
REPORT

API Traffic
Management
101
From Monitoring to
Managing and Beyond

Mike Amundsen

Compliments of

Learn more at nginx.com/apim

Traditional API management tools are complex
and slow. As the most-trusted API gateway, we
knew we could do better. NGINX has modernized
full API lifecycle management.

 Why Trust Your APIs
 to Anyone Else?

API Definition
and Publication
Define APIs using

an intuitive interface.

Rate
Limiting

Protection against
malicious API clients.

Authentication and
Authorization

Applying fine-grained
access control for

better security.

Real-Time Monitoring
and Alerting

Get critical insights
into application
performance.

Dashboards

Monitor and
troubleshoot API
Gateways quickly.

http://www.nginx.com/apim

Mike Amundsen

API Traffic
Management 101

From Monitoring to Managing
and Beyond

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05636-2

LSI

API Traffic Management 101
by Mike Amundsen

Copyright © 2019 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or cor‐
porate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Virginia Wilson
Production Editor: Elizabeth Kelly
Copyeditor: Octal Publishing, Inc.

Proofreader: Kim Wimpsett
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

August 2019: First Edition

Revision History for the First Edition
2019-08-28: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. API Traffic Man‐
agement 101, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the author, and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions, includ‐
ing without limitation responsibility for damages resulting from the use of or reli‐
ance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of oth‐
ers, it is your responsibility to ensure that your use thereof complies with such licen‐
ses and/or rights.

This work is part of a collaboration between O’Reilly and NGINX. See our statement
of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Preface. v

1. The Power of API Traffic Management. 1
Monitoring with KPIs 3
OKRs 6
Summary 9
Additional Reading 10

2. Managing Traffic. 11
Controlling External Traffic 12
Optimizing Internal Traffic 18
Summary 24
Additional Reading 24

3. Monitoring Traffic. 25
Monitoring Levels 25
Typical Traffic Metrics 27
Common Traffic Formulas 30
Summary 34
Additional Reading 34

4. Securing Traffic. 35
Security Basics 35
Managing Access with Tokens 40
Summary 45
Additional Reading 45

iii

5. Scaling Traffic. 47
Surviving Network Errors 47
Stability Patterns 50
Caching 54
Summary 58
Additional Reading 58

6. Diagnosing and Automating Traffic. 59
Business Metrics 60
Automation 63
Runtime Experiments 66
Summary 68
Additional Reading 68

A. From Monitoring to Managing and Beyond. 69

iv | Table of Contents

Preface

Welcome to API Traffic Management 101!

The aim of this short book is to introduce the general themes, chal‐
lenges, and opportunities in the world of managing API traffic.
Most of the examples and recommendations come from my own
experience (or that of colleagues) while working with customers,
ranging from small local startups to global enterprises.

Who Should Read This Book
This book is for those just getting started in API traffic management
as well as those who have experience and want to review the basics
and take your work to the next level. Developers who are responsi‐
ble for creating and maintaining APIs will learn how network
admins and those charged with enabling API traffic collection iden‐
tify and track key API activity. And admins who design and main‐
tain API traffic metrics can learn how to align and enrich traffic
collection to support and inform API developers.

And you don’t need to be a traffic management practitioner to
extract value from this book. I also spend time focusing on the busi‐
ness value of good API traffic practice, including the ability to con‐
nect your organization’s business goals and internal progress
measurements with the useful traffic monitoring, reporting, and
analysis.

How to Get the Most from This Book
I’ve included ways in which you can adopt well-known engineering
principles from DevOps and Agile practice as a way to add rigor and

v

consistency to your API traffic program. That includes references to
test automation, continuous delivery and deployment practices, and
even engaging in site reliability engineering (SRE) and chaos engi‐
neering as part of your traffic management practices. The chapters
are arranged to focus on key aspects of every healthy API traffic
program cutting across important practices, including the role of
traffic management in your company (Chapter 1), types of traffic to
consider and how to approach basic monitoring (Chapters 2 and 3),
security concerns (Chapter 4), how to use traffic metrics to improve
system resilience and scaling (Chapter 5), and how you can use your
API traffic management program to support advanced efforts like
SRE and chaos engineering.

Whether you are a veteran of network and performance monitoring
or just getting your feet wet in the field, this book is designed to pro‐
vide you important insight into patterns and trends as well as point‐
ers to specific tools and practices that you can use to build up your
own experience and grow an API traffic management practice in
your own company.

This book is meant to be read straight through, but if you want to
jump directly in at some point in the book, that’s fine, too. I made
sure to write up clear introductions and summaries so that, even if
you don’t want to spend time reading the entire book, you can get
the big picture by skimming the table of contents and reading the
beginning and end of each chapter.

Additional Reading
Most chapters have footnotes to point you to related material that is
referenced throughout the text. Each chapter also has an “Additional
Reading” section at the end. Here, you’ll find references to handy
books that expand on the concepts covered in the chapter.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

vi | Preface

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data‐
bases, data types, environment variables, statements, and key‐
words.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Safari® Books Online
Safari Books Online is an on-demand digital
library that delivers expert content in both
book and video form from the world’s lead‐
ing authors in technology and business.

Technology professionals, software developers, web designers, and
business and creative professionals use Safari Books Online as their
primary resource for research, problem solving, learning, and certif‐
ication training.

Preface | vii

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/

Safari Books Online offers a range of plans and pricing for enter‐
prise, government, education, and individuals.

Members have access to thousands of books, training videos, and
prepublication manuscripts in one fully searchable database from
publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress,
Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech‐
nology, and hundreds more. For more information about Safari
Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email
to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
No project like this happens without lots of hard work and contribu‐
tions from many sources. First, I’d like to thank the NGINX team for
sponsoring the project and allowing me to be a part of it. Additional
thanks to the folks at O’Reilly Media including Eleanor Bru, Sharon
Cordesse, Chris Guzikowski, Colleen Lobner, Nikki McDonald, Vir‐

viii | Preface

https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

ginia Wilson, and countless others. I am especially indebted to those
who took the time to read my early drafts and provide important
and valuable feedback to help me improve the text including Liam
Crilly, James Higginbotham, Matthew McLarty, Scott Morrison, and
copyeditor Bob Russell. Finally, thanks to Ronnie Mitra for creating
the illustrations for this book.

Preface | ix

CHAPTER 1

The Power of API Traffic
Management

As Application Programming Interfaces (APIs) and their associated
traffic become more common in organizations large and small, new
challenges emerge in how to both monitor and manage this new
data. For the purposes of this book, monitoring is the act of collect‐
ing and observing your API ecosystem’s behavior (e.g., the number
of API calls per minute), and managing is the process of analyzing,
reaching conclusions, and acting on those conclusions (e.g., whether
your API calls are unusual and what is needed to change that). As I
travel around the world and talk to companies about how they are
dealing with this new flood of data within their organization I note
that most of them are struggling just to grasp the job of monitoring
itself. And it is no small job.

In this chapter, we explore the challenge and the advantage of a
broad-ranging API traffic management approach. This includes the
work of monitoring traffic in order to collect data and improve the
observability of your APIs as well as the notion of actively managing
your API program using the insights gained from your traffic met‐
rics (see Figure 1-1). Getting a handle on these two concepts will
help you place API traffic management as a central pillar in your
healthy API program and set you on the path to determining just
what to track and how to use that information to improve your
company’s API program.

1

Figure 1-1. Progressing from monitoring to managing API traffic

Knowing what data points are worth monitoring can be a challenge.
Just about any out-of-the-box traffic tooling will offer up values like
CPU, memory, and disk space for individual machines as well as
other values such as request/response length, message counts, and,
usually, error rates. But these rarely tell you what you need to know.
Instead, you often need to monitor not just the length and count of
messages, but also the types of messages, their routes through our
system, and the ultimate dispensation of any data sent or requested.
And that’s just the beginning of the role of monitoring in making
your system more visible and your services more observable.

