.e., the permission associated

with a file or a directory.

The permissions are broken into groups of threes, and each position in the group denotes

a specific permission, in this order: read (r), write (w), execute (x) −

 The first three characters (2-4) represent the permissions for the file's owner. For

example, -rwxr-xr-- represents that the owner has read (r), write (w) and execute

(x) permission.

 The second group of three characters (5-7) consists of the permissions for the

group to which the file belongs. For example, -rwxr-xr-- represents that the group

has read (r) and execute (x) permission, but no write permission.

 The last group of three characters (8-10) represents the permissions for everyone

else. For example, -rwxr-xr-- represents that there is read (r) only permission.

File Access Modes

The permissions of a file are the first line of defense in the security of a Unix system. The

basic building blocks of Unix permissions are the read, write, and execute permissions,

which have been described below −

Read

Grants the capability to read, i.e., view the contents of the file.

 Unix — File Permission / Access Modes

Unix

21

Write

Grants the capability to modify, or remove the content of the file.

Execute

User with execute permissions can run a file as a program.

Directory Access Modes

Directory access modes are listed and organized in the same manner as any other file.

There are a few differences that need to be mentioned:

Read

Access to a directory means that the user can read the contents. The user can look at the

filenames inside the directory.

Write

Access means that the user can add or delete files from the directory.

Execute

Executing a directory doesn't really make sense, so think of this as a traverse permission.

A user must have execute access to the bin directory in order to execute the ls or the cd

command.

Changing Permissions

To change the file or the directory permissions, you use the chmod (change mode)

command. There are two ways to use chmod — the symbolic mode and the absolute mode.

Using chmod in Symbolic Mode

The easiest way for a beginner to modify file or directory permissions is to use the symbolic

mode. With symbolic permissions you can add, delete, or specify the permission set you

want by using the operators in the following table.

chmod Operator Description

+ Adds the designated permission(s) to a file or directory.

- Removes the designated permission(s) from a file or

directory.

= Sets the designated permission(s).

[[[[

Unix

22

Here's an example using testfile. Running ls -1 on the testfile shows that the file's

permissions are as follows –

$ls -l testfile

-rwxrwxr-- 1 amrood users 1024 Nov 2 00:10 testfile

Then each example chmod command from the preceding table is run on the testfile,

followed by ls –l, so you can see the permission changes –

$chmod o+wx testfile

$ls -l testfile

-rwxrwxrwx 1 amrood users 1024 Nov 2 00:10 testfile

$chmod u-x testfile

$ls -l testfile

-rw-rwxrwx 1 amrood users 1024 Nov 2 00:10 testfile

$chmod g=rx testfile

$ls -l testfile

-rw-r-xrwx 1 amrood users 1024 Nov 2 00:10 testfile

Here's how you can combine these commands on a single line:

$chmod o+wx,u-x,g=rx testfile

$ls -l testfile

-rw-r-xrwx 1 amrood users 1024 Nov 2 00:10 testfile

Using chmod with Absolute Permissions

The second way to modify permissions with the chmod command is to use a number to

specify each set of permissions for the file.

Each permission is assigned a value, as the following table shows, and the total of each

set of permissions provides a number for that set.

Number Octal Permission Representation Ref

0 No permission ---

1 Execute permission --x

2 Write permission -w-

3 Execute and write permission: 1 (execute) + 2 (write) = 3 -wx

Unix

23

4 Read permission r--

5 Read and execute permission: 4 (read) + 1 (execute) = 5 r-x

6 Read and write permission: 4 (read) + 2 (write) = 6 rw-

7 All permissions: 4 (read) + 2 (write) + 1 (execute) = 7 rwx

[[

Here's an example using the testfile. Running ls -1 on the testfile shows that the file's

permissions are as follows –

$ls -l testfile

-rwxrwxr-- 1 amrood users 1024 Nov 2 00:10 testfile

Then each example chmod command from the preceding table is run on the testfile,

followed by ls –l, so you can see the permission changes –

$ chmod 755 testfile

$ls -l testfile

-rwxr-xr-x 1 amrood users 1024 Nov 2 00:10 testfile

$chmod 743 testfile

$ls -l testfile

-rwxr---wx 1 amrood users 1024 Nov 2 00:10 testfile

$chmod 043 testfile

$ls -l testfile

----r---wx 1 amrood users 1024 Nov 2 00:10 testfile

Changing Owners and Groups

While creating an account on Unix, it assigns a owner ID and a group ID to each user.

All the permissions mentioned above are also assigned based on the Owner and the

Groups.

Two commands are available to change the owner and the group of files −

 chown − The chown command stands for "change owner" and is used to change

the owner of a file.

 chgrp − The chgrp command stands for "change group" and is used to change

the group of a file.

Unix

24

Changing Ownership

The chown command changes the ownership of a file. The basic syntax is as follows −

$ chown user filelist

The value of the user can be either the name of a user on the system or the user id

(uid) of a user on the system.

The following example will help you understand the concept −

$ chown amrood testfile

$

Changes the owner of the given file to the user amrood.

NOTE: The super user, root, has the unrestricted capability to change the ownership of

any file but normal users can change the ownership of only those files that they own.

Changing Group Ownership

The chgrp command changes the group ownership of a file. The basic syntax is as follows:

$ chgrp group filelist

The value of group can be the name of a group on the system or the group ID (GID)

of a group on the system.

Following example helps you understand the concept:

$ chgrp special testfile

$

Changes the group of the given file to special group.

SUID and SGID File Permission

Often when a command is executed, it will have to be executed with special privileges in

order to accomplish its task.

As an example, when you change your password with the passwd command, your new

password is stored in the file /etc/shadow.

As a regular user, you do not have read or write access to this file for security reasons,

but when you change your password, you need to have the write permission to this file.

This means that the passwd program has to give you additional permissions so that you

can write to the file /etc/shadow.

Additional permissions are given to programs via a mechanism known as the Set User ID

(SUID) and Set Group ID (SGID) bits.

Unix

25

When you execute a program that has the SUID bit enabled, you inherit the permissions

of that program's owner. Programs that do not have the SUID bit set are run with the

permissions of the user who started the program.

This is the case with SGID as well. Normally, programs execute with your group

permissions, but instead your group will be changed just for this program to the group

owner of the program.

The SUID and SGID bits will appear as the letter "s" if the permission is available. The

SUID "s" bit will be located in the permission bits where the owners’ execute permission

normally resides.

For example, the command -

$ ls -l /usr/bin/passwd

-r-sr-xr-x 1 root bin 19031 Feb 7 13:47 /usr/bin/passwd*

$

Shows that the SUID bit is set and that the command is owned by the root. A capital letter

S in the execute position instead of a lowercase s indicates that the execute bit is not set.

If the sticky bit is enabled on the directory, files can only be removed if you are one of the

following users −

 The owner of the sticky directory

 The owner of the file being removed

 The super user, root

To set the SUID and SGID bits for any directory try the following command −

$ chmod ug+s dirname

$ ls -l

drwsr-sr-x 2 root root 4096 Jun 19 06:45 dirname

$

Unix

26

In this chapter, we will discuss in detail about the Unix environment. An important Unix

concept is the environment, which is defined by environment variables. Some are set by

the system, others by you, yet others by the shell, or any program that loads another

program.

A variable is a character string to which we assign a value. The value assigned could be a

number, text, filename, device, or any other type of data.

For example, first we set a variable TEST and then we access its value using

the echo command:

$TEST="Unix Programming"

$echo $TEST

Unix Programming

Note that the environment variables are set without using the $ sign but while accessing

them we use the $ sign as prefix. These variables retain their values until we come out of

the shell.

When you log in to the system, the shell undergoes a phase called initialization to set

up the environment. This is usually a two-step process that involves the shell reading the

following files −

 /etc/profile

 profile

The process is as follows –

 The shell checks to see whether the file /etc/profile exists.

 If it exists, the shell reads it. Otherwise, this file is skipped. No error message is

displayed.

 The shell checks to see whether the file .profile exists in your home directory. Your

home directory is the directory that you start out in after you log in.

 If it exists, the shell reads it; otherwise, the shell skips it. No error message is

displayed.

As soon as both of these files have been read, the shell displays a prompt –

$

This is the prompt where you can enter commands in order to have them executed.

Note − The shell initialization process detailed here applies to all Bourne type shells, but

some additional files are used by bash and ksh.

 Unix — Environment

Unix

27

The .profile File

The file /etc/profile is maintained by the system administrator of your Unix machine and

contains shell initialization information required by all users on a system.

The file .profile is under your control. You can add as much shell customization

information as you want to this file. The minimum set of information that you need to

configure includes -

 The type of terminal you are using

 A list of directories in which to locate the commands

 A list of variables affecting the look and feel of your terminal

You can check your .profile available in your home directory. Open it using the vi editor

and check all the variables set for your environment.

Setting the Terminal Type

Usually, the type of terminal you are using is automatically configured by either

the login or getty programs. Sometimes, the auto configuration process guesses your

terminal incorrectly.

If your terminal is set incorrectly, the output of the commands might look strange, or you

might not be able to interact with the shell properly.

To make sure that this is not the case, most users set their terminal to the lowest common

denominator in the following way −

$TERM=vt100

$

Setting the PATH

When you type any command on the command prompt, the shell has to locate the

command before it can be executed.

The PATH variable specifies the locations in which the shell should look for commands.

Usually the Path variable is set as follows −

$PATH=/bin:/usr/bin

$

Unix

28

Here, each of the individual entries separated by the colon character (:) are directories. If

you request the shell to execute a command and it cannot find it in any of the directories

given in the PATH variable, a message similar to the following appears –

$hello

hello: not found

$

There are variables like PS1 and PS2 which are discussed in the next section.

PS1 and PS2 Variables

The characters that the shell displays as your command prompt are stored in the variable

PS1. You can change this variable to be anything you want. As soon as you change it, it'll

be used by the shell from that point on.

For example, if you issued the command −

$PS1='=>'

=>

=>

=>

Your prompt will become =>. To set the value of PS1 so that it shows the working

directory, issue the command –

=>PS1="[\u@\h \w]\$"

[root@ip-72-167-112-17 /var/www/tutorialspoint/unix]$

[root@ip-72-167-112-17 /var/www/tutorialspoint/unix]$

The result of this command is that the prompt displays the user's username, the machine's

name (hostname), and the working directory.

There are quite a few escape sequences that can be used as value arguments for PS1;

try to limit yourself to the most critical so that the prompt does not overwhelm you with

information.

Escape Sequence Description

\t Current time, expressed as HH:MM:SS

\d Current date, expressed as Weekday Month Date

\n Newline

Unix

29

\s Current shell environment

\W Working directory

\w Full path of the working directory

\u Current user’s username

\h Hostname of the current machine

\# Command number of the current command. Increases when a

new command is entered

\$ If the effective UID is 0 (that is, if you are logged in as root), end

the prompt with the # character; otherwise, use the $ sign

[[

You can make the change yourself every time you log in, or you can have the change

made automatically in PS1 by adding it to your .profile file.

When you issue a command that is incomplete, the shell will display a secondary prompt

and wait for you to complete the command and hit Enter again.

The default secondary prompt is > (the greater than sign), but can be changed by re-

defining the PS2 shell variable −

Following is the example which uses the default secondary prompt −

$ echo "this is a

> test"

this is a

test

$

The example given below re-defines PS2 with a customized prompt –

$ PS2="secondary prompt->"

$ echo "this is a

secondary prompt->test"

this is a

test

$

Unix

30

Environment Variables

Following is the partial list of important environment variables. These variables are set and

accessed as mentioned below –

Variable Description

DISPLAY
Contains the identifier for the display that X11 programs should
use by default.

HOME
Indicates the home directory of the current user: the default

argument for the cd built-in command.

IFS
Indicates the Internal Field Separator that is used by the
parser for word splitting after expansion.

LANG

LANG expands to the default system locale; LC_ALL can be used

to override this. For example, if its value is pt_BR, then the

language is set to (Brazilian) Portuguese and the locale to
Brazil.

LD_LIBRARY_PATH

A Unix system with a dynamic linker, contains a colon-

separated list of directories that the dynamic linker should

search for shared objects when building a process image after
exec, before searching in any other directories.

PATH
Indicates the search path for commands. It is a colon-separated
list of directories in which the shell looks for commands.

PWD
Indicates the current working directory as set by the cd

command.

RANDOM
Generates a random integer between 0 and 32,767 each time
it is referenced.

SHLVL
Increments by one each time an instance of bash is started.

This variable is useful for determining whether the built-in exit

command ends the current session.

TERM Refers to the display type.

TZ Refers to Time zone. It can take values like GMT, AST, etc.

UID
Expands to the numeric user ID of the current user, initialized
at the shell startup.

Unix

31

Following is the sample example showing few environment variables −

$ echo $HOME

/root

]$ echo $DISPLAY

$ echo $TERM

xterm

$ echo $PATH

/usr/local/bin:/bin:/usr/bin:/home/amrood/bin:/usr/local/bin

$

Unix

32

In this chapter, we will discuss in detail about Printing and Email as the basic utilities of

Unix. So far, we have tried to understand the Unix OS and the nature of its basic

commands. In this chapter, we will learn some important Unix utilities that can be used in

our day-to-day life.

Printing Files

Before you print a file on a Unix system, you may want to reformat it to adjust the margins,

highlight some words, and so on. Most files can also be printed without reformatting, but

the raw printout may not be that appealing.

Many versions of Unix include two powerful text formatters, nroff and troff.

The pr Command

The pr command does minor formatting of files on the terminal screen or for a printer. For

example, if you have a long list of names in a file, you can format it onscreen into two or

more columns.

Following is the syntax for the pr command −

pr option(s) filename(s)

The pr changes the format of the file only on the screen or on the printed copy; it doesn't

modify the original file. Following table lists some pr options –

Option Description

-k Produces k columns of output

-d Double-spaces the output (not on all pr versions)

-h "header" Takes the next item as a report header

-t Eliminates the printing of header and the top/bottom margins

-l PAGE_LENGTH
Sets the page length to PAGE_LENGTH (66) lines. The default
number of lines of text is 56

-o MARGIN Offsets each line with MARGIN (zero) spaces

 Unix — Basic Utilities

Unix

33

-w PAGE_WIDTH
Sets the page width to PAGE_WIDTH (72) characters for multiple
text-column output only

Before using pr, here are the contents of a sample file named food.

$cat food

Sweet Tooth

Bangkok Wok

Mandalay

Afghani Cuisine

Isle of Java

Big Apple Deli

Sushi and Sashimi

Tio Pepe's Peppers

........

$

Let's use the pr command to make a two-column report with the header Restaurants –

$pr -2 -h "Restaurants" food

Nov 7 9:58 1997 Restaurants Page 1

Sweet Tooth Isle of Java

Bangkok Wok Big Apple Deli

Mandalay Sushi and Sashimi

Afghani Cuisine Tio Pepe's Peppers

........

$

The lp and lpr Commands

The command lp or lpr prints a file onto paper as opposed to the screen display. Once

you are ready with formatting using the pr command, you can use any of these commands

to print your file on the printer connected to your computer.

Unix

34

Your system administrator has probably set up a default printer at your site. To print a file

named food on the default printer, use the lp or lpr command, as in the following

example:

$lp food

request id is laserp-525 (1 file)

$

The lp command shows an ID that you can use to cancel the print job or check its status.

 If you are using the lp command, you can use the -nNum option to print Num

number of copies. Along with the command lpr, you can use -Num for the same.

 If there are multiple printers connected with the shared network, then you can

choose a printer using -dprinter option along with lp command and for the same

purpose you can use -Pprinter option along with lpr command. Here printer is the

printer name.

The lpstat and lpq Commands

The lpstat command shows what's in the printer queue: request IDs, owners, file sizes,

when the jobs were sent for printing, and the status of the requests.

Use lpstat -o if you want to see all output requests other than just your own. Requests

are shown in the order they'll be printed −

$lpstat -o

laserp-573 john 128865 Nov 7 11:27 on laserp

laserp-574 grace 82744 Nov 7 11:28

laserp-575 john 23347 Nov 7 11:35

$

The lpq gives slightly different information than lpstat -o –

$lpq

laserp is ready and printing

Rank Owner Job Files Total Size

active john 573 report.ps 128865 bytes

1st grace 574 ch03.ps ch04.ps 82744 bytes

2nd john 575 standard input 23347 bytes

$

Here the first line displays the printer status. If the printer is disabled or running out of

paper, you may see different messages on this first line.

Unix

35

The cancel and lprm Commands

The cancel command terminates a printing request from the lp command. The lprm

command terminates all lpr requests. You can specify either the ID of the request

(displayed by lp or lpq) or the name of the printer.

$cancel laserp-575

request "laserp-575" cancelled

$

To cancel whatever request is currently printing, regardless of its ID, simply enter cancel

and the printer name –

$cancel laserp

request "laserp-573" cancelled

$

The lprm command will cancel the active job if it belongs to you. Otherwise, you can give

job numbers as arguments, or use a dash (-) to remove all of your jobs –

$lprm 575

dfA575diamond dequeued

cfA575diamond dequeued

$

The lprm command tells you the actual filenames removed from the printer queue.

Sending Email

You use the Unix mail command to send and receive mail. Here is the syntax to send an

email −

$mail [-s subject] [-c cc-addr] [-b bcc-addr] to-addr

Here are important options related to mail command:

Option Description

-s Specifies subject on the command line.

-c Sends carbon copies to the list of users. List should be a comma-

separated list of names.

-b Sends blind carbon copies to list. List should be a comma-

separated list of names.

Unix

36

Following is an example to send a test message to admin@yahoo.com.

$mail -s "Test Message" admin@yahoo.com

You are then expected to type in your message, followed by "control-D" at the beginning

of a line. To stop, simply type dot (.) as follows –

Hi,

This is a test

.

Cc:

You can send a complete file using a redirect < operator as follows –

$mail -s "Report 05/06/07" admin@yahoo.com < demo.txt

To check incoming email at your Unix system, you simply type email as follows –

$mail

no email

Unix

37

In this chapter, we will discuss in detail about pipes and filters in Unix. You can connect

two commands together so that the output from one program becomes the input of the

next program. Two or more commands connected in this way form a pipe.

To make a pipe, put a vertical bar (|) on the command line between two commands.

When a program takes its input from another program, it performs some operation on that

input, and writes the result to the standard output. It is referred to as a filter.