But, monitoring is not enough. Good traffic management means
just that—managing the traffic you observe. That requires the ability
to categorize some traffic as “good” or “bad” and having a sense of
what “healthy” traffic looks like for your business. These are things
no tool or service can offer. Instead, you need to apply strategic and
tactical thinking to the traffic you see and then design data collec‐
tion and displays that give you a broad sense of the health and wel‐
fare of your business as a whole. Like any complex system (and most
API-driven ecosystems qualify as complex), turning raw data into
valuable information means applying experience and judgment. And
that is a level of API traffic management that can help you gain an
advantage over competitors in your industry as well as give you an
opportunity to anticipate important changes in customer habits and
your market segment in general.

You can combine the two key perspectives on monitoring and man‐
aging your API traffic to gain business insight. In this chapter, you
learn how to use Key Performance Indicators (KPIs) to identify and
track important monitoring metrics and how to combine those with
Objectives and Key Results (OKRs) to create a comprehensive high-

2 | Chapter 1: The Power of API Traffic Management

level view of your company’s API activities and their effect on your
overall business. Let’s take a look at each of these in turn and see
how KPIs and OKRs offer a vital perspective on API traffic monitor‐
ing and management.

Monitoring with KPIs
Monitoring is the act of observing; of collecting and collating data
points that can help you make assessments and act on your judg‐
ment. But what do you monitor? Although the usual health of a
machine’s processor, memory, and disk is a start, the distance, for
example, between the remaining space on a server’s disk drive and
the total sum of latency between components handling a single
transaction spanning from your network to the system-of-record in
a distributed storage installation is, pardon the reference, quite a
long way. It is important to focus on observing key indicators of
your ecosystem that can help you to track the progress of both your
day-to-day online operations as well as the behind-the-scenes work
of building, testing, and deploying updates to your API landscape.
Especially as your system grows in size, variety, and complexity, cor‐
relating the effects of newly updated parts of the system with the
character of daily business transactions can be a key to success.

The concept of performance indicators dates back quite a while.
Business people have, almost since “the beginning,” been looking for
ways to identify and reward good performance and reduce unwan‐
ted elements. The notion of “key” performance indicators alludes to
the idea that not just any metric or measurement will do when try‐
ing to get a proper view of your IT operation or your business itself.
There are, essentially, key performance indicators that can represent
important activity and processes. I dig into some common methods
for identifying and collecting KPIs in Chapter 3. For now, it is worth
pointing out there is more than one way to think about KPIs and
how you need to use them in your organization.

Management Challenges
For many organizations it is still difficult to wrangle all of the dispa‐
rate internal and external traffic into a coherent traffic platform.
This is especially true for companies with offices around the globe.
This is primarily a management challenge. As mentioned earlier, the
growth of APIs and the explosion of small, focused services within a

Monitoring with KPIs | 3

company’s ecosystem means the traffic between those services often
represents a critical aspect of the health of not just your IT opera‐
tions but also your day-to-day business operations. The quantity of
API traffic and the quality of that traffic reflect as well as affect the
quantity and quality of the company’s business.

This means that managing the business requires an understanding
of the types and meaning of your API traffic. Just as sales traffic
monitoring and market intelligence are essential elements in top-
level business decisions, understanding which API calls represent
real revenue and which ones are indicative of your organization’s
place in the wider market of ecommerce is part of managing your
business in the twenty-first century. In Chapter 3, we examine the
details of how you can use API traffic monitoring to get a handle on
the day-to-day operations of not just your IT operations but your
business, too.

Traffic Challenges
The very nature of API traffic has been changing in the past few
years. As more companies adopt the pattern of smaller, lightweight
services composed into agile, resilient solutions, the amount of
interservice traffic (typically called “East–West” traffic) is growing.
Organizations that have spent time and resources building up a
strong practice in managing traffic from behind the firewall to the
outside world (called “North–South” traffic) might find that their
tool selection and platform choices are not properly suited for the
increased traffic between services behind the firewall.

Many traffic programs have focused on the very important “North–
South” traffic that represents both the risk and opportunities of API
calls that reach outside your own company and into the wider API
marketplace. And this will continue to be important as more and
more organizations come to rely on other people’s APIs in order to
keep their own business afloat.

At the same time, paying close attention to your “East–West” traffic
will provide you key information on the spread and depth of your
own service ecosystem and can help you better understand and even
anticipate how changes in interservice traffic will affect your compa‐
ny’s IT operations and spending.

In both cases, the added use of external APIs means that you’ll
always be dealing with dependencies on external services over which

4 | Chapter 1: The Power of API Traffic Management

you have little to no control. This can affect your own infrastructure
choices, too.

Monitoring Challenges
Even when traffic is properly corralled and effectively routed, the
landscape of monitoring this traffic continues to evolve over time.
To gain the degree of observability needed to make critical decisions
on how to grow and change your service and API mix, you’ll need
to be able to monitor at multiple levels within the ecosystem. Proxy-
level monitoring gives you a “big picture” of what is happening on
your platform. But you also need service-level monitoring to gain
insight into the health and usage patterns for individual components
in your system.

Often organizations start by focusing on monitoring traffic at the
perimeter of operation. This top-level monitoring can act as a bell‐
wether to let you know what kind of traffic is entering and leaving
your company’s ecosystem. This kind of monitoring is also usually
“noninvasive.” You can establish data collection points in gateways
and proxies far from the actual source code of the services that han‐
dle this traffic. But there are limits to the kind of information proxy-
level monitoring can tell you.

Especially in companies that rely on a microservice-centric imple‐
mentation model, understanding what happens to API traffic after it
passes your proxies and enters your ecosystem can be daunting.
What you need to know is not just the general flow of traffic. Some‐
times you need to know exactly where a particular request is going
and how that requests is processed throughout its lifespan. Typically
this means that you need to employ shared transaction identifiers—
ones that are retained as the traffic passes through various network
boundaries.

Microservice implementation eventually means leveraging monitor‐
ing information at the service level, too. You might not always be
able to control the source code of all your services or be able to
inject monitoring directly into a single service component. In that
case, you need to find lightweight monitoring solutions at a smaller-
grained level. We look at how you can do this in Chapter 3.

Monitoring with KPIs | 5

1 “What are OKRs”

From Managing to Understanding
From actively managing to understanding traffic types to getting a
handle on the types of monitoring access you need within your
company, all these elements are critical to designing an API traffic
control system that gives you a good picture of what is going on
within your service ecosystem. But there is another perspective, too.
Why are you monitoring your traffic? What is the connection
between API traffic and business goals? And, if knowing your API
traffic can help you know your business better, how does that work?

One of the ways that I see companies moving from monitoring to
management is through the application of OKRs in addition to their
KPIs.

OKRs
Along with the typical API traffic management practices around
monitoring, securing, and scaling requests and responses, there is
another perspective on your APIs—the business perspective. APIs
exist only to serve business objectives. If they’re not contributing to
the fundamental goals of your organization, APIs are not properly
aligned.

It is through the use of traffic management and analysis that compa‐
nies can gauge the business-level success of their APIs. That means
setting traffic metrics that matter for the business (number of cus‐
tomers gained, number of shopping carts abandoned before check-
out, failed uploads per hour, etc.) and then using your traffic
management platform to monitor and report on those key metrics.
These metrics are usually based on your company’s OKRs.1 We dive
into the details of how this works in Chapter 6.

Andy Grove’s Management Objectives
OKRs were first described by Intel’s Andy Grove, in his 1983 book
High Output Management. They were motivated by the writings of
Peter Drucker and the concept of “Management by Objectives.”
OKRs were Grove’s way of applying management practice in an
engineering environment. Google adopted OKRs within the first

6 | Chapter 1: The Power of API Traffic Management

http://bit.ly/2z0h9S4

2 “How Google sets goals: OKRs”

year or so of its founding, and it has been credited as being one of
the important elements of the company’s overall success.2

Your traffic management platform is a treasure trove of data span‐
ning from the rhythm and stability of your internal deployment pro‐
cesses to the behavioral aspects of your API consumers. By investing
in a robust API traffic management platform, you have—at your fin‐
gertips—an incredibly valuable tool for gaining insight into your
company, solving the problems of your consumer audience, and
even anticipating the needs of your customer base.