The grep Command

The grep command searches a file or files for lines that have a certain pattern. The syntax

is −

$grep pattern file(s)

The name "grep" comes from the ed (a Unix line editor) command g/re/p which means

“globally search for a regular expression and print all lines containing it”.

A regular expression is either some plain text (a word, for example) and/or special

characters used for pattern matching.

The simplest use of grep is to look for a pattern consisting of a single word. It can be used

in a pipe so that only those lines of the input files containing a given string are sent to the

standard output. If you don't give grep a filename to read, it reads its standard input;

that's the way all filter programs work −

$ls -l | grep "Aug"

-rw-rw-rw- 1 john doc 11008 Aug 6 14:10 ch02

-rw-rw-rw- 1 john doc 8515 Aug 6 15:30 ch07

-rw-rw-r-- 1 john doc 2488 Aug 15 10:51 intro

-rw-rw-r-- 1 carol doc 1605 Aug 23 07:35 macros

$

[

 Unix — Pipes and Filters

Unix

38

There are various options which you can use along with the grep command –

Option Description

-v Prints all lines that do not match pattern.

-n Prints the matched line and its line number.

-l Prints only the names of files with matching lines (letter "l")

-c Prints only the count of matching lines.

-i Matches either upper or lowercase.

Let us now use a regular expression that tells grep to find lines with "carol", followed by

zero or other characters abbreviated in a regular expression as ".*"), then followed by

"Aug".

Here, we are using the -i option to have case insensitive search −

$ls -l | grep -i "carol.*aug"

-rw-rw-r-- 1 carol doc 1605 Aug 23 07:35 macros

$

The Sort Command

The sort command arranges lines of text alphabetically or numerically. The following

example sorts the lines in the food file −

$sort food

Afghani Cuisine

Bangkok Wok

Big Apple Deli

Isle of Java

Mandalay

Sushi and Sashimi

Sweet Tooth

Tio Pepe's Peppers

$

Unix

39

The sort command arranges lines of text alphabetically by default. There are many

options that control the sorting –

Option Description

-n Sorts numerically (example: 10 will sort after 2), ignores blanks

and tabs.

-r Reverses the order of sort.

-f Sorts upper and lowercase together.

+x Ignores first x fields when sorting.

More than two commands may be linked up into a pipe. Taking a previous pipe example

using grep, we can further sort the files modified in August by the order of size.

The following pipe consists of the commands ls, grep, and sort −

$ls -l | grep "Aug" | sort +4n

-rw-rw-r-- 1 carol doc 1605 Aug 23 07:35 macros

-rw-rw-r-- 1 john doc 2488 Aug 15 10:51 intro

-rw-rw-rw- 1 john doc 8515 Aug 6 15:30 ch07

-rw-rw-rw- 1 john doc 11008 Aug 6 14:10 ch02

$

This pipe sorts all files in your directory modified in August by the order of size, and prints

them on the terminal screen. The sort option +4n skips four fields (fields are separated

by blanks) then sorts the lines in numeric order.

The pg and more Commands

A long output can normally be zipped by you on the screen, but if you run text through

more or use the pg command as a filter; the display stops once the screen is full of text.

Let's assume that you have a long directory listing. To make it easier to read the sorted

listing, pipe the output through more as follows −

$ls -l | grep "Aug" | sort +4n | more

-rw-rw-r-- 1 carol doc 1605 Aug 23 07:35 macros

-rw-rw-r-- 1 john doc 2488 Aug 15 10:51 intro

-rw-rw-rw- 1 john doc 8515 Aug 6 15:30 ch07

-rw-rw-r-- 1 john doc 14827 Aug 9 12:40 ch03

 .

Unix

40

 .

 .

-rw-rw-rw- 1 john doc 16867 Aug 6 15:56 ch05

--More--(74%)

The screen will fill up once the screen is full of text consisting of lines sorted by the order

of the file size. At the bottom of the screen is the more prompt, where you can type a

command to move through the sorted text.

Once you're done with this screen, you can use any of the commands listed in the

discussion of the more program.

Unix

41

In this chapter, we will discuss in detail about process management in Unix. When you

execute a program on your Unix system, the system creates a special environment for

that program. This environment contains everything needed for the system to run the

program as if no other program were running on the system.

Whenever you issue a command in Unix, it creates, or starts, a new process. When you

tried out the ls command to list the directory contents, you started a process. A process,

in simple terms, is an instance of a running program.

The operating system tracks processes through a five-digit ID number known as the pid or

the process ID. Each process in the system has a unique pid.

Pids eventually repeat because all the possible numbers are used up and the next pid rolls

or starts over. At any point of time, no two processes with the same pid exist in the system

because it is the pid that Unix uses to track each process.

Starting a Process

When you start a process (run a command), there are two ways you can run it −

 Foreground Processes

 Background Processes

Foreground Processes

By default, every process that you start runs in the foreground. It gets its input from the

keyboard and sends its output to the screen.

You can see this happen with the ls command. If you wish to list all the files in your current

directory, you can use the following command −

$ls ch*.doc

This would display all the files, the names of which start with ch and end with .doc –

ch01-1.doc ch010.doc ch02.doc ch03-2.doc

ch04-1.doc ch040.doc ch05.doc ch06-2.doc

ch01-2.doc ch02-1.doc

The process runs in the foreground, the output is directed to my screen, and if the ls

command wants any input (which it does not), it waits for it from the keyboard.

While a program is running in the foreground and is time-consuming, no other commands

can be run (start any other processes) because the prompt would not be available until

the program finishes processing and comes out.

 Unix — Processes Management

Unix

42

Background Processes

A background process runs without being connected to your keyboard. If the background

process requires any keyboard input, it waits.

The advantage of running a process in the background is that you can run other

commands; you do not have to wait until it completes to start another!

The simplest way to start a background process is to add an ampersand (&) at the end of

the command.

$ls ch*.doc &

This displays all those files the names of which start with ch and end with .doc –

ch01-1.doc ch010.doc ch02.doc ch03-2.doc

ch04-1.doc ch040.doc ch05.doc ch06-2.doc

ch01-2.doc ch02-1.doc

Here, if the ls command wants any input (which it does not), it goes into a stop state until

we move it into the foreground and give it the data from the keyboard.

That first line contains information about the background process - the job number and

the process ID. You need to know the job number to manipulate it between the background

and the foreground.

Press the Enter key and you will see the following −

[1] + Done ls ch*.doc &

$

The first line tells you that the ls command background process finishes successfully. The

second is a prompt for another command.

Listing Running Processes

It is easy to see your own processes by running the ps (process status) command as

follows −

$ps

PID TTY TIME CMD

18358 ttyp3 00:00:00 sh

18361 ttyp3 00:01:31 abiword

18789 ttyp3 00:00:00 ps

Unix

43

One of the most commonly used flags for ps is the -f (f for full) option, which provides

more information as shown in the following example –

$ps -f

UID PID PPID C STIME TTY TIME CMD

amrood 6738 3662 0 10:23:03 pts/6 0:00 first_one

amrood 6739 3662 0 10:22:54 pts/6 0:00 second_one

amrood 3662 3657 0 08:10:53 pts/6 0:00 -ksh

amrood 6892 3662 4 10:51:50 pts/6 0:00 ps -f

Here is the description of all the fields displayed by ps -f command –

Column Description

UID User ID that this process belongs to (the person running it)

PID Process ID

PPID Parent process ID (the ID of the process that started it)

C CPU utilization of process

STIME Process start time

TTY Terminal type associated with the process

TIME CPU time taken by the process

CMD The command that started this process

There are other options which can be used along with ps command −

Option Description

-a Shows information about all users

-x Shows information about processes without terminals

-u Shows additional information like -f option

-e Displays extended information

Unix

44

Stopping Processes

Ending a process can be done in several different ways. Often, from a console-based

command, sending a CTRL + C keystroke (the default interrupt character) will exit the

command. This works when the process is running in the foreground mode.

If a process is running in the background, you should get its Job ID using the ps command.

After that, you can use the kill command to kill the process as follows −

$ps -f

UID PID PPID C STIME TTY TIME CMD

amrood 6738 3662 0 10:23:03 pts/6 0:00 first_one

amrood 6739 3662 0 10:22:54 pts/6 0:00 second_one

amrood 3662 3657 0 08:10:53 pts/6 0:00 -ksh

amrood 6892 3662 4 10:51:50 pts/6 0:00 ps -f

$kill 6738

Terminated

Here, the kill command terminates the first_one process. If a process ignores a regular

kill command, you can use kill -9 followed by the process ID as follows –

$kill -9 6738

Terminated

Parent and Child Processes

Each unix process has two ID numbers assigned to it: The Process ID (pid) and the Parent

process ID (ppid). Each user process in the system has a parent process.

Most of the commands that you run have the shell as their parent. Check the ps -f example

where this command listed both the process ID and the parent process ID.

Zombie and Orphan Processes

Normally, when a child process is killed, the parent process is updated via a SIGCHLD

signal. Then the parent can do some other task or restart a new child as needed. However,

sometimes the parent process is killed before its child is killed. In this case, the "parent of

all processes," the init process, becomes the new PPID (parent process ID). In some

cases, these processes are called orphan processes.

When a process is killed, a ps listing may still show the process with a Z state. This is a

zombie or defunct process. The process is dead and not being used. These processes are

different from the orphan processes. They have completed execution but still find an entry

in the process table.

Unix

45

Daemon Processes

Daemons are system-related background processes that often run with the permissions of

root and services requests from other processes.

A daemon has no controlling terminal. It cannot open /dev/tty. If you do a "ps -ef" and

look at the tty field, all daemons will have a ? for the tty.

To be precise, a daemon is a process that runs in the background, usually waiting for

something to happen that it is capable of working with. For example, a printer daemon

waiting for print commands.

If you have a program that calls for lengthy processing, then it’s worth to make it a daemon

and run it in the background.

The top Command

The top command is a very useful tool for quickly showing processes sorted by various

criteria.

It is an interactive diagnostic tool that updates frequently and shows information about

physical and virtual memory, CPU usage, load averages, and your busy processes.

Here is the simple syntax to run top command and to see the statistics of CPU utilization

by different processes −

$top

Job ID Versus Process ID

Background and suspended processes are usually manipulated via job number (job ID).

This number is different from the process ID and is used because it is shorter.

In addition, a job can consist of multiple processes running in a series or at the same time,

in parallel. Using the job ID is easier than tracking individual processes.

Unix

46

In this chapter, we will discuss in detail about network communication utilities in Unix.

When you work in a distributed environment, you need to communicate with remote users

and you also need to access remote Unix machines.

There are several Unix utilities that help users compute in a networked, distributed

environment. This chapter lists a few of them.

The ping Utility

The ping command sends an echo request to a host available on the network. Using this

command, you can check if your remote host is responding well or not.

The ping command is useful for the following −

 Tracking and isolating hardware and software problems.

 Determining the status of the network and various foreign hosts.

 Testing, measuring, and managing networks.

Syntax

Following is the simple syntax to use the ping command −

$ping hostname or ip-address

The above command starts printing a response after every second. To come out of the

command, you can terminate it by pressing CNTRL + C keys.

Example

Following is an example to check the availability of a host available on the network −

$ping google.com

PING google.com (74.125.67.100) 56(84) bytes of data.

64 bytes from 74.125.67.100: icmp_seq=1 ttl=54 time=39.4 ms

64 bytes from 74.125.67.100: icmp_seq=2 ttl=54 time=39.9 ms

64 bytes from 74.125.67.100: icmp_seq=3 ttl=54 time=39.3 ms

64 bytes from 74.125.67.100: icmp_seq=4 ttl=54 time=39.1 ms

64 bytes from 74.125.67.100: icmp_seq=5 ttl=54 time=38.8 ms

--- google.com ping statistics ---

22 packets transmitted, 22 received, 0% packet loss, time 21017ms

rtt min/avg/max/mdev = 38.867/39.334/39.900/0.396 ms

$

 Unix — Network Communication Utilities

Unix

47

If a host does not exist, you will receive the following output –

$ping giiiiiigle.com

ping: unknown host giiiiigle.com

$

The ftp Utility

Here, ftp stands for File Transfer Protocol. This utility helps you upload and download

your file from one computer to another computer.

The ftp utility has its own set of Unix-like commands. These commands help you perform

tasks such as −

 Connect and login to a remote host.

 Navigate directories.

 List directory contents.

 Put and get files.

 Transfer files as ascii, ebcdic or binary.

Syntax

Following is the simple syntax to use the ping command −

$ftp hostname or ip-address

The above command would prompt you for the login ID and the password. Once you are

authenticated, you can access the home directory of the login account and you would be

able to perform various commands.

The following tables lists out a few important commands −

Command Description

put filename Uploads filename from the local machine to the remote machine.

get filename Downloads filename from the remote machine to the local machine.

mput file list
Uploads more than one file from the local machine to the remote

machine.

mget file list
Downloads more than one file from the remote machine to the local

machine.

Unix

48

prompt off
Turns the prompt off. By default, you will receive a prompt to upload

or download files using mput or mget commands.

prompt on Turns the prompt on.

dir
Lists all the files available in the current directory of the remote

machine.

cd dirname Changes directory to dirname on the remote machine.

lcd dirname Changes directory to dirname on the local machine.

quit Helps logout from the current login.

It should be noted that all the files would be downloaded or uploaded to or from the current

directories. If you want to upload your files in a particular directory, you need to first

change to that directory and then upload the required files.

Example

Following is the example to show the working of a few commands −

$ftp amrood.com

Connected to amrood.com.

220 amrood.com FTP server (Ver 4.9 Thu Sep 2 20:35:07 CDT 2009)

Name (amrood.com:amrood): amrood

331 Password required for amrood.

Password:

230 User amrood logged in.

ftp> dir

200 PORT command successful.

150 Opening data connection for /bin/ls.

total 1464

drwxr-sr-x 3 amrood group 1024 Mar 11 20:04 Mail

drwxr-sr-x 2 amrood group 1536 Mar 3 18:07 Misc

drwxr-sr-x 5 amrood group 512 Dec 7 10:59 OldStuff

drwxr-sr-x 2 amrood group 1024 Mar 11 15:24 bin

drwxr-sr-x 5 amrood group 3072 Mar 13 16:10 mpl

-rw-r--r-- 1 amrood group 209671 Mar 15 10:57 myfile.out

drwxr-sr-x 3 amrood group 512 Jan 5 13:32 public

Unix

49

drwxr-sr-x 3 amrood group 512 Feb 10 10:17 pvm3

226 Transfer complete.

ftp> cd mpl

250 CWD command successful.

ftp> dir

200 PORT command successful.

150 Opening data connection for /bin/ls.

total 7320

-rw-r--r-- 1 amrood group 1630 Aug 8 1994 dboard.f

-rw-r----- 1 amrood group 4340 Jul 17 1994 vttest.c

-rwxr-xr-x 1 amrood group 525574 Feb 15 11:52 wave_shift

-rw-r--r-- 1 amrood group 1648 Aug 5 1994 wide.list

-rwxr-xr-x 1 amrood group 4019 Feb 14 16:26 fix.c

226 Transfer complete.

ftp> get wave_shift

200 PORT command successful.

150 Opening data connection for wave_shift (525574 bytes).

226 Transfer complete.

528454 bytes received in 1.296 seconds (398.1 Kbytes/s)

ftp> quit

221 Goodbye.

$

The telnet Utility

There are times when we are required to connect to a remote Unix machine and work on

that machine remotely. Telnet is a utility that allows a computer user at one site to make

a connection, login and then conduct work on a computer at another site.

Once you login using Telnet, you can perform all the activities on your remotely connected

machine. The following is an example of Telnet session −

C:>telnet amrood.com

Trying...

Connected to amrood.com.

Escape character is '^]'.

login: amrood

Unix

50

amrood's Password:

* *

* *

* WELCOME TO AMROOD.COM *

* *

* *

Last unsuccessful login: Fri Mar 3 12:01:09 IST 2009

Last login: Wed Mar 8 18:33:27 IST 2009 on pts/10

 { do your work }

$ logout

Connection closed.

C:>

The finger Utility

The finger command displays information about users on a given host. The host can be

either local or remote.

Finger may be disabled on other systems for security reasons.

Following is the simple syntax to use the finger command −

Check all the logged-in users on the local machine −

$ finger

Login Name Tty Idle Login Time Office

amrood pts/0 Jun 25 08:03 (62.61.164.115)

Get information about a specific user available on the local machine –

$ finger amrood

Login: amrood Name: (null)

Directory: /home/amrood Shell: /bin/bash

On since Thu Jun 25 08:03 (MST) on pts/0 from 62.61.164.115

No mail.

Unix

51

No Plan.

Check all the logged-in users on the remote machine –

$ finger @avtar.com

Login Name Tty Idle Login Time Office

amrood pts/0 Jun 25 08:03 (62.61.164.115)

Get the information about a specific user available on the remote machine −

$ finger amrood@avtar.com

Login: amrood Name: (null)

Directory: /home/amrood Shell: /bin/bash

On since Thu Jun 25 08:03 (MST) on pts/0 from 62.61.164.115

No mail.

No Plan.

Unix

52

In this chapter, we will understand how the vi Editor works in Unix. There are many ways

to edit files in Unix. Editing files using the screen-oriented text editor vi is one of the best

ways. This editor enables you to edit lines in context with other lines in the file.

An improved version of the vi editor which is called the VIM has also been made available

now. Here, VIM stands for Vi IMproved.

vi is generally considered the de facto standard in Unix editors because −

 It's usually available on all the flavors of Unix system.

 Its implementations are very similar across the board.

 It requires very few resources.

 It is more user-friendly than other editors such as the ed or the ex.

You can use the vi editor to edit an existing file or to create a new file from scratch. You

can also use this editor to just read a text file.

Starting the vi Editor

The following table lists out the basic commands to use the vi editor −

Command Description

vi filename
Creates a new file if it already does not exist, otherwise opens an

existing file.

vi -R filename Opens an existing file in the read-only mode.

view filename Opens an existing file in the read-only mode.

Following is an example to create a new file testfile if it already does not exist in the

current working directory −

$vi testfile

The above command will generate the following output –

|

~

~

~

 Unix — The vi Editor

Unix

53

~

~

~

~

~

~

~

~

~

"testfile" [New File]

You will notice a tilde (~) on each line following the cursor. A tilde represents an unused

line. If a line does not begin with a tilde and appears to be blank, there is a space, tab,

newline, or some other non-viewable character present.

You now have one open file to start working on. Before proceeding further, let us

understand a few important concepts.