Gaining Insight
As API traffic—and the services and tools that are used to support
and build them—continues to grow, it is important to have a handle
on how your organization is spending its time and money to design,
implement, and deploy API-based services. Most of this activity
happens “outside” the typical production API traffic management
zone. However, while teams are selecting which processes to auto‐
mate via APIs and which interfaces will be most effective to add to
your growing list of APIs and services, these additions need to be
based on business-level goals and tracked by tangible metrics. Just as
the programming side of digital transformation means increasing
the amount of early test-driven development, the traffic manage‐
ment side of business demands more attention to establishing busi‐
ness metrics early in the process and baking those metrics into the
deployment and monitoring process.

For the past decade or so, most organizations have been learning to
rely on Agile, Scrum, and other models to shorten the iteration cycle
of design, build, test, and release. And it is the last step in that pro‐
cess where a robust traffic management practice can yield results.
This means combining your key traffic metrics with measurements
that reflect your company’s own internal behaviors around test and
deployment cycles.

We dig deeper into techniques you can use to apply your traffic
practices to your business in “Business Metrics” on page 60.

OKRs | 7

http://bit.ly/2H8zO2u

3 “API imperative: From IT concern to business mandate”

Good API traffic management practice can improve the overall visi‐
bility of your system and allow you to better understand just what is
going on throughout your organization. And, after you have a better
sense of your system’s activity, you’ll have an opportunity to use that
information to solve problems directly.

Solving Problems
As APIs become more prevalent within companies, they also
become a more vital element in the success of the business. In its
2018 Tech Trends Report, accounting and consulting company
Deloitte predicted: “Over the next 18 to 24 months, expect many
heretofore cautious companies to embrace the API imperative.”3

When this happens more and more business-critical traffic is car‐
ried throughout the company via API gateways, proxies, and rout‐
ers. The proxies themselves—the intermediaries between various
services spread throughout the organization—become a key link in
the process of completing business transactions, generating revenue,
and reducing costs. In this case, understanding your traffic patterns
gives you an opportunity to identify heavy API usage, recognize
pockets of inefficiency, and work to solve these problems in ways
that accrue to the company’s bottom line.

For example, as your API traffic grows over time, some cross-service
connections can become saturated with traffic, causing slowdowns,
more denied requests, and a drop in business-critical transactions.
Good traffic management systems will allow you to redesign traffic
patterns to eliminate these bottlenecks; for example, when “hot
spots” appear where traffic degradation is likely. In this case, that
might mean standing up more instances of transaction-processing
services in another location, adding routing rules that break up
heavy traffic into separate zones, and route the transactions
throughout the system in ways that balance the load and therefore
speed processing for critical portions of your system.

And when you have reached the stage at which your API traffic
management system affords you visibility into day-to-day opera‐
tions and allows you to identify and remedy API traffic jams, the
next stage is to design and build traffic management infrastructure
that allows you to anticipate your system’s traffic needs.

8 | Chapter 1: The Power of API Traffic Management

http://bit.ly/2MerC53

Anticipating Needs
The state of most API-driven systems today is often based on piece‐
meal growth and haphazard management. Getting a handle on your
organization’s API traffic means improving overall visibility as well
as learning to solve business problems through the routing and
shaping of the very traffic your APIs depend upon. The next level of
traffic management is anticipating the needs that are likely to arise
and providing solutions before the problems are significant enough
to be noticed.

An excellent way to do this is to conduct runtime experiments on
your ecosystem. The ability to safely and consistently create and test
your traffic hypothesis is something we explore in “Runtime Experi‐
ments” on page 66.

Summary
This chapter covered both the challenge and the advantage of a
broad-ranging API traffic management approach. The work of mon‐
itoring traffic with meaningful KPIs in order to collect data and
improve the observability of your APIs means that you’ll need to
deal with the challenges of taking control of the monitoring process,
focusing on the different types of API traffic you experience (e.g.,
“East–West” as well as “North–South”) and dealing with the chal‐
lenges of collecting data in the proper locations (network-level prox‐
ies as well as service-level components).

You also learned how to move beyond monitoring API traffic and
into actively managing your API program. Well-designed and imple‐
mented API traffic management can give your organization the
opportunity to gain insights into daily business activity, identify and
solve traffic problems before they grow to a critical level, and even
anticipate needs within your own ecosystem and your business mar‐
ket in general.

In the next chapter, we look at the basics of traffic in general and
how your knowing the types of traffic you’re dealing with can help
you determine just how and why you need to establish your IT eco‐
system’s KPIs and relate them to the OKRs of your overall business.

Summary | 9

Additional Reading
• Continuous API Management, Medjaou et al.
• Production-Ready Microservices, Fowler
• Building Evolutionary Architectures, Kua et al.

10 | Chapter 1: The Power of API Traffic Management

https://oreil.ly/CAPIM
https://oreil.ly/p-rmicro
https://oreil.ly/BEvoA

CHAPTER 2

Managing Traffic

In this chapter, we get a chance to look at just how you can model
your traffic patterns and how those patterns can help you to focus
on what’s important.

The two approaches covered here are controlling external traffic
(also known as the North–South model) and optimizing for internal
traffic (called the East–West model). Both of these approaches have
their place, and most companies need a mix of North–South and
East–West configuration and controls in place in order to both pro‐
tect your network from external problems and support your internal
service ecosystem as it grows and changes over time.

The North–South approach is typically associated with traditional
monolithic implementations. However, as more and more microser‐
vices are entering company IT operations, the North–South model
may not always be the best options. Let’s start by exploring the
North–South model first, and then we can deal with the alternative.

According to the “Cisco Global Cloud Index” (updated in late 2018),
the East–West (server-to-server) traffic was estimated to reach 85%
of total datacenter traffic by 2021. The total portion of North–South
traffic (traffic exiting the datacenter) is expected to amount to about
15% of the total traffic. Despite this lopsided distribution, North–
South traffic has received the bulk of traffic management’s attention
in recent years due to the increased vulnerabilities and lack of pre‐
dictability when dealing with traffic that originates (or terminates)
outside your own network boundary.

11

http://bit.ly/2yKDt20

We devote time to both approaches in this chapter.

Controlling External Traffic
The most common way to diagram API traffic is in what is called
the “North–South” pattern. It looks similar to the diagram presented
in Figure 2-1. We’ve probably all seen a diagram that looks like this.
At the top of the image is the world outside your network; that’s
where the API requests originate. These incoming requests then
move “south” through your API gateway—a gateway or cluster that
performs various tasks to inspect, shape, and route the incoming
request—on the way to the target destination where some work is
performed. After that work is done at the component level, the
resulting API response makes its way back up “north” to finally pass
through the perimeter and back out in the world beyond your net‐
work.

Figure 2-1. Example of north-south traffic

This North–South model focuses on the traffic that comes from
“outside” your domain or network zone. That traffic is, by default,
unknown and untrusted. For that reason, much of the North–South
model emphasizes the work of validating the message, authenticat‐
ing its requester, filtering, shaping, and finally routing the request to
the proper place.

This is especially true in a monolith-style implementation for which
all the incoming message processing (authentication, routing, and
transformation, etc.) happens only at the outer boundary of the net‐
work. However, there are other cases for which the North–South

12 | Chapter 2: Managing Traffic

approach falls short. We look at that possibility in the next section
(see “Optimizing Internal Traffic” on page 18).

Crossing Boundaries
A critical aspect of North–South traffic management is the work of
“crossing boundaries”—passing data safely and efficiently from
behind the firewall out to other domains, datacenters, or the cloud.
The details of sharing data securely (e.g., authentication, authoriza‐
tion, and encryption) when crossing from one system to another is
important, and we cover it in Chapter 4. It is also important to focus
on efficient data sharing across domain boundaries. Usually, cross-
boundary application-level protocols like HTTP focus on interoper‐
ability at the expense of efficiency. Effective traffic management
makes sure to avoid unnecessary boundary crossings in order to
limit the loss of efficiency when sending data outside the firewall.

Your network perimeter is typically not the only boundary that
needs to be managed. You might have separate zones for mobile,
web, partner, and other kinds of traffic that you need to manage. It is
at the zone boundaries that traffic is identified, shaped, and routed
to the proper location within your network. What follows is a quick
review of typical responsibilities when handling this kind of traffic
pattern as well as a few challenges.