Operation Modes

While working with the vi editor, we usually come across the following two modes −

 Command mode − This mode enables you to perform administrative tasks such

as saving the files, executing the commands, moving the cursor, cutting (yanking)

and pasting the lines or words, as well as finding and replacing. In this mode,

whatever you type is interpreted as a command.

 Insert mode − This mode enables you to insert text into the file. Everything that's

typed in this mode is interpreted as input and placed in the file.

vi always starts in the command mode. To enter text, you must be in the insert mode

for which simply type i. To come out of the insert mode, press the Esc key, which will take

you back to the command mode.

Hint − If you are not sure which mode you are in, press the Esc key twice; this will take

you to the command mode. You open a file using the vi editor. Start by typing some

characters and then come to the command mode to understand the difference.

Getting Out of vi

The command to quit out of vi is :q. Once in the command mode, type colon, and 'q',

followed by return. If your file has been modified in any way, the editor will warn you of

this, and not let you quit. To ignore this message, the command to quit out of vi without

saving is :q!. This lets you exit vi without saving any of the changes.

Unix

54

The command to save the contents of the editor is :w. You can combine the above

command with the quit command, or use :wq and return.

The easiest way to save your changes and exit vi is with the ZZ command. When you

are in the command mode, type ZZ. The ZZ command works the same way as the :wq

command.

If you want to specify/state any particular name for the file, you can do so by specifying

it after the :w. For example, if you wanted to save the file you were working on as another

filename called filename2, you would type :w filename2 and return.

Moving within a File

To move around within a file without affecting your text, you must be in the command

mode (press Esc twice). The following table lists out a few commands you can use to move

around one character at a time −

Command Description

k Moves the cursor up one line

j Moves the cursor down one line

h Moves the cursor to the left one character position

l Moves the cursor to the right one character position

The following points need to be considered to move within a file −

 vi is case-sensitive. You need to pay attention to capitalization when using the

commands.

 Most commands in vi can be prefaced by the number of times you want the action

to occur. For example, 2j moves the cursor two lines down the cursor location.

There are many other ways to move within a file in vi. Remember that you must be in the

command mode (press Esc twice). The following table lists out a few commands to move

around the file –

Command Description

0 or | Positions the cursor at the beginning of a line

$ Positions the cursor at the end of a line

w Positions the cursor to the next word

Unix

55

b Positions the cursor to the previous word

(Positions the cursor to the beginning of the current sentence

) Positions the cursor to the beginning of the next sentence

E Moves to the end of the blank delimited word

{ Moves a paragraph back

} Moves a paragraph forward

[[Moves a section back

]] Moves a section forward

n| Moves to the column n in the current line

1G Moves to the first line of the file

G Moves to the last line of the file

nG Moves to the nth line of the file

:n Moves to the nth line of the file

fc Moves forward to c

Fc Moves back to c

H Moves to the top of the screen

nH Moves to the nth line from the top of the screen

M Moves to the middle of the screen

L Move to the bottom of the screen

Unix

56

nL Moves to the nth line from the bottom of the screen

:x
Colon followed by a number would position the cursor on the line

number represented by x

Control Commands

The following commands can be used with the Control Key to performs functions as given

in the table below −

Command Description

CTRL+d Moves forward 1/2 screen

CTRL+f Moves forward one full screen

CTRL+u Moves backward 1/2 screen

CTRL+b Moves backward one full screen

CTRL+e Moves the screen up one line

CTRL+y Moves the screen down one line

CTRL+u Moves the screen up 1/2 page

CTRL+d Moves the screen down 1/2 page

CTRL+b Moves the screen up one page

CTRL+f Moves the screen down one page

CTRL+I Redraws the screen

Unix

57

Editing Files

To edit the file, you need to be in the insert mode. There are many ways to enter the

insert mode from the command mode −

Command Description

i Inserts text before the current cursor location

I Inserts text at the beginning of the current line

a Inserts text after the current cursor location

A Inserts text at the end of the current line

o Creates a new line for text entry below the cursor location

O Creates a new line for text entry above the cursor location

[[

Deleting Characters

Here is a list of important commands, which can be used to delete characters and lines in

an open file −

Command Description

x Deletes the character under the cursor location

X Deletes the character before the cursor location

dw Deletes from the current cursor location to the next word

d^
Deletes from the current cursor position to the beginning of the

line

d$ Deletes from the current cursor position to the end of the line

D Deletes from the cursor position to the end of the current line

dd Deletes the line the cursor is on

Unix

58

As mentioned above, most commands in vi can be prefaced by the number of times you

want the action to occur. For example, 2x deletes two characters under the cursor location

and 2dd deletes two lines the cursor is on.

It is recommended that the commands are practiced before we proceed further.

Change Commands

You also have the capability to change characters, words, or lines in vi without deleting

them. Here are the relevant commands –

Command Description

cc Removes the contents of the line, leaving you in insert mode.

cw
Changes the word the cursor is on from the cursor to the lowercase w

end of the word.

r
Replaces the character under the cursor. vi returns to the command

mode after the replacement is entered.

R
Overwrites multiple characters beginning with the character currently

under the cursor. You must use Esc to stop the overwriting.

s
Replaces the current character with the character you type. Afterward,

you are left in the insert mode.

S
Deletes the line the cursor is on and replaces it with the new text.

After the new text is entered, vi remains in the insert mode.

Copy and Paste Commands

You can copy lines or words from one place and then you can paste them at another place

using the following commands −

Command Description

yy Copies the current line.

yw
Copies the current word from the character the lowercase w cursor is

on, until the end of the word.

Unix

59

p Puts the copied text after the cursor.

P Puts the yanked text before the cursor.

Advanced Commands

There are some advanced commands that simplify day-to-day editing and allow for more

efficient use of vi −

Command Description

J Joins the current line with the next one. A count of j commands join

many lines.

<< Shifts the current line to the left by one shift width.

>> Shifts the current line to the right by one shift width.

~ Switches the case of the character under the cursor.

^G Press Ctrl and G keys at the same time to show the current filename

and the status.

U Restores the current line to the state it was in before the cursor entered

the line.

u This helps undo the last change that was done in the file. Typing 'u'

again will re-do the change.

J Joins the current line with the next one. A count joins that many lines.

:f Displays the current position in the file in % and the file name, the total

number of file.

:f filename Renames the current file to filename.

:w filename Writes to file filename.

:e filename Opens another file with filename.

Unix

60

:cd dirname Changes the current working directory to dirname.

:e # Toggles between two open files.

:n In case you open multiple files using vi, use :n to go to the next file in

the series.

:p In case you open multiple files using vi, use :p to go to the previous file

in the series.

:N In case you open multiple files using vi, use :N to go to the previous

file in the series.

:r file Reads file and inserts it after the current line.

:nr file Reads file and inserts it after the line n.

[

Word and Character Searching

The vi editor has two kinds of searches: string and character. For a string search, the /

and ? commands are used. When you start these commands, the command just typed will

be shown on the last line of the screen, where you type the particular string to look for.

These two commands differ only in the direction where the search takes place −

 The / command searches forwards (downwards) in the file.

 The ? command searches backwards (upwards) in the file.

The n and N commands repeat the previous search command in the same or the opposite

direction, respectively. Some characters have special meanings. These characters must be

preceded by a backslash (\) to be included as part of the search expression.

Character Description

^
Searches at the beginning of the line (Use at the beginning of a search

expression).

. Matches a single character.

* Matches zero or more of the previous character.

$ End of the line (Use at the end of the search expression).

Unix

61

[Starts a set of matching or non-matching expressions.

<
This is put in an expression escaped with the backslash to find the

ending or the beginning of a word.

> This helps see the '<' character description above.

The character search searches within one line to find a character entered after the

command. The f and F commands search for a character on the current line only. f

searches forwards and F searches backwards and the cursor moves to the position of the

found character.

The t and T commands search for a character on the current line only, but for t, the cursor

moves to the position before the character, and T searches the line backwards to the

position after the character.

Set Commands

You can change the look and feel of your vi screen using the following :set commands.

Once you are in the command mode, type :set followed by any of the following commands.

Command Description

:set ic Ignores the case when searching

:set ai Sets autoindent

:set noai Unsets autoindent

:set nu Displays lines with line numbers on the left side

:set sw
Sets the width of a software tabstop. For example, you would set a shift

width of 4 with this command — :set sw=4

:set ws
If wrapscan is set, and the word is not found at the bottom of the file,

it will try searching for it at the beginning

:set wm

If this option has a value greater than zero, the editor will automatically

"word wrap". For example, to set the wrap margin to two characters,

you would type this: :set wm=2

:set ro Changes file type to "read only"

Unix

62

:set term Prints terminal type

:set bf Discards control characters from input

Running Commands

The vi has the capability to run commands from within the editor. To run a command, you

only need to go to the command mode and type :! command.

For example, if you want to check whether a file exists before you try to save your file

with that filename, you can type :! ls and you will see the output of ls on the screen.

You can press any key (or the command's escape sequence) to return to your vi session.

Replacing Text

The substitution command (:s/) enables you to quickly replace words or groups of words

within your files. Following is the syntax to replace text −

:s/search/replace/g

The g stands for globally. The result of this command is that all occurrences on the cursor's

line are changed.

Important Points to Note

The following points will add to your success with vi −

 You must be in command mode to use the commands. (Press Esc twice at any time

to ensure that you are in command mode.)

 You must be careful with the commands. These are case-sensitive.

 You must be in insert mode to enter text.

Unix

63

Unix Shell Programming

Unix

64

A Shell provides you with an interface to the Unix system. It gathers input from you and

executes programs based on that input. When a program finishes executing, it displays

that program's output.

Shell is an environment in which we can run our commands, programs, and shell scripts.

There are different flavors of a shell, just as there are different flavors of operating

systems. Each flavor of shell has its own set of recognized commands and functions.

Shell Prompt

The prompt, $, which is called the command prompt, is issued by the shell. While the

prompt is displayed, you can type a command.

Shell reads your input after you press Enter. It determines the command you want

executed by looking at the first word of your input. A word is an unbroken set of characters.

Spaces and tabs separate words.

Following is a simple example of the date command, which displays the current date and

time:

$date

Thu Jun 25 08:30:19 MST 2009

You can customize your command prompt using the environment variable PS1 explained

in the Environment tutorial.

Shell Types

In Unix, there are two major types of shells:

 Bourne shell — If you are using a Bourne-type shell, the $ character is the default

prompt.

 C shell — If you are using a C-type shell, the % character is the default prompt.

The Bourne Shell has the following subcategories –

 Bourne shell (sh)

 Korn shell (ksh)

 Bourne Again shell (bash)

 POSIX shell (sh)

The different C-type shells follow –

 C shell (csh)

 TENEX/TOPS C shell (tcsh)

 Unix — What is Shell?

Unix

65

The original Unix shell was written in the mid-1970s by Stephen R. Bourne while he was

at the AT&T Bell Labs in New Jersey.

Bourne shell was the first shell to appear on Unix systems, thus it is referred to as "the

shell".

Bourne shell is usually installed as /bin/sh on most versions of Unix. For this reason, it

is the shell of choice for writing scripts that can be used on different versions of Unix.

In this chapter, we are going to cover most of the Shell concepts that are based on the

Borne Shell.

Shell Scripts

The basic concept of a shell script is a list of commands, which are listed in the order of

execution. A good shell script will have comments, preceded by # sign, describing the

steps.

There are conditional tests, such as value A is greater than value B, loops allowing us to

go through massive amounts of data, files to read and store data, and variables to read

and store data, and the script may include functions.

We are going to write many scripts in the next sections. It would be a simple text file in

which we would put all our commands and several other required constructs that tell the

shell environment what to do and when to do it.

Shell scripts and functions are both interpreted. This means they are not compiled.

Example Script

Assume we create a test.sh script. Note all the scripts would have the .sh extension.

Before you add anything else to your script, you need to alert the system that a shell script

is being started. This is done using the shebang construct. For example −

#!/bin/sh

This tells the system that the commands that follow are to be executed by the Bourne

shell. It's called a shebang because the # symbol is called a hash, and the ! symbol is

called a bang.

To create a script containing these commands, you put the shebang line first and then add

the commands −

#!/bin/bash

pwd

ls

Unix

66

Shell Comments

You can put your comments in your script as follows −

#!/bin/bash

Author : Zara Ali

Copyright (c) Tutorialspoint.com

Script follows here:

pwd

ls

Save the above content and make the script executable –

$chmod +x test.sh

[

The shell script is now ready to be executed –

$./test.sh

[[

Upon execution, you will receive the following result –

/home/amrood

index.htm unix-basic_utilities.htm unix-directories.htm

test.sh unix-communication.htm unix-environment.htm

[[

Note: To execute a program available in the current directory, use ./program_name

Extended Shell Scripts

Shell scripts have several required constructs that tell the shell environment what to do

and when to do it. Of course, most scripts are more complex than the above one.

The shell is, after all, a real programming language, complete with variables, control

structures, and so forth. No matter how complicated a script gets, it is still just a list of

commands executed sequentially.

Unix

67

The following script uses the read command which takes the input from the keyboard and

assigns it as the value of the variable PERSON and finally prints it on STDOUT.

#!/bin/sh

Author : Zara Ali

Copyright (c) Tutorialspoint.com

Script follows here:

echo "What is your name?"

read PERSON

echo "Hello, $PERSON"

Here is a sample run of the script –

$./test.sh

What is your name?

Zara Ali

Hello, Zara Ali

$

Unix

68

In this chapter, we will learn how to use Shell variables in Unix. A variable is a character

string to which we assign a value. The value assigned could be a number, text, filename,

device, or any other type of data.

A variable is nothing more than a pointer to the actual data. The shell enables you to

create, assign, and delete variables.

Variable Names

The name of a variable can contain only letters (a to z or A to Z), numbers (0 to 9) or the

underscore character (_).

By convention, Unix shell variables will have their names in UPPERCASE.

The following examples are valid variable names –

_ALI

TOKEN_A

VAR_1

VAR_2

[[

Following are the examples of invalid variable names –

2_VAR

-VARIABLE

VAR1-VAR2

VAR_A!

The reason you cannot use other characters such as !, *, or - is that these characters have

a special meaning for the shell.

Defining Variables

Variables are defined as follows −

variable_name=variable_value

For example −

NAME="Zara Ali"

 Unix — Using Shell Variables

Unix

69

The above example defines the variable NAME and assigns the value "Zara Ali" to it.

Variables of this type are called scalar variables. A scalar variable can hold only one

value at a time.

Shell enables you to store any value you want in a variable. For example −

VAR1="Zara Ali"

VAR2=100

Accessing Values

To access the value stored in a variable, prefix its name with the dollar sign ($) −

For example, the following script will access the value of defined variable NAME and print

it on STDOUT −

#!/bin/sh

NAME="Zara Ali"

echo $NAME

The above script will produce the following value –

Zara Ali

Read-only Variables

Shell provides a way to mark variables as read-only by using the read-only command.

After a variable is marked read-only, its value cannot be changed.

For example, the following script generates an error while trying to change the value of

NAME −

#!/bin/sh

NAME="Zara Ali"

readonly NAME

NAME="Qadiri"

The above script will generate the following result –

/bin/sh: NAME: This variable is read only.

Unix

70

Unsetting Variables

Unsetting or deleting a variable directs the shell to remove the variable from the list of

variables that it tracks. Once you unset a variable, you cannot access the stored value in

the variable.

Following is the syntax to unset a defined variable using the unset command −

unset variable_name

The above command unsets the value of a defined variable. Here is a simple example that

demonstrates how the command works –

#!/bin/sh

NAME="Zara Ali"

unset NAME

echo $NAME

The above example does not print anything. You cannot use the unset command

to unset variables that are marked readonly.

Variable Types

When a shell is running, three main types of variables are present −

 Local Variables − A local variable is a variable that is present within the current

instance of the shell. It is not available to programs that are started by the shell.

They are set at the command prompt.

 Environment Variables − An environment variable is available to any child

process of the shell. Some programs need environment variables in order to

function correctly. Usually, a shell script defines only those environment variables

that are needed by the programs that it runs.

 Shell Variables − A shell variable is a special variable that is set by the shell and

is required by the shell in order to function correctly. Some of these variables are

environment variables whereas others are local variables.

Unix

71

In this chapter, we will discuss in detail about special variable in Unix. In one of our

previous chapters, we understood how to be careful when we use certain non-

alphanumeric characters in variable names. This is because those characters are used in

the names of special Unix variables. These variables are reserved for specific functions.

For example, the $ character represents the process ID number, or PID, of the current

shell:

$echo $$

The above command writes the PID of the current shell –

29949

The following table shows a number of special variables that you can use in your shell

scripts –

Variable Description

$0 The filename of the current script.

$n

These variables correspond to the arguments with which a script was

invoked. Here n is a positive decimal number corresponding to the position

of an argument (the first argument is $1, the second argument is $2, and
so on).

$# The number of arguments supplied to a script.

$*
All the arguments are double quoted. If a script receives two arguments, $*
is equivalent to $1 $2.

$@
All the arguments are individually double quoted. If a script receives two

arguments, $@ is equivalent to $1 $2.

$? The exit status of the last command executed.

$$
The process number of the current shell. For shell scripts, this is the process
ID under which they are executing.

$! The process number of the last background command.

 Unix — Special Variables

Unix

72

Command-Line Arguments

The command-line arguments $1, $2, $3, ...$9 are positional parameters, with $0 pointing

to the actual command, program, shell script, or function and $1, $2, $3, ...$9 as the

arguments to the command.

Following script uses various special variables related to the command line −

#!/bin/sh

echo "File Name: $0"

echo "First Parameter : $1"

echo "Second Parameter : $2"

echo "Quoted Values: $@"

echo "Quoted Values: $*"

echo "Total Number of Parameters : $#"

Here is a sample run for the above script –

$./test.sh Zara Ali

File Name : ./test.sh

First Parameter : Zara

Second Parameter : Ali

Quoted Values: Zara Ali

Quoted Values: Zara Ali

Total Number of Parameters : 2

Special Parameters $* and $@

There are special parameters that allow accessing all the command-line arguments at

once. $* and $@ both will act the same unless they are enclosed in double quotes, "".

Both the parameters specify the command-line arguments. However, the "$*" special

parameter takes the entire list as one argument with spaces between and the "$@" special

parameter takes the entire list and separates it into separate arguments.

We can write the shell script as shown below to process an unknown number of command-

line arguments with either the $* or $@ special parameters −

#!/bin/sh

for TOKEN in $*

do

 echo $TOKEN

Unix

73

done

Here is a sample run for the above script –

$./test.sh Zara Ali 10 Years Old

Zara

Ali

10

Years

Old

Note: Here do...done is a kind of loop that will be covered in a subsequent tutorial.

Exit Status

The $? variable represents the exit status of the previous command.

Exit status is a numerical value returned by every command upon its completion. As a

rule, most commands return an exit status of 0 if they were successful, and 1 if they were

unsuccessful.

Some commands return additional exit statuses for particular reasons. For example, some

commands differentiate between kinds of errors and will return various exit values

depending on the specific type of failure.

Following is the example of successful command −

$./test.sh Zara Ali

File Name : ./test.sh

First Parameter : Zara

Second Parameter : Ali

Quoted Values: Zara Ali

Quoted Values: Zara Ali

Total Number of Parameters : 2

$echo $?

0

$

Unix

74

In this chapter, we will discuss how to use shell arrays in Unix. A shell variable is capable

enough to hold a single value. These variables are called scalar variables.

Shell supports a different type of variable called an array variable. This can hold multiple

values at the same time. Arrays provide a method of grouping a set of variables. Instead

of creating a new name for each variable that is required, you can use a single array

variable that stores all the other variables.

All the naming rules discussed for Shell Variables would be applicable while naming arrays.

Defining Array Values

The difference between an array variable and a scalar variable can be explained as follows.

Suppose you are trying to represent the names of various students as a set of variables.

Each of the individual variables is a scalar variable as follows −

NAME01="Zara"

NAME02="Qadir"

NAME03="Mahnaz"

NAME04="Ayan"

NAME05="Daisy"

[[

We can use a single array to store all the above mentioned names. Following is the simplest

method of creating an array variable. This helps assign a value to one of its indices.

array_name[index]=value

[

Here array_name is the name of the array, index is the index of the item in the array that

you want to set, and value is the value you want to set for that item.

As an example, the following commands −

NAME[0]="Zara"

NAME[1]="Qadir"

NAME[2]="Mahnaz"

NAME[3]="Ayan"

NAME[4]="Daisy"

[[[[

 Unix — Using Shell Arrays

Unix

75

If you are using the ksh shell, here is the syntax of array initialization −

set -A array_name value1 value2 ... valuen

[[

If you are using the bash shell, here is the syntax of array initialization −

array_name=(value1 ... valuen)

Accessing Array Values

After you have set any array variable, you access it as follows −

${array_name[index]}

Here array_name is the name of the array, and index is the index of the value to be

accessed. Following is an example to understand the concept –

#!/bin/sh

NAME[0]="Zara"

NAME[1]="Qadir"

NAME[2]="Mahnaz"

NAME[3]="Ayan"

NAME[4]="Daisy"

echo "First Index: ${NAME[0]}"

echo "Second Index: ${NAME[1]}"

[[[[

The above example will generate the following result –

$./test.sh

First Index: Zara

Second Index: Qadir

You can access all the items in an array in one of the following ways –

${array_name[*]}

${array_name[@]}

[[

Unix

76

Here array_name is the name of the array you are interested in. Following example will

help you understand the concept –

#!/bin/sh

NAME[0]="Zara"

NAME[1]="Qadir"

NAME[2]="Mahnaz"

NAME[3]="Ayan"

NAME[4]="Daisy"

echo "First Method: ${NAME[*]}"

echo "Second Method: ${NAME[@]}"

The above example will generate the following result –

$./test.sh

First Method: Zara Qadir Mahnaz Ayan Daisy

Second Method: Zara Qadir Mahnaz Ayan Daisy

Unix

77

There are various operators supported by each shell. We will discuss in detail about Bourne

shell (default shell) in this chapter.

We will now discuss the following operators −

 Arithmetic Operators

 Relational Operators

 Boolean Operators

 String Operators

 File Test Operators

Bourne shell didn't originally have any mechanism to perform simple arithmetic operations

but it uses external programs, either awk or expr.

The following example shows how to add two numbers −

#!/bin/sh

val=`expr 2 + 2`

echo "Total value : $val"

[[[[[[

The above script will generate the following result –

Total value : 4

The following points need to be considered while adding –

 There must be spaces between operators and expressions. For example, 2+2 is not

correct; it should be written as 2 + 2.

 The complete expression should be enclosed between ‘ ‘, called the inverted

commas.

Arithmetic Operators

The following arithmetic operators are supported by Bourne Shell.

Assume variable a holds 10 and variable b holds 20 then −

 Unix — Shell Basic Operators

Unix

78

Operator Description Example

+
Addition - Adds values on either side of
the operator

`expr $a + $b` will give 30

-
Subtraction - Subtracts right hand
operand from left hand operand

`expr $a - $b` will give -10

*
Multiplication - Multiplies values on either
side of the operator

`expr $a * $b` will give 200

/
Division - Divides left hand operand by
right hand operand

`expr $b / $a` will give 2

%

Modulus - Divides left hand operand by

right hand operand and returns
remainder

`expr $b % $a` will give 0

=
Assignment - Assigns right operand in left
operand

a=$b would assign value of b
into a

==
Equality - Compares two numbers, if both

are same then returns true.

[$a == $b] would return

false.

!=
Not Equality - Compares two numbers, if
both are different then returns true.

[$a != $b] would return true.

[

It is very important to understand that all the conditional expressions should be inside

square braces with spaces around them, for example [$a == $b] is correct whereas,

[$a==$b] is incorrect.

All the arithmetical calculations are done using long integers.

Unix - Shell Arithmetic Operators Example

Here is an example which uses all the arithmetic operators –

#!/bin/sh

a=10

b=20

val=`expr $a + $b`

echo "a + b : $val"

Unix

79

val=`expr $a - $b`

echo "a - b : $val"

val=`expr $a * $b`

echo "a * b : $val"

val=`expr $b / $a`

echo "b / a : $val"

val=`expr $b % $a`

echo "b % a : $val"

if [$a == $b]

then

 echo "a is equal to b"

fi

if [$a != $b]

then

 echo "a is not equal to b"

fi

The above script will produce the following result –

a + b : 30

a - b : -10

a * b : 200

b / a : 2

b % a : 0

a is not equal to b

The following points need to be considered when using the Arithmetic Operators –

 There must be spaces between the operators and the expressions. For example,

2+2 is not correct; it should be written as 2 + 2.

 Complete expression should be enclosed between ‘ ‘, called the inverted commas.

 You should use \ on the * symbol for multiplication.

Unix

80

 if...then...fi statement is a decision-making statement which has been explained

in the next chapter.

Relational Operators

Bourne Shell supports the following relational operators that are specific to numeric values.

These operators do not work for string values unless their value is numeric.

For example, following operators will work to check a relation between 10 and 20 as well

as in between "10" and "20" but not in between "ten" and "twenty".

Assume variable a holds 10 and variable b holds 20 then −

Operator Description Example

-eq
Checks if the value of two operands are equal or not; if yes,
then the condition becomes true.

[$a -eq $b]
is not true.

-ne
Checks if the value of two operands are equal or not; if
values are not equal, then the condition becomes true.

[$a -ne $b]
is true.

-gt
Checks if the value of left operand is greater than the value

of right operand; if yes, then the condition becomes true.

[$a -gt $b]

is not true.

-lt
Checks if the value of left operand is less than the value of
right operand; if yes, then the condition becomes true.

[$a -lt $b]
is true.

-ge
Checks if the value of left operand is greater than or equal

to the value of right operand; if yes, then the condition

becomes true.

[$a -ge $b]
is not true.

-le
Checks if the value of left operand is less than or equal to

the value of right operand; if yes, then the condition
becomes true.

[$a -le $b]
is true.

It is very important to understand that all the conditional expressions should be placed

inside square braces with spaces around them. For example, [$a <= $b] is correct

whereas, [$a <= $b] is incorrect.

Unix - Shell Relational Operators Example

Here is an example which uses all the relational operators –

#!/bin/sh

a=10

b=20

Unix

81

if [$a -eq $b]

then

 echo "$a -eq $b : a is equal to b"

else

 echo "$a -eq $b: a is not equal to b"

fi

if [$a -ne $b]

then

 echo "$a -ne $b: a is not equal to b"

else

 echo "$a -ne $b : a is equal to b"

fi

if [$a -gt $b]

then

 echo "$a -gt $b: a is greater than b"

else

 echo "$a -gt $b: a is not greater than b"

fi

if [$a -lt $b]

then

 echo "$a -lt $b: a is less than b"

else

 echo "$a -lt $b: a is not less than b"

fi

if [$a -ge $b]

then

 echo "$a -ge $b: a is greater or equal to b"

else

 echo "$a -ge $b: a is not greater or equal to b"

fi

if [$a -le $b]

Unix

82

then

 echo "$a -le $b: a is less or equal to b"

else

 echo "$a -le $b: a is not less or equal to b"

fi

The above script will generate the following result –

10 -eq 20: a is not equal to b

10 -ne 20: a is not equal to b

10 -gt 20: a is not greater than b

10 -lt 20: a is less than b

10 -ge 20: a is not greater or equal to b

10 -le 20: a is less or equal to b

The following points need to be considered while working with relational operators –

 There must be spaces between the operators and the expressions. For example,

2+2 is not correct; it should be written as 2 + 2.

 if...then...else...fi statement is a decision-making statement which has been

explained in the next chapter.

Boolean Operators

The following Boolean operators are supported by the Bourne Shell.

Assume variable a holds 10 and variable b holds 20 then −

Operator Description Example

!
This is logical negation. This inverts a true condition into
false and vice versa.

[! false] is true.

-o
This is logical OR. If one of the operands is true, then
the condition becomes true.

[$a -lt 20 -o $b
-gt 100] is true.

-a
This is logical AND. If both the operands are true, then

the condition becomes true otherwise false.

[$a -lt 20 -a $b

-gt 100] is false.

Unix - Shell Boolean Operators Example

Unix

83

Here is an example which uses all the Boolean operators –

#!/bin/sh

a=10

b=20

if [$a != $b]

then

 echo "$a != $b : a is not equal to b"

else

 echo "$a != $b: a is equal to b"

fi

if [$a -lt 100 -a $b -gt 15]

then

 echo "$a -lt 100 -a $b -gt 15 : returns true"

else

 echo "$a -lt 100 -a $b -gt 15 : returns false"

fi

if [$a -lt 100 -o $b -gt 100]

then

 echo "$a -lt 100 -o $b -gt 100 : returns true"

else

 echo "$a -lt 100 -o $b -gt 100 : returns false"

fi

if [$a -lt 5 -o $b -gt 100]

then

 echo "$a -lt 100 -o $b -gt 100 : returns true"

else

 echo "$a -lt 100 -o $b -gt 100 : returns false"

fi

[[[

The above script will generate the following result −

Unix

84

10 != 20 : a is not equal to b

10 -lt 100 -a 20 -gt 15 : returns true

10 -lt 100 -o 20 -gt 100 : returns true

10 -lt 5 -o 20 -gt 100 : returns false

The following points need to be considered while using the operators −

 There must be spaces between the operators and the expressions. For example,

2+2 is not correct; it should be written as 2 + 2.

 if...then...else...fi statement is a decision-making statement which has been

explained in the next chapter.

String Operators

The following string operators are supported by Bourne Shell.

Assume variable a holds "abc" and variable b holds "efg" then −

Operator Description Example

=
Checks if the value of two operands are equal or not; if yes,
then the condition becomes true.

[$a = $b

] is not
true.

!=
Checks if the value of two operands are equal or not; if values
are not equal then the condition becomes true.

[$a !=

$b] is
true.

-z
Checks if the given string operand size is zero; if it is zero
length, then it returns true.

[-z $a]

is not

true.

-n
Checks if the given string operand size is non-zero; if it is non-
zero length, then it returns true.

[-n $a]

is not
false.

str
Checks if str is not the empty string; if it is empty, then it
returns false.

[$a] is
not false.

[[

Unix - Shell String Operators Example

Unix

85

Here is an example which uses all the string operators −

#!/bin/sh

a="abc"

b="efg"

if [$a = $b]

then

 echo "$a = $b : a is equal to b"

else

 echo "$a = $b: a is not equal to b"

fi

if [$a != $b]

then

 echo "$a != $b : a is not equal to b"

else

 echo "$a != $b: a is equal to b"

fi

if [-z $a]

then

 echo "-z $a : string length is zero"

else

 echo "-z $a : string length is not zero"

fi

if [-n $a]

then

 echo "-n $a : string length is not zero"

else

 echo "-n $a : string length is zero"

fi

if [$a]

then

Unix

86

 echo "$a : string is not empty"

else

 echo "$a : string is empty"

fi

The above script will generate the following result −

abc = efg: a is not equal to b

abc != efg : a is not equal to b

-z abc : string length is not zero

-n abc : string length is not zero

abc : string is not empty

The following points need to be considered while using the operator −

 There must be spaces between the operators and the expressions. For example,

2+2 is not correct. It should be written as 2 + 2.

 if...then...else...fi statement is a decision-making statement which has been

explained in the next chapter.

File Test Operators

We have a few operators that can be used to test various properties associated with a Unix

file.

Assume a variable file holds an existing file name "test" the size of which is 100 bytes and

has read, write and execute permission on −

Operator Description Example

-b file
Checks if file is a block special file; if yes, then the condition
becomes true.

[-b $file]
is false.

-c file
Checks if file is a character special file; if yes, then the
condition becomes true.

[-c $file] is
false.

-d file
Checks if file is a directory; if yes, then the condition becomes

true.

[-d $file]

is not true.

-f file
Checks if file is an ordinary file as opposed to a directory or
special file; if yes, then the condition becomes true.

[-f $file] is
true.

Unix

87

-g file
Checks if file has its set group ID (SGID) bit set; if yes, then
the condition becomes true.

[-g $file]
is false.

-k file
Checks if file has its sticky bit set; if yes, then the condition
becomes true.

[-k $file]
is false.

-p file
Checks if file is a named pipe; if yes, then the condition

becomes true.

[-p $file]

is false.

-t file
Checks if file descriptor is open and associated with a
terminal; if yes, then the condition becomes true.

[-t $file] is
false.

-u file
Checks if file has its Set User ID (SUID) bit set; if yes, then
the condition becomes true.

[-u $file]
is false.

-r file
Checks if file is readable; if yes, then the condition becomes
true.

[-r $file] is
true.

-w file
Checks if file is writable; if yes, then the condition becomes
true.

[-w $file]
is true.

-x file
Checks if file is executable; if yes, then the condition becomes

true.

[-x $file]

is true.

-s file
Checks if file has size greater than 0; if yes, then condition
becomes true.

[-s $file] is
true.

-e file Checks if file exists; is true even if file is a directory but exists.
[-e $file]
is true.

Unix - Shell File Test Operators Example

The following example uses all the file test operators −

Assume a variable file holds an existing file name

"/var/www/tutorialspoint/unix/test.sh" the size of which is 100 bytes and has

read, write and execute permission –

#!/bin/sh

file="/var/www/tutorialspoint/unix/test.sh"

if [-r $file]

then

Unix

88

 echo "File has read access"

else

 echo "File does not have read access"

fi

if [-w $file]

then

 echo "File has write permission"

else

 echo "File does not have write permission"

fi

if [-x $file]

then

 echo "File has execute permission"

else

 echo "File does not have execute permission"

fi

if [-f $file]

then

 echo "File is an ordinary file"

else

 echo "This is sepcial file"

fi

if [-d $file]

then

 echo "File is a directory"

else

 echo "This is not a directory"

fi

if [-s $file]

then

 echo "File size is zero"

else

 echo "File size is not zero"

Unix

89

fi

if [-e $file]

then

 echo "File exists"

else

 echo "File does not exist"

fi

The above script will produce the following result −

File has read access

File has write permission

File has execute permission

File is an ordinary file

This is not a directory

File size is zero

File exists

The following points need to be considered while using file test operators −

 There must be spaces between the operators and the expressions. For example,

2+2 is not correct; it should be written as 2 + 2.

 if...then...else...fi statement is a decision-making statement which has been

explained in the next chapter.

C Shell Operators

Following link will give you a brief idea on C Shell Operators: C Shell Operators

Unix - C Shell Operators

We will now list down all the operators available in C Shell. Here most of the operators are

very similar to what we have in C Programming language.

Operators are listed in the order of decreasing precedence −

Arithmetic and Logical Operators

The following table lists out a few Arithmetic and Logical Operators:

Operator Description

https://www.tutorialspoint.com/unix/unix-c-shell-operators.htm

Unix

90

() Change precedence

~ 1's complement

! Logical negation

* Multiply

/ Divide

% Modulo

+ Add

- Subtract

<< Left shift

>> Right shift

== String comparison for equality

!= String comparison for non-equality

=~ Pattern matching

& Bitwise "and"

^ Bitwise "exclusive or"

| Bitwise "inclusive or"

&& Logical "and"

|| Logical "or"

++ Increment

Unix

91

-- Decrement

= Assignment

*= Multiply left side by right side and update left side

/= Divide left side by right side and update left side

+= Add left side to right side and update left side

-= Subtract left side from right side and update left side

^= "Exclusive or" left side to right side and update left side

%= Divide left by right side and update left side with remainder

File Test Operators

The following operators test various properties associated with a Unix file.

Operator Description

-r file Checks if file is readable; if yes, then the condition becomes true.

-w file Checks if file is writable; if yes, then the condition becomes true.

-x file Checks if file is executable; if yes, then the condition becomes true.

-f file Checks if file is an ordinary file as opposed to a directory or special file;

if yes, then the condition becomes true.

-z file Checks if file has size greater than 0; if yes, then the condition becomes

true.

-d file Checks if file is a directory; if yes, then the condition becomes true.

-e file Checks if file exists; is true even if file is a directory but exists.

-o file Checks if user owns the file; returns true if the user is the owner of the

file.

Unix

92

Korn Shell Operators

Following link helps you understand Korn Shell Operators: Korn Shell Operators

Unix - Korn Shell Operators

We will now discuss all the operators available in Korn Shell. Most of the operators are

very similar to what we have in the C Programming language.