Typical Responsibilities
Along with the notion of enabling cross-boundary access, there are
a set of common tasks associated with North-South API traffic man‐
agement. These tasks are usually handled at the boundary perimeter
by API gateway servers. But the work can also be done at various
points within the network. Following is a quick rundown of typical
responsibilities for this class of API management.

Authenticating ingress
One of the first tasks for handling inbound (or ingress) API traffic is
to associate an identity with each request. Even though robust
authentication is unnecessary, API requests usually have some
assigned identifying key as part of the request metadata (e.g., HTML
headers). You can use this identifying information to track the pro‐
gress of the request through your system, and, when needed, you
can use it to limit access, throttle requests, and more.

Controlling External Traffic | 13

After the request is authenticated, it needs to be authorized. It is
important to keep in mind that each request—even requests from the
same API identity—needs an access control check. The same request
identity is likely to have differing rights levels for differing URLs.
The access control might even be dependent on the type and loca‐
tion of the device making the request (e.g., a never-before-seen
mobile phone connecting from a country not normally associated
with the requester’s identity). For more on access control details, see
Chapter 4.

Even in cases for which a unique identity or shared API key is not
required to access the network, some form of identifying data
should be assigned to each request. This will ensure that all requests
can be tracked and managed.

Finally, the process of authenticating and authorizing inbound mes‐
sages can also inject additional metadata into the request such as the
identity of the server doing the authentication, date/time data, infor‐
mation on the initial location of the incoming request, and so on.

Limiting ingress
Another important task for perimeter gateways is limiting inbound
traffic. It is a good idea to have thresholds for all API traffic. These
thresholds can take the form of request limits or quotas for inbound
traffic associated with a particular identity.

Gateways can enforce traffic limits based on request/response
counts and/or payload size. These limits can be associated with
request identity, request targets or routes, or just boundary level
request counts. And this associated data is usually computed over a
“time-window” (per minute, hour, day, etc.). This means that gate‐
ways need to maintain persistent data covering all of the managed
request parameters (count, size, time-window, identity, etc.).

For more on dealing with threshold and limits, see Chapter 3.

Routing ingress
The work of routing incoming requests is also another key task for
API gateways. Typically this is handled by writing declarative rules
that run at the boundary gateways to inspect incoming request
metadata (URL, HTTP request method, HTTP header, etc.).

14 | Chapter 2: Managing Traffic

Although routing might be just a simple scan matching the URL
with an existing rule, API traffic platforms might also be tasked with
rewriting the URL to convert it from a simple external address
(api.bigco.com/customer/1q2w3e) to an address that is better
understood by services within your internal network (south-
region.bigco.com/services/cust/v2?id=1q2w3e).

API gateways might also inject request metadata such as time‐
stamps, information identifying the proxy that performed the rout‐
ing, and so on.

Transforming ingress
One more task that API gateways might perform is to request body
transformation. For example, an incoming request might be format‐
ted as a JSON message, but the request is targeted at a service that
only understands XML-formatted bodies. You can use a gateway to
transform that JSON into XML before passing it along to the target
service.

Another kind of transformation is one that deals with minor differ‐
ences in layout and content due to changes in payload specifications
over time. For example, a request might have arrived marked as ver‐
sion 1 of the customer update payload. However, the internal com‐
ponent that is running in production supports only version 2 of the
customer payload. If the differences are minor, an API gateway
might be tasked with modifying the incoming request to conform to
the backend component’s needs.

Dedicated to Transformation
Payload transformation is a costly and sometimes buggy process.
One way to deal with the challenges of payload transformation is to
stand up a dedicated transformation service within your network.
This could be a shared service that can be called upon to convert a
message body based on rules or scripts stored at the transformation
server. This will allow you to optimize the transformation work and
even customize it for your own specific use cases. Using a dedicated
service within your network can also make it easier to test, deploy,
and manage transformation scripts. Finally, it will be easier to mon‐
itor and isolate errors introduced through transformations, too.

Controlling External Traffic | 15

Like other tasks, transformation proxies can also inject additional
metadata into the request, including a reference to the original for‐
matted payload.

Transforming egress
Just as you might be transforming the payload of an incoming
request (ingress), you can also transform outbound responses
(egress). Using the example from the previous section, you might
need to write a transformation rule to convert internal XML pay‐
loads into JSON before passing the response out of your system. You
might even need to modify the layout slightly to support the initial
API requester’s specifications.

As mentioned earlier, payload transformation can be time-
consuming, complex, and error prone. Whenever possible, you
should limit the use of transformations as part of your API traffic
management. When you need it, use a dedicated transformation ser‐
vice as described in “Dedicated to Transformation” on page 15.

Filtering egress
You might need to filter the outbound message to remove some pay‐
load and/or header metadata before it leaves your network. For
example, your message might include several metadata fields used to
track the request internally, identify it for security and access control
needs, or other things that should not be seen outside your
boundary.

It might also be necessary to remove or modify data in the payload
for security reasons. Like the topic of transformation, filtering pay‐
load data can be tough to program, control, and debug, so it is best
to not rely on your north-south gateway system for this work and
instead use dedicated services (see “Dedicated to Transformation”
on page 15).

Encoding and encrypting egress
One more task common for north-south traffic is encoding the out‐
bound message. There will be cases for which the message needs to
be encrypted (based on request/response metadata) for security rea‐
sons. You might also be able to compress the payload (if the reques‐
ter supports it).

16 | Chapter 2: Managing Traffic

In both cases, after the message is encoded, it will be difficult to
make additional changes (filters and transformations), so you
should perform this step only after any required changes to the pay‐
load or metadata of the message.

Caching
One more step that you should consider is caching the outbound
response for later replay. This can improve the perceived perfor‐
mance of your network services and reduce load on the individual
components within your system. I cover caching in more detail in
Chapter 5. For now, you should keep in mind that you can take
advantage of shared cache specifications like those in the HTTP
protocol in ways that can reduce both your internal traffic (when
you replay the cache response to new requests) and the overall net‐
work traffic (when you mark the response cachable by the party
receiving the response).

Common Challenges
Along with the long list of common tasks performed by the traffic
platform in a North–South model (see “Typical Responsibilities” on
page 13), there are some challenges. Let’s take a moment to highlight
a few of these before taking a look at another possible approach for
modeling and managing API traffic.

Long routes
One challenge for the North–South model is that all of the
important traffic management is located at the boundaries. This
works fine if you need to deal with the request only once when it
enters and once when it leaves the network. This is usually the
case for monolith-style implementations. However, as you add
more services to your network and as those services start to call
each other more often, you’ll find that you need traffic manage‐
ment capabilities in many parts of the network.

Creating more “zones” within your network boundary can help
with this problem, but the nature of most cross-boundary
designs is that they are usually inefficient in handling simple
traffic flow. This is because the North–South model is generally
optimized for secure boundary crossing, not fast message
passing.

Controlling External Traffic | 17

Central failure points
Another problem with the North–South approach is the reli‐
ance on a single perimeter of traffic services. If this boundary
service fails, it will have wide-ranging negative effects through‐
out your entire network. This problem can be alleviated by cre‐
ating gateway clusters and using other high-availability
techniques, which I cover in Chapter 5. However, combining
the possible single point of failure with the growing intercom‐
ponent traffic can add up to a unhealthy mix of internal and
external traffic all passing through the same traffic platform
servers. Again, adding zones (e.g., internal-gateway and
external-gateway) can help, but it adds complexity and contin‐
ues to rely on inefficient boundary-crossing implementation
patterns.

Reduced observability
The last drawback that I cover here is the challenge of reduced
observability on what is actually happening to API traffic as it
travels the network. First, many of the tasks cited in the previ‐
ous section can be performed on a single instance of the perim‐
eter gateway (or within a cluster). Although it is possible to log
each task separately for later analysis, the logs can grow large
quickly, and it can become quite complicated to parse out just
the activity related to filtering, transformation, and so on. Rely‐
ing on separate running traffic services (authentication, access-
control, transformation, etc.) can definitely help in this area.

So what is the alternative? It turns out that you can overcome many
of these challenges by implementing a different traffic management
design, one based on optimizing traffic between components operat‐
ing within your network boundary. This approach is known as an
East–West model, which we look at next.

Optimizing Internal Traffic
Another important pattern in managing API traffic is the work of
handling internal or component-to-component traffic. This is often
called East–West traffic because most diagramming of API traffic
shows server-to-server traffic running from left to right. For exam‐
ple, in Figure 2-2, you can see that component A (user-management)
communicates with component B (data-services), which commu‐
nicates with the data storage server.

18 | Chapter 2: Managing Traffic

Figure 2-2. Example of east-west traffic

In this diagram, the component traffic is illustrated as running “east
and west” on the page. In reality, the cardinal direction of the traffic
is not important. And there are lots of diagrams that show internal
traffic running “north and south.” The key element is that the traffic
is focused on cross-component connections. These connections are
almost always within the same subsystem, too. That might mean
components running on the same server instance (e.g., within a sin‐
gle virtual machine or container). Internal traffic might also be run‐
ning between machines in the same server rack or even within the
same physical datacenter. There are also cases in which the internal
traffic runs across datacenters over a dedicated line—as part of a vir‐
tual private network (VPN).

Another key aspect of east-west traffic is that it often runs behind
the company firewall and, for that reason, can run without extensive
identity and access control metadata. This can be a big problem
because, in the best cases, the API traffic usually lacks important
metadata needed to properly monitor and manage that traffic. At
worst, the traffic is running without sufficient security metadata,
which can make it easier for someone to spoof or simply bypass
important security controls. We talk more about the security aspects
of API traffic management in Chapter 4. For now, let’s focus on the
details around observing and supporting intercomponent traffic
behind your company’s firewall.

Optimizing Internal Traffic | 19

Enabling Services
One of the important jobs of managing east-west traffic is to opti‐
mize service-to-service communications. That means making it easy
to find services within your system. It also means making it easy to
bind to services together—for one service to call on another service
in order to solve a problem. It also means streamlining the actual
service-to-service communication; in other words, the data packets
that are sent back and forth.

Most of the work of finding services behind the firewall is done by
humans at design and build time using a catalog or registry. The ser‐
vice identifying information is then added to configuration files and
passed to the build stage where it can be resolved when the compo‐
nent is deployed into the ecosystem. That’s the bind step; resolving
the identifiers in configuration files into actual pointers to running
services. This name resolution works very much like Domain Name
System (DNS) services at runtime. Platforms like Kubernetes, Meso‐
sphere, and others are often good at this name resolution work.

A common way to optimize component-to-component traffic is to
use a binary, strong-typed communication protocol such as Apache
Thrift or general-purpose Remote Procedure Call (gRPC) over
Transmission Control Protocol (TCP)/Internet Protocol (IP) or
User Datagram Protocol (UDP). Thrift and Avro work best for com‐
munications that stay behind the firewall because they do not pro‐
vide built-in support for security metadata. You can, however, add
security and other metadata into the Protocol Buffers (Protobuf)
object definitions used by Thrift and Avro.

Good API traffic management systems allow you to place proxies
throughout your organization to help ease the process of finding
and binding services as well as optimizing the traffic between them.

Typical Responsibilities
A key difference in the way East–West traffic designs differ from the
way North–South traffic is handled is that, for the internal (East–
West) model, there are usually many more instances of traffic man‐
agement proxies and gateways to deal with. They are usually more
lightweight and reside close to the services that are meant to protect
and support. This will have a number of advantages (and a couple
challenges).

20 | Chapter 2: Managing Traffic

Also, you’ll find this list is a bit shorter than the one for North–
South tasks and that some of the responsibilities listed here are the
same (or quite similar) to those in the North–South list. However,
the minor variations in the list point out big differences in the way
East–West traffic is handled.

And that starts with the way security is approached in the internal
model.

Validating Identity
As in the North–South approach, one of the first things East–West
traffic proxies deal with is identity. However, in the East–West
model the proxies don’t usually establish the identity of the reques‐
ter. Instead they are designed to validate the request’s identity. Light‐
weight proxies can pick up the identity token (often a header in
HTTP or some other message metadata) and make a call to an inter‐
nal service that can check the validity of that identity token.

As long as the token is still valid (or is automatically refreshed by the
validation service), the request can continue. If the validation fails or
the token is missing, the API gateway can reroute the request to a
nearby perimeter server for full authentication.

Good API traffic programs will make it quick and easy for internal
requests to be authenticated and/or validated to optimize for speedy
handling of the within-network request.

Controlling access
In the North–South model, access control information was loaded at
the perimeter and followed the request down and up through the
network. This works fine for monolith-style systems but can be
problematic for microservice-style implementations.

In the East–West model, local proxies concentrate quite a bit on
resolving access control and doing this close to the service it is
meant to protect. A common approach is to apply an implicit access
control token at the perimeter—one that points to a dynamic list of
access claims associated with the validated identity. When a request
arrives at the local proxy, that proxy makes a request to an access
control service that resolves the rights list just for this one service.
This results in a more accurate reading of current rights and a
smaller, faster payload in response. I review the details of this

Optimizing Internal Traffic | 21

implied access control in “Managing Access with Tokens” on page
40.

Ensuring ingress
Another very important task in the East–West model is protecting
individual services from inbound traffic surges and network-level
problems. Local proxies can be set up to do their own routing and
optimizations specifically for a single associated service. This is
sometimes referred to as the sidecar approach. Each service is
deployed to run behind one of this small traffic proxies, and it is the
proxy’s responsibility to inspect incoming traffic, throttle it if
needed, reroute traffic to other instances of the service if this
instance is failing, and do other similar problem-solving work. I’ll
show you a list of things these “smart proxies” can do in Chapter 5.

Transforming ingress
It is also possible for these small proxies to do some transformation
work on incoming messages. However, the same drawbacks apply,
too. While local proxies can be customized to perform detailed mes‐
sage transformations for the associated service, this work doesn’t
scale well over time and is best handled by a standalone transforma‐
tion service before the request is routed to this proxy.

Transforming egress
It is also possible that the service response needs some transforma‐
tion work done. And, again, this is best handled by a standalone
transformation service (see “Dedicated to Transformation” on page
15).

Caching egress
While transformation is best handled elsewhere, these smart proxies
are great places for dealing with caching of responses. The proxy
should be set up to mark responses using astandard HTTP caching
directive and, in some cases, might want to keep its own cache of
common responses to play back when the same inbound request
appears. That can increase reliability and reduce load on the service
at very little added cost to set up and maintain your traffic platform.
We look at this in more detail in “Caching” on page 54.

22 | Chapter 2: Managing Traffic

Common Challenges
Just as in the North–South model, there are cases where the East–
West approach will meet challenges such as 1) having to deal with
lots of proxies in your network, 2) getting comfortable with lots of
very flat (point-to-point) internal routing, and 3) dealing with the
management burden of all your additional proxies and associated
rules. Let’s take a closer look at each of these:

Lots of proxies
One of the more obvious challenges to working in the East–
West model is that it results in many more proxy machines all
over our network. This is especially true when you have lots of
microservices running internally and you adopt the sidecar
approach of pairing each service (or service cluster) with a traf‐
fic management proxy. However, local sidecar proxies are typi‐
cally very lightweight and usually relatively easy to program and
monitor. That helps in dealing with the added instances on your
network.

Flattened routes
Another noticeable change is that you’re likely to see lots of
point-to-point (East–West) traffic between internal compo‐
nents. In fact, another name for the East–West approach with
local smart proxies is a service mesh because the traffic starts to
look like a mesh or web rather than an orderly north-south tra‐
verse. There are lots of infrastructure products dedicated to
designing and implementing these mesh-like networks, too.

Increased management
Finally, as the first two drawbacks imply, having more machines
and more traffic means more management work for your traffic
platform. However, with so many emerging products dealing
with service mesh and microservice security and traffic routing,
there are quite a few options that you can explore to find the
tooling that is right for your network mix. And most all of these
new products adopt an engineering approach and follow the
DevOps-style continuous deliver/deployment approach. That
can do a great deal to improve the reliability of your system in a
scalable way. We examine some examples of this in Chapter 6.