Operators are listed in the order of decreasing precedence −

Arithmetic and Logical Operators

Operator Description

+ Unary plus

- Unary minus

!~ Logical negation; binary inversion (one's complement)

* Multiply

/ Divide

% Modulo

+ Add

- Subtract

<< Left shift

>> Right shift

== String comparison for equality

!= String comparison for non-equality

=~ Pattern matching

& Bitwise "and"

https://www.tutorialspoint.com/unix/unix-korn-shell-operators.htm

Unix

93

^ Bitwise "exclusive or"

| Bitwise "inclusive or"

&& Logical "and"

|| Logical "or"

++ Increment

-- Decrement

= Assignment

File Test Operators

Following operators test various properties associated with a Unix file.

Operator Description

-r file Checks if file is readable; if yes, then the condition becomes true.

-w file Checks if file is writable; if yes, then the condition becomes true.

-x file Checks if file is executable; if yes, then the condition becomes true.

-f file Checks if file is an ordinary file as opposed to a directory or special file;

if yes, then the condition becomes true.

-s file Checks if file has size greater than 0; if yes, then the condition becomes

true.

-d file Checks if file is a directory; if yes, then the condition becomes true.

-e file Checks if file exists; is true even if file is a directory but exists.

Unix

94

In this chapter, we will understand shell decision-making in Unix. While writing a shell

script, there may be a situation when you need to adopt one path out of the given two

paths. So you need to make use of conditional statements that allow your program to

make correct decisions and perform the right actions.

Unix Shell supports conditional statements which are used to perform different actions

based on different conditions. We will now understand two decision-making statements

here –

 The if...else statement

 The case...esac statement

The if...else statements

If else statements are useful decision-making statements which can be used to select an

option from a given set of options.

Unix Shell supports following forms of if…else statement −

 if...fi statement

 if...else...fi statement

 if...elif...else...fi statement

Unix Shell - The if...fi statement

The if...fi statement is the fundamental control statement that allows Shell to make

decisions and execute statements conditionally.

Syntax

if [expression]

then

 Statement(s) to be executed if expression is true

fi

The Shell expression is evaluated in the above syntax. If the resulting value is true,

given statement(s) are executed. If the expression is false then no statement would be

executed. Most of the times, comparison operators are used for making decisions.

It is recommended to be careful with the spaces between braces and expression. No space

produces a syntax error.

If expression is a shell command, then it will be assumed true if it returns 0 after

execution. If it is a Boolean expression, then it would be true if it returns true.

 Unix — Shell Decision Making

Unix

95

Example

#!/bin/sh

a=10

b=20

if [$a == $b]

then

 echo "a is equal to b"

fi

if [$a != $b]

then

 echo "a is not equal to b"

fi

The above script will generate the following result −

a is not equal to b

Unix Shell - The if...else...fi statement

The if...else...fi statement is the next form of control statement that allows Shell to

execute statements in a controlled way and make the right choice.

Syntax

if [expression]

then

 Statement(s) to be executed if expression is true

else

 Statement(s) to be executed if expression is not true

fi

The Shell expression is evaluated in the above syntax. If the resulting value is true,

given statement(s) are executed. If the expression is false, then no statement will be

executed.

Unix

96

Example

The above example can also be written using the if...else statement as follows −

#!/bin/sh

a=10

b=20

if [$a == $b]

then

 echo "a is equal to b"

else

 echo "a is not equal to b"

fi

Upon execution, you will receive the following result −

a is not equal to b

Unix Shell - The if...elif...fi statement

The if...elif...fi statement is the one level advance form of control statement that allows

Shell to make correct decision out of several conditions.

Syntax

if [expression 1]

then

 Statement(s) to be executed if expression 1 is true

elif [expression 2]

then

 Statement(s) to be executed if expression 2 is true

elif [expression 3]

then

 Statement(s) to be executed if expression 3 is true

else

 Statement(s) to be executed if no expression is true

fi

Unix

97

This code is just a series of if statements, where each if is part of the else clause of the

previous statement. Here statement(s) are executed based on the true condition, if none

of the condition is true then else block is executed.

Example

#!/bin/sh

a=10

b=20

if [$a == $b]

then

 echo "a is equal to b"

elif [$a -gt $b]

then

 echo "a is greater than b"

elif [$a -lt $b]

then

 echo "a is less than b"

else

 echo "None of the condition met"

fi

[[

Upon execution, you will receive the following result −

a is less than b

Most of the if statements check relations using relational operators discussed in the

previous chapter.

The case...esac Statement

You can use multiple if...elif statements to perform a multiway branch. However, this is

not always the best solution, especially when all of the branches depend on the value of a

single variable.

Unix Shell supports case...esac statement which handles exactly this situation, and it

does so more efficiently than repeated if...elif statements.

Unix

98

There is only one form of case...esac statement which has been described in detail here

–

 case...esac statement

Unix Shell - The case...esac Statement

You can use multiple if...elif statements to perform a multiway branch. However, this is

not always the best solution, especially when all of the branches depend on the value of a

single variable.

Shell supports case...esac statement which handles exactly this situation, and it does so

more efficiently than repeated if...elif statements.

Syntax

The basic syntax of the case...esac statement is to give an expression to evaluate and to

execute several different statements based on the value of the expression.

The interpreter checks each case against the value of the expression until a match is found.

If nothing matches, a default condition will be used.

case word in

 pattern1)

 Statement(s) to be executed if pattern1 matches

 ;;

 pattern2)

 Statement(s) to be executed if pattern2 matches

 ;;

 pattern3)

 Statement(s) to be executed if pattern3 matches

 ;;

esac

Here the string word is compared against every pattern until a match is found. The

statement(s) following the matching pattern executes. If no matches are found, the case

statement exits without performing any action.

There is no maximum number of patterns, but the minimum is one.

When statement(s) part executes, the command ;; indicates that the program flow should

jump to the end of the entire case statement. This is similar to break in the C programming

language.

https://www.tutorialspoint.com/unix/case-esac-statement.htm

Unix

99

Example

#!/bin/sh

FRUIT="kiwi"

case "$FRUIT" in

 "apple") echo "Apple pie is quite tasty."

 ;;

 "banana") echo "I like banana nut bread."

 ;;

 "kiwi") echo "New Zealand is famous for kiwi."

 ;;

esac

Upon execution, you will receive the following result −

New Zealand is famous for kiwi.

[[[[

A good use for a case statement is the evaluation of command line arguments as follows

−

#!/bin/sh

option="${1}"

case ${option} in

 -f) FILE="${2}"

 echo "File name is $FILE"

 ;;

 -d) DIR="${2}"

 echo "Dir name is $DIR"

 ;;

 *)

 echo "`basename ${0}`:usage: [-f file] | [-d directory]"

 exit 1 # Command to come out of the program with status 1

 ;;

esac

[[

Unix

100

Here is a sample run of the above program −

$./test.sh

test.sh: usage: [-f filename] | [-d directory]

$./test.sh -f index.htm

$ vi test.sh

$./test.sh -f index.htm

File name is index.htm

$./test.sh -d unix

Dir name is unix

$

The case...esac statement in the Unix shell is very similar to the switch...case statement

we have in other programming languages like C or C++ and PERL, etc.

Unix

101

In this chapter, we will discuss shell loops in Unix. A loop is a powerful programming tool

that enables you to execute a set of commands repeatedly. In this chapter, we will

examine the following types of loops available to shell programmers –

 The while loop

 The for loop

 The until loop

 The select loop

Unix Shell - The while Loop

The while loop enables you to execute a set of commands repeatedly until some condition

occurs. It is usually used when you need to manipulate the value of a variable repeatedly.

Syntax

while command

do

 Statement(s) to be executed if command is true

done

Here the Shell command is evaluated. If the resulting value is true, given statement(s) are

executed. If command is false then no statement will be executed and the program will

jump to the next line after the done statement.

Example

Here is a simple example that uses the while loop to display the numbers zero to nine −

#!/bin/sh

a=0

while [$a -lt 10]

do

 echo $a

 a=`expr $a + 1`

done

 Unix — Shell Loop Types

Unix

102

Upon execution, you will receive the following result –

0

1

2

3

4

5

6

7

8

9

[[[[[[[

Each time this loop executes, the variable a is checked to see whether it has a value that

is less than 10. If the value of a is less than 10, this test condition has an exit status of 0.

In this case, the current value of a is displayed and later a is incremented by 1.

Unix Shell - The for Loop

The for loop operates on lists of items. It repeats a set of commands for every item in a

list.

Syntax

for var in word1 word2 ... wordN

do

 Statement(s) to be executed for every word.

done

Here var is the name of a variable and word1 to wordN are sequences of characters

separated by spaces (words). Each time the for loop executes, the value of the variable

var is set to the next word in the list of words, word1 to wordN.

Example

Here is a simple example that uses the for loop to span through the given list of numbers −

#!/bin/sh

for var in 0 1 2 3 4 5 6 7 8 9

do

 echo $var

done

[[

Unix

103

Upon execution, you will receive the following result −

0

1

2

3

4

5

6

7

8

9

Following is the example to display all the files starting with .bash and available in your

home. We will execute this script from my root −

#!/bin/sh

for FILE in $HOME/.bash*

do

 echo $FILE

done

The above script will produce the following result −

/root/.bash_history

/root/.bash_logout

/root/.bash_profile

/root/.bashrc

Unix Shell - The until Loop

The while loop is perfect for a situation where you need to execute a set of commands

while some condition is true. Sometimes you need to execute a set of commands until a

condition is true.

Syntax

until command

do

Unix

104

 Statement(s) to be executed until command is true

done

Here the Shell command is evaluated. If the resulting value is false,

given statement(s) are executed. If the command is true then no statement will be

executed and the program jumps to the next line after the done statement.

Example

Here is a simple example that uses the until loop to display the numbers zero to nine −

#!/bin/sh

a=0

until [! $a -lt 10]

do

 echo $a

 a = 'expr $a + 1'

done

[

Upon execution, you will receive the following result −

0

1

2

3

4

5

6

7

8

9

Unix Shell - The select Loop

The select loop provides an easy way to create a numbered menu from which users can

select options. It is useful when you need to ask the user to choose one or more items

from a list of choices.

Unix

105

Syntax

select var in word1 word2 ... wordN

do

 Statement(s) to be executed for every word.

done

Here var is the name of a variable and word1 to wordN are sequences of characters

separated by spaces (words). Each time the for loop executes, the value of the variable

var is set to the next word in the list of words, word1 to wordN.

For every selection, a set of commands will be executed within the loop. This loop was

introduced in ksh and has been adapted into bash. It is not available in sh.

Example

Here is a simple example to let the user select a drink of choice −

#!/bin/ksh

select DRINK in tea cofee water juice appe all none

do

 case $DRINK in

 tea|cofee|water|all)

 echo "Go to canteen"

 ;;

 juice|appe)

 echo "Available at home"

 ;;

 none)

 break

 ;;

 *) echo "ERROR: Invalid selection"

 ;;

 esac

done

[[[[

Unix

106

The menu presented by the select loop looks like the following −

$./test.sh

1) tea

2) cofee

3) water

4) juice

5) appe

6) all

7) none

#? juice

Available at home

#? none

$

You can change the prompt displayed by the select loop by altering the variable PS3 as

follows −

$PS3="Please make a selection => " ; export PS3

$./test.sh

1) tea

2) cofee

3) water

4) juice

5) appe

6) all

7) none

Please make a selection => juice

Available at home

Please make a selection => none

$

You will use different loops based on the situation. For example, the while loop executes

the given commands until the given condition remains true; the until loop executes until

a given condition becomes true.

Once you have good programming practice you will gain the expertise and thereby, start

using appropriate loop based on the situation. Here, while and for loops are available in

most of the other programming languages like C, C++ and PERL, etc.

Unix

107

Nesting Loops

All the loops support nesting concept which means you can put one loop inside another

similar one or different loops. This nesting can go up to unlimited number of times based

on your requirement.

Here is an example of nesting while loop. The other loops can be nested based on the

programming requirement in a similar way −

Nesting while Loops

It is possible to use a while loop as part of the body of another while loop.

Syntax

while command1 ; # this is loop1, the outer loop

do

 Statement(s) to be executed if command1 is true

 while command2 ; # this is loop2, the inner loop

 do

 Statement(s) to be executed if command2 is true

 done

 Statement(s) to be executed if command1 is true

done

Example

Here is a simple example of loop nesting. Let's add another countdown loop inside the loop

that you used to count to nine −

#!/bin/sh

a=0

while ["$a" -lt 10] # this is loop1

do

 b="$a"

 while ["$b" -ge 0] # this is loop2

 do

 echo -n "$b "

Unix

108

 b='expr $b – 1'

 done

 echo

 a='expr $a + 1'

done

This will produce the following result. It is important to note how echo -n works here.

Here -n option lets echo avoid printing a new line character.

0

1 0

2 1 0

3 2 1 0

4 3 2 1 0

5 4 3 2 1 0

6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

Unix

109

In this chapter, we will discuss shell loop control in Unix. So far you have looked at creating

loops and working with loops to accomplish different tasks. Sometimes you need to stop

a loop or skip iterations of the loop.

In this chapter, we will learn following two statements that are used to control shell loops:

 The break statement

 The continue statement

The infinite Loop

All the loops have a limited life and they come out once the condition is false or true

depending on the loop.

A loop may continue forever if the required condition is not met. A loop that executes

forever without terminating executes for an infinite number of times. For this reason, such

loops are called infinite loops.

Example

Here is a simple example that uses the while loop to display the numbers zero to nine −

#!/bin/sh

a=10

until [$a -lt 10]

do

 echo $a

 a='expr $a + 1'

done

This loop continues forever because a is always greater than or equal to 10 and it is

never less than 10.

The break Statement

The break statement is used to terminate the execution of the entire loop, after

completing the execution of all of the lines of code up to the break statement. It then steps

down to the code following the end of the loop.

 Unix — Shell Loop Control

Unix

110

Syntax

The following break statement is used to come out of a loop −

break

The break command can also be used to exit from a nested loop using this format –

break n

[[[

Here n specifies the nth enclosing loop to the exit from.

Example

Here is a simple example which shows that loop terminates as soon as a becomes 5:

#!/bin/sh

a=0

while [$a -lt 10]

do

 echo $a

 if [$a -eq 5]

 then

 break

 fi

 a=`expr $a + 1`

done

Upon execution, you will receive the following result −

0

1

2

3

4

5

[[[[

Unix

111

Here is a simple example of nested for loop. This script breaks out of both loops if var1

equals 2 and var2 equals 0 –

#!/bin/sh

for var1 in 1 2 3

do

 for var2 in 0 5

 do

 if [$var1 -eq 2 -a $var2 -eq 0]

 then

 break 2

 else

 echo "$var1 $var2"

 fi

 done

done

Upon execution, you will receive the following result. In the inner loop, you have a break

command with the argument 2. This indicates that if a condition is met you should break

out of outer loop and ultimately from the inner loop as well.

1 0

1 5

The continue statement

The continue statement is similar to the break command, except that it causes the

current iteration of the loop to exit, rather than the entire loop.

This statement is useful when an error has occurred but you want to try to execute the

next iteration of the loop.

Syntax

continue

Like with the break statement, an integer argument can be given to the continue command

to skip commands from nested loops.

continue n

Here n specifies the nth enclosing loop to continue from.

Unix

112

Example

The following loop makes use of the continue statement which returns from the continue

statement and starts processing the next statement −

#!/bin/sh

NUMS="1 2 3 4 5 6 7"

for NUM in $NUMS

do

 Q='expr $NUM % 2'

 if [$Q -eq 0]

 then

 echo "Number is an even number!!"

 continue

 fi

 echo "Found odd number"

done

[

Upon execution, you will receive the following result –

Found odd number

Number is an even number!!

Found odd number

Number is an even number!!

Found odd number

Number is an even number!!

Found odd number

Unix

113

What is Substitution?

The shell performs substitution when it encounters an expression that contains one or

more special characters.

Example

Here, the printing value of the variable is substituted by its value. Same time, "\n" is

substituted by a new line −

#!/bin/sh

a=10

echo -e "Value of a is $a \n"

[[[[[

You will receive the following result. Here the -e option enables the interpretation of

backslash escapes.

Value of a is 10

Following is the result without -e option:

Value of a is 10\n

[[[[

The following escape sequences can be used in the echo command –

Escape Description

\\ backslash

\a alert (BEL)

\b backspace

\c suppress trailing newline

\f form feed

 Unix — Shell Substitution

Unix

114

\n new line

\r carriage return

\t horizontal tab

\v vertical tab

You can use the -E option to disable the interpretation of the backslash escapes (default).

You can use the -n option to disable the insertion of a new line.

Command Substitution

Command substitution is the mechanism by which the shell performs a given set of

commands and then substitutes their output in the place of the commands.

Syntax

The command substitution is performed when a command is given as:

`command`

When performing the command substitution make sure that you use the backquote, not

the single quote character.

Example

Command substitution is generally used to assign the output of a command to a variable.

Each of the following examples demonstrates the command substitution −

#!/bin/sh

DATE=`date`

echo "Date is $DATE"

USERS=`who | wc -l`

echo "Logged in user are $USERS"

UP=`date ; uptime`

echo "Uptime is $UP"

Unix

115

Upon execution, you will receive the following result –

Date is Thu Jul 2 03:59:57 MST 2009

Logged in user are 1

Uptime is Thu Jul 2 03:59:57 MST 2009

03:59:57 up 20 days, 14:03, 1 user, load avg: 0.13, 0.07, 0.15

[[

Variable Substitution

Variable substitution enables the shell programmer to manipulate the value of a variable

based on its state.

Here is the following table for all the possible substitutions −

Form Description

${var} Substitute the value of var.

${var:-word}
If var is null or unset, word is substituted for var. The value

of var does not change.

${var:=word} If var is null or unset, var is set to the value of word.

${var:?message}
If var is null or unset, message is printed to standard error.

This checks that variables are set correctly.

${var:+word}
If var is set, word is substituted for var. The value of var does

not change.

Example

Following is the example to show various states of the above substitution −

#!/bin/sh

echo ${var:-"Variable is not set"}

echo "1 - Value of var is ${var}"

echo ${var:="Variable is not set"}

echo "2 - Value of var is ${var}"

Unix

116

unset var

echo ${var:+"This is default value"}

echo "3 - Value of var is $var"

var="Prefix"

echo ${var:+"This is default value"}

echo "4 - Value of var is $var"

echo ${var:?"Print this message"}

echo "5 - Value of var is ${var}"

Upon execution, you will receive the following result −

Variable is not set

1 - Value of var is

Variable is not set

2 - Value of var is Variable is not set

3 - Value of var is

This is default value

4 - Value of var is Prefix

Prefix

5 - Value of var is Prefix

Unix

117

In this chapter, we will discuss in detail about the Shell quoting mechanisms. We will start

by discussing the metacharacters.

The Metacharacters

Unix Shell provides various metacharacters which have special meaning while using them

in any Shell Script and causes termination of a word unless quoted.

For example, ? matches with a single character while listing files in a directory and

an * matches more than one character. Here is a list of most of the shell special characters

(also called metacharacters) −

* ? [] ' " \ $; & () | ^ < > new-line space tab

A character may be quoted (i.e., made to stand for itself) by preceding it with a \.

Example

Following example shows how to print a * or a ? −

#!/bin/sh

echo Hello; Word

Upon execution, you will receive the following result –

Hello

./test.sh: line 2: Word: command not found

shell returned 127

Let us now try using a quoted character –

#!/bin/sh

echo Hello\; Word

Upon execution, you will receive the following result –

Hello; Word

 Unix — Shell Quoting Mechanisms

Unix

118

The $ sign is one of the metacharacters, so it must be quoted to avoid special handling by

the shell −

#!/bin/sh

echo "I have \$1200"

[

Upon execution, you will receive the following result −

I have $1200

[

The following table lists the four forms of quoting −

Quoting Description

Single quote
All special characters between these quotes lose their special

meaning.

Double quote

Most special characters between these quotes lose their special

meaning with these exceptions:
[

 $

 `

 \$

 \'

 \"

 \\

Backslash
Any character immediately following the backslash loses its special

meaning.

Back quote
Anything in between back quotes would be treated as a command

and would be executed.

The Single Quotes

Consider an echo command that contains many special shell characters −

echo <-$1500.**>; (update?) [y|n]

Unix

119

Putting a backslash in front of each special character is tedious and makes the line difficult

to read −

echo \<-\$1500.**\>\; \(update\?\) \[y\|n\]

There is an easy way to quote a large group of characters. Put a single quote (') at the

beginning and at the end of the string −

echo '<-$1500.**>; (update?) [y|n]'

Characters within single quotes are quoted just as if a backslash is in front of each

character. With this, the echo command displays in a proper way.

If a single quote appears within a string to be output, you should not put the whole string

within single quotes instead you should precede that using a backslash (\) as follows −

echo 'It\'s Shell Programming'

The Double Quotes

Try to execute the following shell script. This shell script makes use of single quote −

VAR=ZARA

echo '$VAR owes <-$1500.**>; [as of (`date +%m/%d`)]'

[

Upon execution, you will receive the following result −

$VAR owes <-$1500.**>; [as of (`date +%m/%d`)]

This is not what had to be displayed. It is obvious that single quotes prevent variable

substitution. If you want to substitute variable values and to make inverted commas work

as expected, then you would need to put your commands in double quotes as follows −

VAR=ZARA

echo "$VAR owes <-\$1500.**>; [as of (`date +%m/%d`)]"

[

Upon execution, you will receive the following result −

ZARA owes <-$1500.**>; [as of (07/02)]

[

Double quotes take away the special meaning of all characters except the following −

 $ for parameter substitution

 Backquotes for command substitution

 \$ to enable literal dollar signs

Unix

120

 \` to enable literal backquotes

 \" to enable embedded double quotes

 \\ to enable embedded backslashes

 All other \ characters are literal (not special)

Characters within single quotes are quoted just as if a backslash is in front of each

character. This helps the echo command display properly.

If a single quote appears within a string to be output, you should not put the whole string

within single quotes instead you should precede that using a backslash (\) as follows −

echo 'It\'s Shell Programming'

The Backquotes

Putting any Shell command in between backquotes executes the command.

Syntax

Here is the simple syntax to put any Shell command in between backquotes −

var=`command`

Example

The date command is executed in the following example and the produced result is stored

in DATA variable.

DATE=`date`

echo "Current Date: $DATE"

Upon execution, you will receive the following result −

Current Date: Thu Jul 2 05:28:45 MST 2009

Unix

121

In this chapter, we will discuss in detail about the Shell input/output redirections. Most

Unix system commands take input from your terminal and send the resulting output back

to your terminal. A command normally reads its input from the standard input, which

happens to be your terminal by default. Similarly, a command normally writes its output

to standard output, which is again your terminal by default.

Output Redirection

The output from a command normally intended for standard output can be easily diverted

to a file instead. This capability is known as output redirection.

If the notation > file is appended to any command that normally writes its output to

standard output, the output of that command will be written to file instead of your terminal.

Check the following who command which redirects the complete output of the command

in the users file.

$ who > users

[

Notice that no output appears at the terminal. This is because the output has been

redirected from the default standard output device (the terminal) into the specified file.

You can check the users file for the complete content −

$ cat users

oko tty01 Sep 12 07:30

ai tty15 Sep 12 13:32

ruth tty21 Sep 12 10:10

pat tty24 Sep 12 13:07

steve tty25 Sep 12 13:03

$

[[[[[[

If a command has its output redirected to a file and the file already contains some data,

that data will be lost. Consider the following example −

$ echo line 1 > users

$ cat users

line 1

$

 Unix — Shell Input / Output Redirections

Unix

122

You can use >> operator to append the output in an existing file as follows −

$ echo line 2 >> users

$ cat users

line 1

line 2

$

Input Redirection

Just as the output of a command can be redirected to a file, so can the input of a command

be redirected from a file. As the greater-than character > is used for output redirection,

the less-than character < is used to redirect the input of a command.

The commands that normally take their input from the standard input can have their input

redirected from a file in this manner. For example, to count the number of lines in the

file users generated above, you can execute the command as follows −

$ wc -l users

2 users

$

[[[[

Upon execution, you will receive the following output. You can count the number of lines

in the file by redirecting the standard input of the wc command from the file users −

$ wc -l < users

2

$

Note that there is a difference in the output produced by the two forms of the wc command.

In the first case, the name of the file users is listed with the line count; in the second case,

it is not.

In the first case, wc knows that it is reading its input from the file users. In the second

case, it only knows that it is reading its input from standard input so it does not display

file name.

Here Document

A here document is used to redirect input into an interactive shell script or program.

We can run an interactive program within a shell script without user action by supplying

the required input for the interactive program, or interactive shell script.

Unix

123

The general form for a here document is −

command << delimiter

document

delimiter

[[[

Here the shell interprets the << operator as an instruction to read input until it finds a

line containing the specified delimiter. All the input lines up to the line containing the

delimiter are then fed into the standard input of the command.

The delimiter tells the shell that the here document has completed. Without it, the shell

continues to read the input forever. The delimiter must be a single word that does not

contain spaces or tabs.

Following is the input to the command wc -l to count the total number of lines −

$wc -l << EOF

 This is a simple lookup program

 for good (and bad) restaurants

 in Cape Town.

EOF

3

$

You can use the here document to print multiple lines using your script as follows −

#!/bin/sh

cat << EOF

This is a simple lookup program

for good (and bad) restaurants

in Cape Town.

EOF

Upon execution, you will receive the following result −

This is a simple lookup program

for good (and bad) restaurants

in Cape Town.

Unix

124

The following script runs a session with the vi text editor and saves the input in the file

test.txt.

#!/bin/sh

filename=test.txt

vi $filename <<EndOfCommands

i

This file was created automatically from

a shell script

^[

ZZ

EndOfCommands

If you run this script with vim acting as vi, then you will likely see output like the following

−

$ sh test.sh

Vim: Warning: Input is not from a terminal

$

[

After running the script, you should see the following added to the file test.txt −

$ cat test.txt

This file was created automatically from

a shell script

$

Discard the output

Sometimes you will need to execute a command, but you don't want the output displayed

on the screen. In such cases, you can discard the output by redirecting it to the file

/dev/null −

$ command > /dev/null

Here command is the name of the command you want to execute. The file /dev/null is a

special file that automatically discards all its input.

To discard both output of a command and its error output, use standard redirection to

redirect STDERR to STDOUT −

$ command > /dev/null 2>&1

Unix

125

Here 2 represents STDERR and 1 represents STDOUT. You can display a message on to

STDERR by redirecting STDOUT into STDERR as follows −

$ echo message 1>&2

Redirection Commands

Following is a complete list of commands which you can use for redirection −

Command Description

pgm > file Output of pgm is redirected to file

pgm < file Program pgm reads its input from file

pgm >> file Output of pgm is appended to file

n > file Output from stream with descriptor n redirected to file

n >> file Output from stream with descriptor n appended to file

n >& m Merges output from stream n with stream m

n <& m Merges input from stream n with stream m

<< tag Standard input comes from here through next tag at the start of

line

| Takes output from one program, or process, and sends it to

another

Note that the file descriptor 0 is normally standard input (STDIN), 1 is standard output

(STDOUT), and 2 is standard error output (STDERR).

Unix

126

In this chapter, we will discuss in detail about the shell functions. Functions enable you to

break down the overall functionality of a script into smaller, logical subsections, which can

then be called upon to perform their individual tasks when needed.

Using functions to perform repetitive tasks is an excellent way to create code reuse. This

is an important part of modern object-oriented programming principles.

Shell functions are similar to subroutines, procedures, and functions in other programming

languages.

Creating Functions

To declare a function, simply use the following syntax −

function_name () {

 list of commands

}

The name of your function is function_name, and that's what you will use to call it from

elsewhere in your scripts. The function name must be followed by parentheses, followed

by a list of commands enclosed within braces.

Example

Following example shows the use of function −

#!/bin/sh

Define your function here

Hello () {

 echo "Hello World"

}

Invoke your function

Hello

 Unix — Shell Functions

Unix

127

Upon execution, you will receive the following output −

$./test.sh

Hello World

$

Pass Parameters to a Function

You can define a function that will accept parameters while calling the function. These

parameters would be represented by $1, $2 and so on.

Following is an example where we pass two parameters Zara and Ali and then we capture

and print these parameters in the function.

#!/bin/sh

Define your function here

Hello () {

 echo "Hello World $1 $2"

}

Invoke your function

Hello Zara Ali

Upon execution, you will receive the following result −

$./test.sh

Hello World Zara Ali

$

Returning Values from Functions

If you execute an exit command from inside a function, its effect is not only to terminate

execution of the function but also of the shell program that called the function.

If you instead want to just terminate execution of the function, then there is way to come

out of a defined function.

Based on the situation you can return any value from your function using

the return command whose syntax is as follows −

return code

Unix

128

Here code can be anything you choose here, but obviously you should choose something

that is meaningful or useful in the context of your script as a whole.

Example

Following function returns a value 1 −

#!/bin/sh

Define your function here

Hello () {

 echo "Hello World $1 $2"

 return 10

}

Invoke your function

Hello Zara Ali

Capture value returnd by last command

ret=$?

echo "Return value is $ret"

[[[

Upon execution, you will receive the following result −

$./test.sh

Hello World Zara Ali

Return value is 10

$

Nested Functions

One of the more interesting features of functions is that they can call themselves and also

other functions. A function that calls itself is known as a recursive function.

Following example demonstrates nesting of two functions −

#!/bin/sh

Calling one function from another

number_one () {

Unix

129

 echo "This is the first function speaking..."

 number_two

}

number_two () {

 echo "This is now the second function speaking..."

}

Calling function one.

number_one

Upon execution, you will receive the following result −

This is the first function speaking...

This is now the second function speaking...

[[

Function Call from Prompt

You can put definitions for commonly used functions inside your .profile. These definitions

will be available whenever you log in and you can use them at the command prompt.

Alternatively, you can group the definitions in a file, say test.sh, and then execute the file

in the current shell by typing −

$. test.sh

This has the effect of causing functions defined inside test.sh to be read and defined to

the current shell as follows −

$ number_one

This is the first function speaking...

This is now the second function speaking...

$

To remove the definition of a function from the shell, use the unset command with the .f

option. This command is also used to remove the definition of a variable to the shell.

$unset .f function_name

Unix

130

All the Unix commands come with a number of optional and mandatory options. It is very

common to forget the complete syntax of these commands. Because no one can possibly

remember every Unix command and all its options, we have online help available to

mitigate this right from when Unix was at its development stage.

Unix's version of Help files are called man pages. If there is a command name and you

are not sure how to use it, then Man Pages help you out with every step.

Syntax

Here is the simple command that helps you get the detail of any Unix command while

working with the system −

$man command

Example

Suppose there is a command that requires you to get help; assume that you want to know

about pwd then you simply need to use the following command −

$man pwd

The above command helps you with the complete information about the pwd command.

Try it yourself at your command prompt to get more detail.

You can get complete detail on man command itself using the following command −

$man man

Man Page Sections

Man pages are generally divided into sections, which generally vary by the man page

author's preference. Following table lists some common sections −

Section Description

NAME Name of the command

SYNOPSIS General usage parameters of the command

DESCRIPTION Describes what the command does

 Unix — Shell Man Page Help

Unix

131

OPTIONS Describes all the arguments or options to the command

SEE ALSO
Lists other commands that are directly related to the command in the
man page or closely resemble its functionality

BUGS
Explains any known issues or bugs that exist with the command or its
output

EXAMPLES
Common usage examples that give the reader an idea of how the
command can be used

AUTHORS The author of the man page/command

To sum it up, man pages are a vital resource and the first avenue of research when you

need information about commands or files in a Unix system.

Useful Shell Commands

The following link gives you a list of the most important and very frequently used Unix

Shell commands.

If you do not know how to use any command, then use man page to get complete detail

about the command.

Here is the list of Unix Shell - Useful Commands.

Unix - Useful Commands

This quick guide lists commands, including a syntax and a brief description. For more

detail, use −

$man command

Files and Directories

These commands allow you to create directories and handle files.

Command Description

cat Displays File Contents

cd Changes Directory to dirname

chgrp Changes file group

Unix

132

chmod Changes permissions

cp Copies source file into destination

file Determines file type

find Finds files

grep Searches files for regular expressions

head Displays first few lines of a file

ln Creates softlink on oldname

ls Displays information about file type

mkdir Creates a new directory dirname

more Displays data in paginated form

mv Moves (Renames) an oldname to newname

pwd Prints current working directory

rm Removes (Deletes) filename

rmdir Deletes an existing directory provided it is empty

tail Prints last few lines in a file

touch Updates access and modification time of a file

Manipulating data

The contents of files can be compared and altered with the following commands.

Command Description

awk Pattern scanning and processing language

Unix

133

cmp Compares the contents of two files

comm Compares sorted data

cut Cuts out selected fields of each line of a file

diff Differential file comparator

expand Expands tabs to spaces

join Joins files on some common field

perl Data manipulation language

sed Stream text editor

sort Sorts file data

split Splits file into smaller files

tr Translates characters

uniq Reports repeated lines in a file

wc Counts words, lines, and characters

vi Opens vi text editor

vim Opens vim text editor

fmt Simple text formatter

spell Checks text for spelling error

ispell Checks text for spelling error

ispell Checks text for spelling error

Unix

134

emacs GNU project Emacs

ex, edit Line editor

emacs GNU project Emacs

emacs GNU project Emacs

Compressed Files

Files may be compressed to save space. Compressed files can be created and examined.

Command Description

compress Compresses files

gunzip Helps uncompress gzipped files

gzip GNU alternative compression method

uncompress Helps uncompress files

unzip List, test and extract compressed files in a ZIP archive

zcat Cat a compressed file

zcmp Compares compressed files

zdiff Compares compressed files

zmore File perusal filter for crt viewing of compressed text

Unix

135

Getting Information

Various Unix manuals and documentation are available on-line. The following Shell

commands give information −

Command Description

apropos Locates commands by keyword lookup

info Displays command information pages online

man Displays manual pages online

whatis Searches the whatis database for complete words

yelp GNOME help viewer

Network Communication

These following commands are used to send and receive files from a local Unix hosts to

the remote host around the world.

Command Description

ftp File transfer program

rcp Remote file copy

rlogin Remote login to a Unix host

rsh Remote shell

tftp Trivial file transfer program

telnet Makes terminal connection to another host

ssh Secures shell terminal or command connection

scp Secures shell remote file copy

sftp Secures shell file transfer program

[[[[

Unix

136

Some of these commands may be restricted at your computer for security reasons.

Messages between Users

The Unix systems support on-screen messages to other users and world-wide electronic

mail −

Command Description

evolution GUI mail handling tool on Linux

mail Simple send or read mail program

mesg Permits or denies messages

parcel Sends files to another user

pine Vdu-based mail utility

talk Talks to another user

write Writes message to another user

Programming Utilities

The following programming tools and languages are available based on what you have

installed on your Unix.

Command Description

dbx Sun debugger

gdb GNU debugger

make Maintains program groups and compile programs

nm Prints program's name list

size Prints program's sizes

strip Removes symbol table and relocation bits

Unix

137

cb C program beautifier

cc ANSI C compiler for Suns SPARC systems

ctrace C program debugger

gcc GNU ANSI C Compiler

indent Indent and format C program source

bc Interactive arithmetic language processor

gcl GNU Common Lisp

perl General purpose language

php Web page embedded language

py Python language interpreter

asp Web page embedded language

CC C++ compiler for Suns SPARC systems

g++ GNU C++ Compiler

javac JAVA compiler

appletvieweir JAVA applet viewer

netbeans Java integrated development environment on Linux

sqlplus Runs the Oracle SQL interpreter

sqlldr Runs the Oracle SQL data loader

mysql Runs the mysql SQL interpreter

Unix

138

Misc Commands

These commands list or alter information about the system −

td>groups

Command Description

chfn Changes your finger information

chgrp Changes the group ownership of a file

chown Changes owner

date Prints the date

determin Automatically finds terminal type

du Prints amount of disk usage

echo Echo arguments to the standard options

exit Quits the system

finger Prints information about logged-in users

groupadd Creates a user group

Show group

memberships

homequota Shows quota and file usage

iostat Reports I/O statistics

kill Sends a signal to a process

last Shows last logins of users

logout Logs off Unix

Unix

139

lun Lists user names or login ID

netstat Shows network status

passwd Changes user password

passwd Changes your login password

printenv Displays value of a shell variable

ps Displays the status of current processes

ps Prints process status statistics

quota -v Displays disk usage and limits

reset Resets terminal mode

script Keeps script of terminal session

script Saves the output of a command or process

setenv Sets environment variables

stty Sets terminal options

time Helps time a command

top Displays all system processes

tset Sets terminal mode

tty Prints current terminal name

umask
Show the permissions that are given to view files by

default

uname Displays name of the current system

Unix

140

uptime Gets the system up time

useradd Creates a user account

users Prints names of logged in users

vmstat Reports virtual memory statistics

w Shows what logged in users are doing

who Lists logged in users

Unix

141

Advanced Unix

Unix

142

In this chapter, we will discuss in detail about regular expressions with SED in Unix.