That covers the East–West approach to building out your API traffic
platform. As you add more and more services to your ecosystem

Optimizing Internal Traffic | 23

and enable more and more internal traffic, the East–West model
that favors optimizing component-to-component interactions can
greatly improve both the reliability and the scalability of your net‐
work.

Summary
This chapter covered the two common models for handling API
traffic in your network: the traditional North–South approach,
which focuses on securing network boundaries against untrusted
traffic; and the East–West approach, which works to optimize inter‐
nal service-to-service interactions. As you might guess, a healthy
ecosystem has a mix of both approaches. A typical scenario is that
companies start by focusing on protecting their perimeter and then,
as their internal ecosystem grows, they add more East–West-style
traffic support to the network.

Now that we covered the basic types of traffic management, the next
chapter goes into the details of just how you can start tracking and
collecting monitoring data to help you get a better picture of your
current network traffic and where you can spend the best time
improving the safety and reliability of your service ecosystem.

Additional Reading
• SDN, Gray & Nadeau
• Cloud Networking, Lee

24 | Chapter 2: Managing Traffic

https://oreil.ly/SDNsd
https://oreil.ly/clnet

CHAPTER 3

Monitoring Traffic

In this chapter, we drill down into the basics of traffic monitoring.
This means understanding the typical metrics we can monitor in
order to understand that overall health of our system. We also spend
some time reviewing some common traffic formulas that help you
better understand the runtime condition of your service ecosystem.
With these elements in hand, we can custom-build suites of moni‐
toring metrics that will assist you in observing and monitoring the
API traffic that’s important to your business.

Rather than just focus on low-level metrics like CPUs and memory,
it is also important to monitor service-level metrics (e.g., number of
queries processed per second) and even business-level metrics (e.g.,
number of new customers added this week). Being able to separate
monitoring into levels helps us better focus on getting the right met‐
rics into the right dashboard at the right time.

Monitoring Levels
An important aspect of monitoring is to ensure that you know what
level you are observing and what kinds of information you want to
collect at that particular level. A useful way to think about levels is to
carve up your observation space into three levels: infrastructure, ser‐
vice, and business, as illustrated in Figure 3-1.

25

Figure 3-1. Three traffic monitoring levels

Infrastructure Metrics
At the infrastructure level, the focus is on the health of the hardware
and basic software elements (memory, queues, threads, etc.). Infra‐
structure metrics focus on basic values such as CPU, memory, and
disk space at the hardware level. Knowing when your infrastructure
is operating above or below normal trends is an important way to
diagnose, possibly even predict, problems within your system.

Service Metrics
At the service level, the focus is on whether the important tasks of
that component are in good shape (data reads, writes, files created,
etc.). This level of monitoring helps you to understand the health of
a particular service or, in the case of monoliths, instances of your
application. It also allows you to focus on critical service-level met‐
rics beyond generic reads and writes.

For example, you might have released an updated service compo‐
nent to improve throughput and reduce latency for handling com‐
plex computation for your online investment service. To confirm

26 | Chapter 3: Monitoring Traffic

that your update really does reduce latency, you can establish a met‐
ric for a single endpoint within your service. This metric can help
you better understand the payback on your company’s efforts to
improve performance within your ecosystem.

Business Metrics
Finally, at the business level, the focus is on key metrics for the com‐
pany (new customers, whether the latest marketing campaign is
actually increasing sales, etc.). These kinds of metrics can provide
details about fundamental process flows experienced by end users,
partners, and other parties critical to your company’s overall suc‐
cess.

You might, for example, want to track the average amount of time it
takes for a new customer to complete their onboarding process. You
can select metrics that focus on all the transactions in your system
that are involved in onboarding and monitor them in real time and,
when needed, adjust your services and routing to make sure you can
reduce the time it takes to improve completion rates and increase
monthly onboarding of new customers.

So, what types of metrics can you use to monitor at all three levels?
It turns out there is a small set of metric types that you can focus on
to help you gain the insight you need to manage your API traffic.

Typical Traffic Metrics
Just a small handful of traffic metrics can provide you with a wealth
of data to use when managing and diagnosing the health of your
system. These metrics fall into a few simple categories: rate limits,
request latency and duration, and error rates.

By monitoring the rate at which traffic flows (and where it becomes
stuck), the typical time it takes for requests to be processed (latency
and duration), and the rate at which errors occur in the system, you
can get a solid picture of the strengths and weaknesses within a run‐
ning system.

Rate Limits
Rate limiting is a way to control the pace of requests in a system.
The request-handling limit of a system is sometimes called the satu‐
ration point. There are actually two types of rate limiting to consider

Typical Traffic Metrics | 27

when establishing and enforcing limits. The first type of limiting
focuses on the rate at which a backend process (the service receiving
requests) can successfully process requests. The second is the rate at
which a frontend process (the service sending requests) is permitted
to initiate requests.

All services have a limit to the speed at which they can successfully
handle requests. After that point, the service begins to fail in some
way. It might be unable to respond in an adequate amount of time,
causing other parts of the system to slow or fail. Or, the service
might start to run out of resources like memory or even local disk
space. In the worst case, the service will simply crash abruptly, possi‐
bly ruining stored data.

To prevent these kinds of problems, you can establish a backend rate
limit. With backend rate limiting, the service must protect itself
against an unhealthy flood of requests from other parties. When the
service itself does not have this protection built in, it is important to
place that service behind a proxy or gateway that can provide the
same protection.

Within a service, a common way to manage rate limits is to simply
monitor requests per second. Additionally, if the service is using
some type of inbound queue for requests, you can monitor the
depth of the queue.

Request Latency and Duration
The latency of a request is the time it takes to complete a request.
This is sometimes called duration, too. In both cases, the measure‐
ment is based on the cost of the wait time and the execution time
needed to complete the action. Depending on how your system is
designed, it is important to know what portion of your duration is
due to execution and what portion is due to waiting or routing costs.

Request monitoring is usually done at the proxy or gateway level
because that is where the “total cost” of the request is most easily
computed. This is especially true in microservice-style implementa‐
tions for which it can be difficult to trace and correlate all of the
hops of a request from start to finish.

Monitoring the average request latency/duration (in milliseconds)
can help you identify where requests are stalling, figure out which
services are eating up most of the execution time, and provide clues

28 | Chapter 3: Monitoring Traffic

on how you can improve your network and service topology in
order to reduce latency in your system.

Error Rates
Tracking errors in your system is an important element of traffic
management. Aside from the annoyance that errors bring to a run‐
ning system, they can also wreak havoc on your monitoring efforts
all by themselves. Therefore, it’s wise to keep a close eye on errors as
a separate category along with rate/saturation and latency/duration
metrics.

Here are some examples of how error requests can skew your rate
limit and latency monitoring:

Fail-fast errors
When errors occur on the service side due to missing network
connections or badly formed internal request payloads or
responses, your overall request duration can appear to be quite
short. Requests that “fail fast” can give you the false impression
your system is running very efficiently.

Slow connections
At the same time, errors that are caused by slow connections or
mistakes in routing can add time to your request latency and
lead you to think your service execution is taking too long.

Flooding
Finally, a high rate of malformed requests can confuse your
rate-limiting and saturation metrics. This can lead to misdiag‐
nosing load management and rate prediction.

For these reasons, it is important to monitor and report errors sepa‐
rately from, or at least in addition to, your typical rates and duration
metrics.

Other Considerations
Along with rates, duration, and error monitoring there are a few
other things to keep in mind when setting up your monitoring met‐
rics. One of them is how to deal with proactive rate limits in general,
and the other is how to approach the notion of reporting metrics in
averages or percentiles.

Typical Traffic Metrics | 29

Throttling, bursting, and quotas
A common monitoring practice is to apply proactive rate man‐
agement through the use of throttling, burst management,
and/or request quotas. These are all ways to protect your system
from experiencing over-saturation and the resulting increased
request latency. Throttling is also a “friendly” way to lessen the
impact of reduced access for a single requester (end user, part‐
ner, peer service, etc.). When using your traffic management
platform to deal with these types of problems, be sure to keep in
mind that your proactive measures have the effect of skewing your
monitoring results, too.