A regular expression is a string that can be used to describe several sequences of

characters. Regular expressions are used by several different Unix commands,

including ed, sed, awk, grep, and to a more limited extent, vi.

Here SED stands for stream editor. This stream-oriented editor was created exclusively

for executing scripts. Thus, all the input you feed into it passes through and goes to

STDOUT and it does not change the input file.

Invoking sed

Before we start, let us ensure we have a local copy of /etc/passwd text file to work

with sed.

As mentioned previously, sed can be invoked by sending data through a pipe to it as

follows −

$ cat /etc/passwd | sed

Usage: sed [OPTION]... {script-other-script} [input-file]...

 -n, --quiet, --silent

 suppress automatic printing of pattern space

 -e script, --expression=script

...............................

The cat command dumps the contents of /etc/passwd to sed through the pipe into sed's

pattern space. The pattern space is the internal work buffer that sed uses for its

operations.

The sed General Syntax

Following is the general syntax for sed:

/pattern/action

Here, pattern is a regular expression, and action is one of the commands given in the

following table. If pattern is omitted, action is performed for every line as we have seen

above.

The slash character (/) that surrounds the pattern are required because they are used as

delimiters.

 Unix — Regular Expressions with SED

Unix

143

Range Description

p Prints the line

d Deletes the line

s/pattern1/pattern2/ Substitutes the first occurrence of pattern1 with pattern2

Deleting All Lines with sed

We will now understand how to delete all lines with sed. Invoke sed again; but the sed is

now supposed to use the editing command delete line, denoted by the single letter d

−

$ cat /etc/passwd | sed 'd'

$

Instead of invoking sed by sending a file to it through a pipe, the sed can be instructed to

read the data from a file, as in the following example.

The following command does exactly the same as in the previous example, without the

cat command −

$ sed -e 'd' /etc/passwd

$

The sed Addresses

The sed also supports addresses. Addresses are either particular locations in a file or a

range where a particular editing command should be applied. When the sed encounters

no addresses, it performs its operations on every line in the file.

The following command adds a basic address to the sed command you've been using −

$ cat /etc/passwd | sed '1d' |more

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

Unix

144

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

$

Notice that the number 1 is added before the delete edit command. This instructs the

sed to perform the editing command on the first line of the file. In this example, the sed

will delete the first line of /etc/password and print the rest of the file.

The sed Address Ranges

We will now understand how to work with the sed address ranges. So what if you want

to remove more than one line from a file? You can specify an address range with sed as

follows −

$ cat /etc/passwd | sed '1, 5d' |more

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

$

The above command will be applied on all the lines starting from 1 through 5. This deletes

the first five lines.

Try out the following address ranges −

Range Description

'4,10d' Lines starting from the 4th till the 10th are deleted

'10,4d' Only 10th line is deleted, because the sed does not work in reverse direction

'4,+5d'
This matches line 4 in the file, deletes that line, continues to delete the next
five lines, and then ceases its deletion and prints the rest

'2,5!d' This deletes everything except starting from 2nd till 5th line

'1~3d'
This deletes the first line, steps over the next three lines, and then deletes
the fourth line. Sed continues to apply this pattern until the end of the file.

'2~2d' This tells sed to delete the second line, step over the next line, delete the
next line, and repeat until the end of the file is reached

Unix

145

'4,10p' Lines starting from 4th till 10th are printed

'4,d' This generates the syntax error

',10d' This would also generate syntax error

[[

Note: While using the p action, you should use the -n option to avoid repetition of line

printing. Check the difference in between the following two commands −

$ cat /etc/passwd | sed -n '1,3p'

Check the above command without -n as follows −

$ cat /etc/passwd | sed '1,3p'

The Substitution Command

The substitution command, denoted by s, will substitute any string that you specify with

any other string that you specify.

To substitute one string with another, the sed needs to have the information on where the

first string ends and the substitution string begins. For this, we proceed with bookending

the two strings with the forward slash (/) character.

The following command substitutes the first occurrence on a line of the string root with

the string amrood.

$ cat /etc/passwd | sed 's/root/amrood/'

amrood:x:0:0:root user:/root:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

..........................

It is very important to note that the sed substitutes only the first occurrence on a line. If

the string root occurs more than once on a line only the first match will be replaced.

For the sed to perform a global substitution, add the letter g to the end of the command

as follows −

$ cat /etc/passwd | sed 's/root/amrood/g'

amrood:x:0:0:amrood user:/amrood:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

...........................

Unix

146

Substitution Flags

There are a number of other useful flags that can be passed in addition to the g flag, and

you can specify more than one at a time.

Flag Description

g Replaces all matches, not just the first match

NUMBER Replaces only NUMBERth match

p If substitution was made, then prints the pattern space

w

FILENAME
If substitution was made, then writes result to FILENAME

I or i Matches in a case-insensitive manner

M or m

In addition to the normal behavior of the special regular expression

characters ^ and $, this flag causes ^ to match the empty string after a

newline and $ to match the empty string before a newline

Using an Alternative String Separator

Suppose you have to do a substitution on a string that includes the forward slash

character. In this case, you can specify a different separator by providing the designated

character after the s.

$ cat /etc/passwd | sed 's:/root:/amrood:g'

amrood:x:0:0:amrood user:/amrood:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

In the above example, we have used : as the delimiter instead of slash / because we

were trying to search /root instead of the simple root.

Replacing with Empty Space

Use an empty substitution string to delete the root string from the /etc/passwd file

entirely −

$ cat /etc/passwd | sed 's/root//g'

Unix

147

:x:0:0::/:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

Address Substitution

If you want to substitute the string sh with the string quiet only on line 10, you can

specify it as follows −

$ cat /etc/passwd | sed '10s/sh/quiet/g'

root:x:0:0:root user:/root:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/quiet

Similarly, to do an address range substitution, you could do something like the following

−

$ cat /etc/passwd | sed '1,5s/sh/quiet/g'

root:x:0:0:root user:/root:/bin/quiet

daemon:x:1:1:daemon:/usr/sbin:/bin/quiet

bin:x:2:2:bin:/bin:/bin/quiet

sys:x:3:3:sys:/dev:/bin/quiet

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

As you can see from the output, the first five lines had the string sh changed to quiet,

but the rest of the lines were left untouched.

Unix

148

The Matching Command

You would use the p option along with the -n option to print all the matching lines as

follows −

$ cat testing | sed -n '/root/p'

root:x:0:0:root user:/root:/bin/sh

[root@ip-72-167-112-17 amrood]# vi testing

root:x:0:0:root user:/root:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

Using Regular Expression

While matching patterns, you can use the regular expression which provides more

flexibility.

Check the following example which matches all the lines starting with daemon and then

deletes them −

$ cat testing | sed '/^daemon/d'

root:x:0:0:root user:/root:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

Following is the example which deletes all the lines ending with sh −

$ cat testing | sed '/sh$/d'

Unix

149

sync:x:4:65534:sync:/bin:/bin/sync

The following table lists four special characters that are very useful in regular expressions.

Character Description

^ Matches the beginning of lines

$ Matches the end of lines

. Matches any single character

* Matches zero or more occurrences of the previous character

[chars]

Matches any one of the characters given in chars, where chars is a

sequence of characters. You can use the - character to indicate a range

of characters.

Matching Characters

Look at a few more expressions to demonstrate the use of metacharacters. For example,

the following pattern −

Expression Description

/a.c/
Matches lines that contain strings such as a+c, a-c, abc, match, and
a3c

/a*c/
Matches the same strings along with strings such as ace, yacc, and

arctic

/[tT]he/ Matches the string The and the

/^$/ Matches blank lines

/^.*$/ Matches an entire line whatever it is

/ */ Matches one or more spaces

/^$/ Matches blank lines

Following table shows some frequently used sets of characters −

Unix

150

Set Description

[a-z] Matches a single lowercase letter

[A-Z] Matches a single uppercase letter

[a-zA-Z] Matches a single letter

[0-9] Matches a single number

[a-zA-Z0-9] Matches a single letter or number

Character Class Keywords

Some special keywords are commonly available to regexps, especially GNU utilities that

employ regexps. These are very useful for sed regular expressions as they simplify things

and enhance readability.

For example, the characters a through z and the characters A through Z, constitute one

such class of characters that has the keyword [[:alpha:]]

Using the alphabet character class keyword, this command prints only those lines in the

/etc/syslog.conf file that start with a letter of the alphabet −

$ cat /etc/syslog.conf | sed -n '/^[[:alpha:]]/p'

authpriv.* /var/log/secure

mail.* -/var/log/maillog

cron.* /var/log/cron

uucp,news.crit /var/log/spooler

local7.* /var/log/boot.log

The following table is a complete list of the available character class keywords in GNU sed.

Character Class Description

Unix

151

[[:alnum:]] Alphanumeric [a-z A-Z 0-9]

[[:alpha:]] Alphabetic [a-z A-Z]

[[:blank:]] Blank characters (spaces or tabs)

[[:cntrl:]] Control characters

[[:digit:]] Numbers [0-9]

[[:graph:]] Any visible characters (excludes whitespace)

[[:lower:]] Lowercase letters [a-z]

[[:print:]] Printable characters (non-control characters)

[[:punct:]] Punctuation characters

[[:space:]] Whitespace

[[:upper:]] Uppercase letters [A-Z]

[[:xdigit:]] Hex digits [0-9 a-f A-F]

Ampersand Referencing

The sed metacharacter & represents the contents of the pattern that was matched. For

instance, say you have a file called phone.txt full of phone numbers, such as the

following −

5555551212

5555551213

5555551214

6665551215

6665551216

7775551217

You want to make the area code (the first three digits) surrounded by parentheses for

easier reading. To do this, you can use the ampersand replacement character −

Unix

152

$ sed -e 's/^[[:digit:]][[:digit:]][[:digit:]]/(&)/g' phone.txt

(555)5551212

(555)5551213

(555)5551214

(666)5551215

(666)5551216

(777)5551217

Here in the pattern part you are matching the first 3 digits and then using & you are

replacing those 3 digits with the surrounding parentheses.

Using Multiple sed Commands

You can use multiple sed commands in a single sed command as follows −

$ sed -e 'command1' -e 'command2' ... -e 'commandN' files

Here command1 through commandN are sed commands of the type discussed

previously. These commands are applied to each of the lines in the list of files given by

files.

Using the same mechanism, we can write the above phone number example as follows −

$ sed -e 's/^[[:digit:]]\{3\}/(&)/g' \

 -e 's/)[[:digit:]]\{3\}/&-/g' phone.txt

(555)555-1212

(555)555-1213

(555)555-1214

(666)555-1215

(666)555-1216

(777)555-1217

Note − In the above example, instead of repeating the character class keyword

[[:digit:]] three times, we replaced it with \{3\}, which means the preceding regular

expression is matched three times. We have also used \ to give line break and this has to

be removed before the command is run.

Back References

The ampersand metacharacter is useful, but even more useful is the ability to define

specific regions in regular expressions. These special regions can be used as reference in

your replacement strings. By defining specific parts of a regular expression, you can then

refer back to those parts with a special reference character.

Unix

153

To do back references, you have to first define a region and then refer back to that

region. To define a region, you insert backslashed parentheses around each region of

interest. The first region that you surround with backslashes is then referenced by \1, the

second region by \2, and so on.

Assuming phone.txt has the following text −

(555)555-1212

(555)555-1213

(555)555-1214

(666)555-1215

(666)555-1216

(777)555-1217

Try the following command −

$ cat phone.txt | sed 's/\(.*)\)\(.*-\)\(.*$\)/Area \

 code: \1 Second: \2 Third: \3/'

Area code: (555) Second: 555- Third: 1212

Area code: (555) Second: 555- Third: 1213

Area code: (555) Second: 555- Third: 1214

Area code: (666) Second: 555- Third: 1215

Area code: (666) Second: 555- Third: 1216

Area code: (777) Second: 555- Third: 1217

Note − In the above example, each regular expression inside the parenthesis would be

back referenced by \1, \2 and so on. We have used \ to give line break here. This should

be removed before running the command.

Unix

154

A file system is a logical collection of files on a partition or disk. A partition is a container

for information and can span an entire hard drive if desired.

Your hard drive can have various partitions which usually contain only one file system,

such as one file system housing the /file system or another containing the /home file

system.

One file system per partition allows for the logical maintenance and management of

differing file systems.

Everything in Unix is considered to be a file, including physical devices such as DVD-ROMs,

USB devices, and floppy drives.

Directory Structure

Unix uses a hierarchical file system structure, much like an upside-down tree, with root

(/) at the base of the file system and all other directories spreading from there.

A Unix filesystem is a collection of files and directories that has the following properties −

 It has a root directory (/) that contains other files and directories.

 Each file or directory is uniquely identified by its name, the directory in which it

resides, and a unique identifier, typically called an inode.

 By convention, the root directory has an inode number of 2 and the lost+found

directory has an inode number of 3. Inode numbers 0 and 1 are not used. File

inode numbers can be seen by specifying the -i option to ls command.

 It is self-contained. There are no dependencies between one filesystem and

another.

The directories have specific purposes and generally hold the same types of information

for easily locating files. Following are the directories that exist on the major versions of

Unix −

Directory Description

/
This is the root directory which should contain only the directories needed
at the top level of the file structure

/bin
This is where the executable files are located. These files are available to
all users

/dev These are device drivers

 Unix — File System Basics

Unix

155

/etc
Supervisor directory commands, configuration files, disk configuration files,
valid user lists, groups, ethernet, hosts, where to send critical messages

/lib Contains shared library files and sometimes other kernel-related files

/boot Contains files for booting the system

/home Contains the home directory for users and other accounts

/mnt
Used to mount other temporary file systems, such as cdrom and floppy

for the CD-ROM drive and floppy diskette drive, respectively

/proc
Contains all processes marked as a file by process number or other
information that is dynamic to the system

/tmp Holds temporary files used between system boots

/usr
Used for miscellaneous purposes, and can be used by many users. Includes

administrative commands, shared files, library files, and others

/var
Typically contains variable-length files such as log and print files and any
other type of file that may contain a variable amount of data

/sbin
Contains binary (executable) files, usually for system administration. For
example, fdisk and ifconfig utlities

/kernel Contains kernel files

Navigating the File System

Now that you understand the basics of the file system, you can begin navigating to the

files you need. The following commands are used to navigate the system −

Command Description

cat filename Displays a filename

cd dirname Moves you to the identified directory

cp file1 file2 Copies one file/directory to the specified location

Unix

156

file filename Identifies the file type (binary, text, etc)

find filename dir Finds a file/directory

head filename Shows the beginning of a file

less filename Browses through a file from the end or the beginning

ls dirname Shows the contents of the directory specified

mkdir dirname Creates the specified directory

more filename Browses through a file from the beginning to the end

mv file1 file2 Moves the location of, or renames a file/directory

pwd Shows the current directory the user is in

rm filename Removes a file

rmdir dirname Removes a directory

tail filename Shows the end of a file

touch filename Creates a blank file or modifies an existing file or its attributes

whereis filename Shows the location of a file

which filename Shows the location of a file if it is in your PATH

You can use Manpage Help to check complete syntax for each command mentioned here.

https://www.tutorialspoint.com/unix/unix-manpage-help.htm

Unix

157

The df Command

The first way to manage your partition space is with the df (disk free) command. The

command df -k (disk free) displays the disk space usage in kilobytes, as shown below

−

$df -k

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/vzfs 10485760 7836644 2649116 75% /

/devices 0 0 0 0% /devices

$

Some of the directories, such as /devices, shows 0 in the kbytes, used, and avail columns

as well as 0% for capacity. These are special (or virtual) file systems, and although they

reside on the disk under /, by themselves they do not consume disk space.

The df -k output is generally the same on all Unix systems. Here's what it usually includes

−

Column Description

Filesystem The physical file system name

kbytes Total kilobytes of space available on the storage medium

used Total kilobytes of space used (by files)

avail Total kilobytes available for use

capacity Percentage of total space used by files

Mounted on What the file system is mounted on

You can use the -h (human readable) option to display the output in a format that

shows the size in easier-to-understand notation.

The du Command

The du (disk usage) command enables you to specify directories to show disk space

usage on a particular directory.

This command is helpful if you want to determine how much space a particular directory

is taking. The following command displays number of blocks consumed by each directory.

A single block may take either 512 Bytes or 1 Kilo Byte depending on your system.

Unix

158

$du /etc

10 /etc/cron.d

126 /etc/default

6 /etc/dfs

...

$

The -h option makes the output easier to comprehend −

$du -h /etc

5k /etc/cron.d

63k /etc/default

3k /etc/dfs

...

$

Mounting the File System

A file system must be mounted in order to be usable by the system. To see what is

currently mounted (available for use) on your system, use the following command −

$ mount

/dev/vzfs on / type reiserfs (rw,usrquota,grpquota)

proc on /proc type proc (rw,nodiratime)

devpts on /dev/pts type devpts (rw)

$

The /mnt directory, by the Unix convention, is where temporary mounts (such as CD-

ROM drives, remote network drives, and floppy drives) are located. If you need to mount

a file system, you can use the mount command with the following syntax −

mount -t file_system_type device_to_mount directory_to_mount_to

For example, if you want to mount a CD-ROM to the directory /mnt/cdrom, you can

type −

$ mount -t iso9660 /dev/cdrom /mnt/cdrom

This assumes that your CD-ROM device is called /dev/cdrom and that you want to mount

it to /mnt/cdrom. Refer to the mount man page for more specific information or type

mount -h at the command line for help information.

Unix

159

After mounting, you can use the cd command to navigate the newly available file system

through the mount point you just made.

Unmounting the File System

To unmount (remove) the file system from your system, use the umount command by

identifying the mount point or device.

For example, to unmount cdrom, use the following command −

$ umount /dev/cdrom

The mount command enables you to access your file systems, but on most modern Unix

systems, the automount function makes this process invisible to the user and requires

no intervention.

User and Group Quotas

The user and group quotas provide the mechanisms by which the amount of space used

by a single user or all users within a specific group can be limited to a value defined by

the administrator.

Quotas operate around two limits that allow the user to take some action if the amount of

space or number of disk blocks start to exceed the administrator defined limits −

 Soft Limit − If the user exceeds the limit defined, there is a grace period that

allows the user to free up some space.