Averages versus percentiles
Most monitoring and reporting operates on averages. Data is
collected over a time window (e.g., every minute or so), and
then that data is reduced to a single number that is usually the
average of all the values. That works fine when most of the data
points are within a small range. However, when a small set of
data is wildly out of the norm, reporting the average can hide
important outliers.

One way to deal with this masking of outliers is to report per‐
centiles instead. Percentiles give you more information about
the distribution of the requests, not just the general average.
This helps you identify rare outliers that sometimes plague a
system.

If you’re interested in learning more about the pluses
and minuses of using percentiles in your monitoring,
check out the blog post “Everything You Know about
Latency Is Wrong.”

Now that you have some ideas about what metrics can be helpful,
let’s talk about how to collect those metrics into traffic formulas that
you can use to derive some conclusions about the health of your
API traffic.

Common Traffic Formulas
After you know the kinds of things that you can access as monitor‐
ing metrics and you have a notion of the types of metrics you want
to observe (infrastructure, service, and business level), it makes

30 | Chapter 3: Monitoring Traffic

http://bit.ly/2YIoXam
http://bit.ly/2YIoXam

1 http://www.brendangregg.com/usemethod.html

sense to work up patterns or formulas for creating sets of metrics
that allow you to collect data in order to derive results.

Traffic formulas are ways to tackle the monitoring problem in an
organized way. They provide a kind of checklist you can use to iden‐
tify values to observe. Instead of saying “you should monitor the fol‐
lowing elements,” traffic formulas guide you to think about how to
solve a problem with monitoring and how to think about which val‐
ues to consider when creating your monitoring suite.

Let’s review three rather popular traffic formulas, their origins, and
their strengths: USE, RED, and LETS.

The USE Method
The USE (Utilization, Saturation, and Errors) formula for system
monitoring was developed by Brendan Gregg (formerly of Oracle,
now with Netflix) around 2012. As he explains it, “I developed the
USE method to teach others how to solve common performance
issues quickly, without overlooking important areas.”1

Gregg tells us that USE is an aid for asking three questions about
any part of the system you want to better understand: “For every
resource, check utilization, saturation, and errors.”

A resource is any physical component such as CPUs, disk space, I/O
bus, and so on. By utilization Gregg means the average amount of
time (as a percentage) the resource is busy doing work. An example
would be the percentage of time a component was in a processing
state versus when it was in an idle or waiting state. For some
resources (e.g., CPUs) utilization might be expressed as a percentage
such as 100% utilization of the CPU, and so on. The saturation of a
resource is the degree of extra work that is backing up for that
resource. Examples of saturation include a large number of requests
waiting to be handled, too many files on disk awaiting processing,
and so forth. Finally, the errors element is simply the count of error
events for that resource (usually computed over a sliding window as
in errors per second, etc.).

Common Traffic Formulas | 31

http://www.brendangregg.com/usemethod.html

Check out Brendan Gregg’s website for more on the
USE method and how you can apply it.

Although Gregg initially wrote about what we identified as hard‐
ware metrics (CPUs, memory, storage, etc.), he points out that we
can also apply the USE method to software such as threads, locks,
file handles, and more.

I find that the USE method works very well for infrastructure-level
metrics (see “Infrastructure Metrics” on page 26). For more
component-level monitoring, I prefer another method: the RED
method.

The RED Method
RED (Requests, Errors, and Duration) was developed by Tom
Wilkie of Weaveworks around 2015 and is discussed in detail on the
Weaveworks blog. The RED method was created, as Wilkie tells it, as
a kind of response to Gregg’s USE method. In particular, Wilkie said
that the increased use of small services (e.g., microservices) made
applying the USE method more difficult.

Because Wilkie was interested in improving monitoring for ecosys‐
tems that relied on lots of small services, his RED method focuses
not so much on resources but instead on the requests handled by the
services. Essentially, this is the RED approach:

“For every service, check the request rate, request errors, and
request duration.”

It is pretty easy to see that RED is aimed at the service-level metrics
we discussed earlier in the chapter (see “Service Metrics” on page
26). What is interesting is that Wilkie uses the requests that travel
between services as a way to build up his monitoring suite. That
reflects some important realities of microservice-style ecosystems
where components might be installed at any time during the day,
written in multiple languages, and using a wide range of deployment
tooling. As Wilkie says in his GOTO talk, “In the old [world] your
primary key in your monitoring system was host metrics. In the new
world the primary key should be application services.”

32 | Chapter 3: Monitoring Traffic

http://bit.ly/2Z9eJeM
http://bit.ly/2TjqNbJ
http://bit.ly/2TjqNbJ
http://bit.ly/2MSp0Ju

You can learn more about Wilkie’s RED method by
watching his 2016 GOTO Stockholm talk, “Monitoring
Microservices.”

An important point that Wilkie makes is that his RED method is not
designed to be applied to each individual service. Instead, you
should apply this approach to your overall system. The real value of
monitoring requests is following those requests throughout the sys‐
tem from initial entry to final response.

Although USE is good for code-centric and low-level monitoring
and RED is good for request monitoring at the proxy or gateway,
there is another approach that blends a bit of both of the two: the
LETS formula from Google.

The LETS Method
The LETS (Latency, Errors, Traffic, and Saturation) formula from
Google was developed around 2003 when Google created its site
reliability engineering (SRE) program. We learn more about Goo‐
gle’s SRE program in “Site Reliability Engineering” on page 67. LETS
is a mix of code/machine-centric and service/request-centric met‐
rics. The LETS values are sometimes called “The Four Golden Sig‐
nals.”

In fact, in the O’Reilly book Site Reliability Engineering, they say:
“If you can only measure four metrics, focus on these four: Latency,
Errors, Traffic, and Saturation.”

The Latency value represents the time it takes to service a single
request. It is important to treat failed requests separately. Failures
due to missing connections might end quickly, and failures due to
lack of memory might take several seconds. The Traffic metric
measures the demand on your services, such as the requests per sec‐
ond for a service. The Errors value represents the number of failed
requests, both at the system level (e.g., HTTP 500) and at the com‐
ponent level (e.g., internal failures). And the Saturation measure‐
ment is used to track the pressure your services are under at
runtime. In systems for which memory is important, you can track
the use of memory. In systems for which request handling is critical,
you can monitor the length of incoming request queues, and more.

Common Traffic Formulas | 33

http://bit.ly/2YSFUdl
http://bit.ly/2YSFUdl
http://bit.ly/2YRhfdf
http://bit.ly/2YRhfdf

For more on LETS and other SRE topics, check out
Google’s free HTML version of its Site Reliability Engi‐
neering book.

The LETS formula is a good model for cases in which you want to
be sure to cover a kind of minimum-viable set of metrics. Cover each
of these four, and you’re likely to catch most problems. However,
LETS doesn’t really give you as much guidance on how to trouble‐
shoot internal issues (like USE) or general external issues (like
RED).

Summary
In this chapter we covered three key topics related to monitoring
API traffic. First, we covered monitoring levels. Understanding the
various monitoring levels (infrastructure-, service-, and business-
level) helps us better focus on selecting metrics that will help us bet‐
ter understand and manage our API traffic.

Second, we covered typical traffic metrics. There are a small set of
metric types such as rate limits, latency, and errors that we can use
to quantify and observe API traffic in our system. Finally, we
reviewed three common traffic formulas: USE, RED, and LETS.
Each has its strengths and weaknesses, and knowing what they are
helps you to determine when and, most important, where to use
them when designing your API traffic-monitoring system.

Now that we’ve covered the basics of traffic monitoring, in the next
chapter, we review several security-related aspects of API traffic
management, including security basics and the challenge of access
control in distributed systems.

Additional Reading
• Lightweight Systems for Real-Time Monitoring, Newman
• Practical Monitoring, Julian

34 | Chapter 3: Monitoring Traffic

http://bit.ly/33vVeAi
http://bit.ly/33vVeAi
https://oreil.ly/lwsrm
https://oreil.ly/pramon

CHAPTER 4

Securing Traffic

A comprehensive API traffic management system includes robust
security features. This means a reliable authentication system as well
as a scalable authorization strategy. Each aspect of security (authen‐
tication and authorization) is essential for a healthy API ecosystem.
In this chapter, we cover API security basics such as API keys,
authentication, authorization, and encryption.