 Hard Limit − When the hard limit is reached, regardless of the grace period, no

further files or blocks can be allocated.

There are a number of commands to administer quotas −

Command Description

quota Displays disk usage and limits for a user of group

edquota
This is a quota editor. Users or Groups quota can be edited using

this command

quotacheck
Scans a filesystem for disk usage, creates, checks and repairs quota

files

setquota This is a command line quota editor

quotaon
This announces to the system that disk quotas should be enabled on

one or more filesystems

Unix

160

quotaoff
This announces to the system that disk quotas should be disabled

for one or more filesystems

repquota
This prints a summary of the disc usage and quotas for the specified

file systems

You can use Manpage Help to check the complete syntax for each command mentioned

here.

https://www.tutorialspoint.com/unix/unix-manpage-help.htm

Unix

161

In this chapter, we will discuss in detail about user administration in Unix.

There are three types of accounts on a Unix system −

Root account

This is also called superuser and would have complete and unfettered control of the

system. A superuser can run any commands without any restriction. This user should be

assumed as a system administrator.

System accounts

System accounts are those needed for the operation of system-specific components for

example mail accounts and the sshd accounts. These accounts are usually needed for

some specific function on your system, and any modifications to them could adversely

affect the system.

User accounts

User accounts provide interactive access to the system for users and groups of users.

General users are typically assigned to these accounts and usually have limited access to

critical system files and directories.

Unix supports a concept of Group Account which logically groups a number of accounts.

Every account would be a part of another group account. A Unix group plays important

role in handling file permissions and process management.

Managing Users and Groups

There are four main user administration files −

 /etc/passwd: Keeps the user account and password information. This file holds

the majority of information about accounts on the Unix system.

 /etc/shadow: Holds the encrypted password of the corresponding account. Not

all the systems support this file.

 /etc/group: This file contains the group information for each account.

 /etc/gshadow: This file contains secure group account information.

Check all the above files using the cat command.

 Unix — User Administration

Unix

162

The following table lists out commands that are available on majority of Unix systems to

create and manage accounts and groups −

Command Description

useradd Adds accounts to the system

usermod Modifies account attributes

userdel Deletes accounts from the system

groupadd Adds groups to the system

groupmod Modifies group attributes

groupdel Removes groups from the system

You can use Manpage Help to check complete syntax for each command mentioned here.

Create a Group

We will now understand how to create a group. For this, we need to create groups before

creating any account otherwise, we can make use of the existing groups in our system.

We have all the groups listed in /etc/groups file.

All the default groups are system account specific groups and it is not recommended to

use them for ordinary accounts. So, following is the syntax to create a new group account

−

 groupadd [-g gid [-o]] [-r] [-f] groupname

The following table lists out the parameters:

Option Description

-g GID The numerical value of the group's ID

-o This option permits to add group with non-unique GID

-r This flag instructs groupadd to add a system account

https://www.tutorialspoint.com/unix/unix-manpage-help.htm

Unix

163

-f

This option causes to just exit with success status, if the specified

group already exists. With -g, if the specified GID already exists, other

(unique) GID is chosen

groupname Actual group name to be created

[

If you do not specify any parameter, then the system makes use of the default values.

Following example creates a developers group with default values, which is very much

acceptable for most of the administrators.

$ groupadd developers

Modify a Group

To modify a group, use the groupmod syntax −

$ groupmod -n new_modified_group_name old_group_name

To change the developers_2 group name to developer, type −

$ groupmod -n developer developer_2

Here is how you will change the financial GID to 545 −

$ groupmod -g 545 developer

Delete a Group

We will now understand how to delete a group. To delete an existing group, all you need

is the groupdel command and the group name. To delete the financial group, the

command is −

$ groupdel developer

This removes only the group, not the files associated with that group. The files are still

accessible by their owners.

Create an Account

Let us see how to create a new account on your Unix system. Following is the syntax to

create a user's account −

useradd -d homedir -g groupname -m -s shell -u userid accountname

Unix

164

The following table lists out the parameters −

Option Description

-d homedir Specifies home directory for the account

-g groupname Specifies a group account for this account

-m Creates the home directory if it doesn't exist

-s shell Specifies the default shell for this account

-u userid You can specify a user id for this account

accountname Actual account name to be created

[[[[[

If you do not specify any parameter, then the system makes use of the default values.

The useradd command modifies the /etc/passwd, /etc/shadow, and /etc/group

files and creates a home directory.

Following is the example that creates an account mcmohd, setting its home directory

to /home/mcmohd and the group as developers. This user would have Korn Shell

assigned to it.

$ useradd -d /home/mcmohd -g developers -s /bin/ksh mcmohd

Before issuing the above command, make sure you already have the developers group

created using the groupadd command.

Once an account is created you can set its password using the passwd command as

follows −

$ passwd mcmohd20

Changing password for user mcmohd20.

New Unix password:

Retype new Unix password:

passwd: all authentication tokens updated successfully.

When you type passwd accountname, it gives you an option to change the password,

provided you are a superuser. Otherwise, you can change just your password using the

same command but without specifying your account name.

Unix

165

Modify an Account

The usermod command enables you to make changes to an existing account from the

command line. It uses the same arguments as the useradd command, plus the -l

argument, which allows you to change the account name.

For example, to change the account name mcmohd to mcmohd20 and to change home

directory accordingly, you will need to issue the following command −

$ usermod -d /home/mcmohd20 -m -l mcmohd mcmohd20

Delete an Account

The userdel command can be used to delete an existing user. This is a very dangerous

command if not used with caution.

There is only one argument or option available for the command .r, for removing the

account's home directory and mail file.

For example, to remove account mcmohd20, issue the following command −

$ userdel -r mcmohd20

If you want to keep the home directory for backup purposes, omit the -r option. You can

remove the home directory as needed at a later time.

Unix

166

In this chapter, we will discuss in detail about the system performance in Unix.

We will introduce you to a few free tools that are available to monitor and manage

performance on Unix systems. These tools also provide guidelines on how to diagnose and

fix performance problems in the Unix environment.

Unix has following major resource types that need to be monitored and tuned −

 CPU

 Memory

 Disk space

 Communications lines

 I/O Time

 Network Time

 Applications programs

Performance Components

The following table lists out five major components which take up the system time −

Component Description

User State CPU

The actual amount of time the CPU spends running the users’

program in the user state. It includes the time spent executing

library calls, but does not include the time spent in the kernel on

its behalf

System State

CPU

This is the amount of time the CPU spends in the system state on

behalf of this program. All I/O routines require kernel services.

The programmer can affect this value by blocking I/O transfers

I/O Time and

Network Time

This is the amount of time spent moving data and servicing I/O

requests

Virtual Memory

Performance
This includes context switching and swapping

 Unix — System Performance

Unix

167

Application

Program

Time spent running other programs - when the system is not

servicing this application because another application currently has

the CPU

Performance Tools

Unix provides following important tools to measure and fine tune Unix system performance

−

Command Description

nice/renice Runs a program with modified scheduling priority

netstat
Prints network connections, routing tables, interface statistics,

masquerade connections, and multicast memberships

time Helps time a simple command or give resource usage

uptime This is System Load Average

ps Reports a snapshot of the current processes

vmstat Reports virtual memory statistics

gprof Displays call graph profile data

prof Facilitates Process Profiling

top Displays system tasks

[

You can use Manpage Help to check complete syntax for each command mentioned here.

https://www.tutorialspoint.com/unix/unix-manpage-help.htm

Unix

168

In this chapter, we will discuss in detail about system logging in Unix.

Unix systems have a very flexible and powerful logging system, which enables you to

record almost anything you can imagine and then manipulate the logs to retrieve the

information you require.

Many versions of Unix provide a general-purpose logging facility called syslog. Individual

programs that need to have information logged, send the information to syslog.

Unix syslog is a host-configurable, uniform system logging facility. The system uses a

centralized system logging process that runs the program /etc/syslogd or /etc/syslog.

The operation of the system logger is quite straightforward. Programs send their log

entries to syslogd, which consults the configuration file /etc/syslogd.conf or

/etc/syslog and, when a match is found, writes the log message to the desired log file.

There are four basic syslog terms that you should understand −

Term Description

Facility
The identifier used to describe the application or process that submitted

the log message. For example, mail, kernel, and ftp.

Priority
An indicator of the importance of the message. Levels are defined within

syslog as guidelines, from debugging information to critical events.

Selector
A combination of one or more facilities and levels. When an incoming

event matches a selector, an action is performed.

Action

What happens to an incoming message that matches a selector —

Actions can write the message to a log file, echo the message to a

console or other device, write the message to a logged in user, or send

the message along to another syslog server.

[

 Unix — System Logging

Unix

169

Syslog Facilities

We will now understand about the syslog facilities. Here are the available facilities for the

selector. Not all facilities are present on all versions of Unix.

Facility Description

auth
Activity related to requesting name and password (getty, su,

login)

authpriv
Same as auth but logged to a file that can only be read by

selected users

console
Used to capture messages that are generally directed to the

system console

cron Messages from the cron system scheduler

daemon System daemon catch-all

ftp Messages relating to the ftp daemon

kern Kernel messages

local0.local7 Local facilities defined per site

lpr Messages from the line printing system

mail Messages relating to the mail system

mark Pseudo-event used to generate timestamps in log files

news Messages relating to network news protocol (nntp)

ntp Messages relating to network time protocol

user Regular user processes

uucp UUCP subsystem

Unix

170

Syslog Priorities

The syslog priorities are summarized in the following table −

Priority Description

emerg
Emergency condition, such as an imminent system crash,

usually broadcast to all users

alert
Condition that should be corrected immediately, such as a

corrupted system database

crit Critical condition, such as a hardware error

err Ordinary error

warning Warning

notice
Condition that is not an error, but possibly should be handled

in a special way

info Informational message

debug Messages that are used when debugging programs

none Pseudo level used to specify not to log messages

The combination of facilities and levels enables you to be discerning about what is logged

and where that information goes.

As each program sends its messages dutifully to the system logger, the logger makes

decisions on what to keep track of and what to discard based on the levels defined in the

selector.

When you specify a level, the system will keep track of everything at that level and higher.

Unix

171

The /etc/syslog.conf file

The /etc/syslog.conf file controls where messages are logged. A typical syslog.conf file

might look like this −

*.err;kern.debug;auth.notice /dev/console

daemon,auth.notice /var/log/messages

lpr.info /var/log/lpr.log

mail.* /var/log/mail.log

ftp.* /var/log/ftp.log

auth.* @prep.ai.mit.edu

auth.* root,amrood

netinfo.err /var/log/netinfo.log

install.* /var/log/install.log

*.emerg *

*.alert |program_name

mark.* /dev/console

Each line of the file contains two parts −

 A message selector that specifies which kind of messages to log. For example,

all error messages or all debugging messages from the kernel.

 An action field that says what should be done with the message. For example,

put it in a file or send the message to a user's terminal.

Following are the notable points for the above configuration −

 Message selectors have two parts: a facility and a priority. For

example, kern.debug selects all debug messages (the priority) generated by the

kernel (the facility).

 Message selector kern.debug selects all priorities that are greater than debug.

 An asterisk in place of either the facility or the priority indicates "all". For example,

.debug means all debug messages, while kern. means all messages generated

by the kernel.

 You can also use commas to specify multiple facilities. Two or more selectors can

be grouped together by using a semicolon.

Unix

172

Logging Actions

The action field specifies one of five actions −

 Log message to a file or a device. For example, /var/log/lpr.log or

/dev/console.

 Send a message to a user. You can specify multiple usernames by separating them

with commas; for example, root, amrood.

 Send a message to all users. In this case, the action field consists of an asterisk;

for example, *.

 Pipe the message to a program. In this case, the program is specified after the

Unix pipe symbol (|).

 Send the message to the syslog on another host. In this case, the action field

consists of a hostname, preceded by an at sign; for example, @tutorialspoint.com.

The logger Command

Unix provides the logger command, which is an extremely useful command to deal with

system logging. The logger command sends logging messages to the syslogd daemon,

and consequently provokes system logging.

This means we can check from the command line at any time the syslogd daemon and

its configuration. The logger command provides a method for adding one-line entries to

the system log file from the command line.

The format of the command is −

logger [-i] [-f file] [-p priority] [-t tag] [message]...

Here is the detail of the parameters −

Option Description

-f filename Uses the contents of file filename as the message to log.

-i Logs the process ID of the logger process with each line.

-p priority

Enters the message with the specified priority (specified selector entry);

the message priority can be specified numerically, or as a facility.priority

pair. The default priority is user.notice.

-t tag Marks each line added to the log with the specified tag.

Unix

173

message
The string arguments whose contents are concatenated together in the

specified order, separated by the space.

You can use Manpage Help to check complete syntax for this command.

Log Rotation

Log files have the propensity to grow very fast and consume large amounts of disk space.

To enable log rotations, most distributions use tools such as newsyslog or logrotate.

These tools should be called on a frequent time interval using the cron daemon. Check

the man pages for newsyslog or logrotate for more details.

Important Log Locations

All the system applications create their log files in /var/log and its sub-directories. Here

are few important applications and their corresponding log directories −

Application Directory

httpd /var/log/httpd

samba /var/log/samba

cron /var/log/

mail /var/log/

mysql /var/log/

https://www.tutorialspoint.com/unix/unix-manpage-help.htm

Unix

174

In this chapter, we will discuss in detail about Signals and Traps in Unix.

Signals are software interrupts sent to a program to indicate that an important event has

occurred. The events can vary from user requests to illegal memory access errors. Some

signals, such as the interrupt signal, indicate that a user has asked the program to do

something that is not in the usual flow of control.

The following table lists out common signals you might encounter and want to use in your

programs −

Signal

Name

Signal

Number
Description

SIGHUP 1
Hang up detected on controlling terminal or death of

controlling process

SIGINT 2 Issued if the user sends an interrupt signal (Ctrl + C)

SIGQUIT 3 Issued if the user sends a quit signal (Ctrl + D)

SIGFPE 8 Issued if an illegal mathematical operation is attempted

SIGKILL 9
If a process gets this signal it must quit immediately and will

not perform any clean-up operations

SIGALRM 14 Alarm clock signal (used for timers)

SIGTERM 15 Software termination signal (sent by kill by default)

List of Signals

There is an easy way to list down all the signals supported by your system. Just issue

the kill -l command and it would display all the supported signals −

$ kill -l

 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL

 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE

 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2

13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT

 Unix — Signals and Traps

Unix

175

17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP

21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU

25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH

29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN

35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4

39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8

43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12

47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14

51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10

55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6

59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2

63) SIGRTMAX-1 64) SIGRTMAX

The actual list of signals varies between Solaris, HP-UX, and Linux.

Default Actions

Every signal has a default action associated with it. The default action for a signal is the

action that a script or program performs when it receives a signal.

Some of the possible default actions are −

 Terminate the process.

 Ignore the signal.

 Dump core. This creates a file called core containing the memory image of the

process when it received the signal.

 Stop the process.

 Continue a stopped process.

Sending Signals

There are several methods of delivering signals to a program or script. One of the most

common is for a user to type CONTROL-C or the INTERRUPT key while a script is

executing.

When you press the Ctrl+C key, a SIGINT is sent to the script and as per defined default

action script terminates.

The other common method for delivering signals is to use the kill command, the syntax

of which is as follows −

$ kill -signal pid

Unix

176

Here signal is either the number or name of the signal to deliver and pid is the process

ID that the signal should be sent to. For Example −

$ kill -1 1001

The above command sends the HUP or hang-up signal to the program that is running with

process ID 1001. To send a kill signal to the same process, use the following command

−

$ kill -9 1001

This kills the process running with process ID 1001.

Trapping Signals

When you press the Ctrl+C or Break key at your terminal during execution of a shell

program, normally that program is immediately terminated, and your command prompt

returns. This may not always be desirable. For instance, you may end up leaving a bunch

of temporary files that won't get cleaned up.

Trapping these signals is quite easy, and the trap command has the following syntax −

$ trap commands signals

Here command can be any valid Unix command, or even a user-defined function, and

signal can be a list of any number of signals you want to trap.

There are two common uses for trap in shell scripts −

 Clean up temporary files

 Ignore signals

Cleaning Up Temporary Files

As an example of the trap command, the following shows how you can remove some files

and then exit if someone tries to abort the program from the terminal −

$ trap "rm -f $WORKDIR/work1$$ $WORKDIR/dataout$$; exit" 2

From the point in the shell program that this trap is executed, the two

files work1$$ and dataout$$ will be automatically removed if signal number 2 is

received by the program.

Hence, if the user interrupts the execution of the program after this trap is executed, you

can be assured that these two files will be cleaned up. The exit command that follows

the rm is necessary because without it, the execution would continue in the program at

the point that it left off when the signal was received.

Signal number 1 is generated for hangup. Either someone intentionally hangs up the line

or the line gets accidentally disconnected.

Unix

177

You can modify the preceding trap to also remove the two specified files in this case by

adding signal number 1 to the list of signals −

$ trap "rm $WORKDIR/work1$$ $WORKDIR/dataout$$; exit" 1 2

Now these files will be removed if the line gets hung up or if the Ctrl+C key gets pressed.

The commands specified to trap must be enclosed in quotes, if they contain more than

one command. Also note that the shell scans the command line at the time that the trap

command gets executed and also when one of the listed signals is received.

Thus, in the preceding example, the value of WORKDIR and $$ will be substituted at the

time that the trap command is executed. If you wanted this substitution to occur at the

time that either signal 1 or 2 was received, you can put the commands inside single quotes

−

$ trap 'rm $WORKDIR/work1$$ $WORKDIR/dataout$$; exit' 1 2

Ignoring Signals

If the command listed for trap is null, the specified signal will be ignored when received.

For example, the command −

$ trap '' 2

This specifies that the interrupt signal is to be ignored. You might want to ignore certain

signals when performing an operation that you don't want to be interrupted. You can

specify multiple signals to be ignored as follows −

$ trap '' 1 2 3 15

Note that the first argument must be specified for a signal to be ignored and is not

equivalent to writing the following, which has a separate meaning of its own −

$ trap 2

If you ignore a signal, all subshells also ignore that signal. However, if you specify an

action to be taken on the receipt of a signal, all subshells will still take the default action

on receipt of that signal.

Resetting Traps

After you've changed the default action to be taken on receipt of a signal, you can change

it back again with the trap if you simply omit the first argument; so -

$ trap 1 2

This resets the action to be taken on the receipt of signals 1 or 2 back to the default.