Access control (or authorization) is a particularly important security
element in API systems that rely on microservices. As your service
collection grows and becomes more adaptable at runtime, it
becomes increasingly difficult to know—ahead of time—just which
services your request is likely to encounter. We devote some addi‐
tional time in this chapter on designing and implementing a scalable
and reliable authorization system based on access tokens.

Security Basics
The basics of API security (see Figure 4-1) center on authentication
(the requesting identity) and authorization (the identity’s access
controls for this request). API keys are another important element
of API security because they help identify API usage independent of
the requesting identity. There is also the matter of data encryption
for messages in transit.

35

Figure 4-1. API traffic security basics

Also, a robust security implementation is able to deal with identity
and access control between separate systems. For example, when
APIs from your own system need to access services from an external
API ecosystem such as Salesforce, SAP, and other so-called third-
party services, your API traffic management needs to be able to
negotiate identity and support access controls between your own
API ecosystem and that of other, external systems.

API keys
API keys are a simple, low-level way to track and control how an
API is used. All good API traffic management systems have a way to
generate and track API key usage. The actual format of the API key
is not very important—often they are just a universally unique iden‐
tifier (UUID).

It is important to not use API keys as authentication or
authorization keys. API keys are just a way to control
access to the API, not proof of identity or access rights.
To manage identify and access, you need other ele‐
ments of your API security platform.

36 | Chapter 4: Securing Traffic

No matter how they are created, API keys need to be passed as part
of any API request. That allows API proxies and gateways to track
the appearance of these keys, validate the key against a list of author‐
ized keys, and log them for monitoring and analysis. Typically, if
you don’t have a valid API key, your request is rejected by the API
traffic management platform. Good API platforms allow you to can‐
cel or revoke an API key if you discover any sign of abuse, too.

It is also important to keep in mind that API keys are not authenti‐
cation or access control tokens. Because API keys are usually static
strings that contain no identifying information themselves, they are
not the same as authentication or authorization tokens. We cover
authentication and authorization next.

Identity/Authentication
After your system validates a request using an API key, the next step
is to confirm the requester’s identity. That might be a human operat‐
ing an application that calls the API, or it might be another internal
service calling the API on its own behalf or as part of a more
involved set of calls to solve a particular problem.

End-user API calls are often authenticated using some form of
mutual authentication such as a security certificate or a three-legged
authentication protocol (more on this in a moment) such as
OpenID and OAuth. In all cases, both the client and the server need
to share some identifying information (usernames/passwords, certif‐
icates, etc.). This means that there is some setup needed ahead of
time—before the first API request—to make sure both parties trust
each other at runtime.

The OAuth protocol is a common API authentication protocol
because it offers quite a number of authentication flows (called
Grant Types) to fit various levels of security and interaction needs.
An important feature of OAuth is that it supports what is called
three-legged authentication. This means that the actual authentica‐
tion event happens at a provider service, which provides an authenti‐
cation token that is then used by the client (application or API) to
present to the actual service. Although this is bit more complicated
than simple username/password or certificate authentication, three-
legged models make it possible for people to build API consumer
applications that do not ever see the requester’s authentication
credentials.

Security Basics | 37

http://bit.ly/2YWGreu
https://oauth.net

Your API traffic platform should make it possible to manage and
support multiple authentication schemes without any change to the
related API or the services behind that API. It should also make it
easy to collect logs and related information at the authentication
level given that this is your first line of defense when it comes to rec‐
ognizing intrusions.

Identifying the API requester is just part of the job of completing a
secure API transaction. It is also important to understand the access
control limits each request has for any services it attempts to
contact.

Access Control/Authorization
Knowing the identity of the entity initiating the request is just the
start of the process when engaging in secure API transactions. The
next step is establishing the access control rights that identity has for
the life of the API request. This is usually called authorization.

The act of authorizing a request is, essentially, associating access
rights to the request. Access control can be applied and validated a
couple of different ways. For example, we can associate identities
with roles (e.g., admin, manager, user, guest, etc.). You can apply
access control directly to identities, too (e.g., margaret_hamilton,
frederick_jones, etc.)

A reliable API traffic platform is able to quickly and easily associate
validated identities with the proper roles for existing services. This
work is usually not a problem for ecosystems for which there is a
limited number of services and all the users are managed with the
ecosystem (e.g., local user accounts). However, as the number of
services and/or the number of roles within an ecosystem increases,
it becomes difficult to scale access control. In the next section
(“Managing Access with Tokens” on page 40), we look deeper into
how to deal with this scaling challenge to your API ecosystem.

Encryption Considerations
Encrypting traffic offers a level of security for messages as they pass
from ecosystem to ecosystem and between components within the
same ecosystem. A good API traffic program includes the ability to
employ message-level encryption and, if needed, field-level
encryption.

38 | Chapter 4: Securing Traffic

The most common message-level encryption implementation is to
use Transport Layer Security (TLS). The goal of TLS is to prove what
is called a “secure channel” between two parties. TLS requires a bit
of setup or handshaking to establish the identities of each party and
a mutual encryption scheme. When that is done, the two parties use
the same encryption details for each message they pass back and
forth.

It is also possible to send messages “in the clear” and include field-
level encryption. In this case, the data in sensitive fields such as per‐
sonally identifying information (PII) is encrypted using a shared key
(one that both the sender and the receiver already know ahead of
time). Field-level encryption requires additional setup between par‐
ties and is challenging to scale. Often field-level encryption is han‐
dled by data storage systems (databases, filesystems, etc.) and is not
something API traffic platforms need to deal with directly.

Managing Authentication Risk
Another important aspect to authentication is quantifying the risk
associated with a particular authenticated identity. To do that, you
need to know not just the identity of the requesting party (“Hi, my
name is Mike!”), you also need to know several other things:

• How the identity was authenticated (username/password, active
directory, Facebook, etc.)

• The device used to log in (mobile app, desktop, VM in the head
end, etc.)

• The location of the authentication point (e.g., geo-code infor‐
mation)

You can use these factors (method, device, location, along with
actual identity) to create a risk score associated with the authentica‐
tion. For example, “Mike logged in using a valid certificate from a
building on the company campus using his company laptop.” This
probably merits a relatively low-risk scoring. However, if the sce‐
nario were “Mike logged in using a social media account from Sin‐
gapore using a mobile device we’ve never seen before,” this deserves
a high-risk score and might mean adding a two-factor authentica‐
tion (2FA) to continue or might simply mean denying the login,
alerting the security team, and locking the account to prevent fur‐
ther attempts to log in.

Security Basics | 39

https://tools.ietf.org/html/rfc8446

Your API traffic management program should support some form
of risk scoring and mitigation to protect your system, your data, and
your users.

Mediating External Security Systems
One more topic worth discussing when reviewing API security
basics is the work of mediating security details between separate sys‐
tems. As APIs become more ubiquitous in enterprises, it is increas‐
ingly likely that your API platform depends on the services of other,
third-party APIs over which you have no control. And many of
these external third-party APIs have their own security details
including authentication and authorization requirements.

When an API client is making a call to another service that resides
outside your ecosystem, they need to supply the proper security cre‐
dentials. In many cases, these credentials are not the same ones used
within your own API ecosystem. Thus, there is a need for a media‐
ting layer to handle the security “hand-off ” between systems.

The simplest approach is to use a single, shared set of credentials
when making calls to a third-party API. The advantage is that only
the component that makes the third-party call needs to know that
third party’s credentials. The downside is that this sharing of creden‐
tials results in a built-in privilege escalation. To avoid this, a good
API traffic platform will provide a way to associate each API call
with the appropriate level of security when reaching out to third-
party APIs. This improves the overall security of your platform and
provides more accurate usage and monitoring data when reporting
on your API traffic both within and beyond your own ecosystem.

Managing Access with Tokens
The work of dealing with access control (or authorization) can be a
challenge. This is especially true for organizations that 1) implement
a microservice style behind the APIs, 2) have lots of external users
(e.g., identities not managed within your own Lightweight Directory
Access Protocol [LDAP] or Active Directory), or 3) depend on
third-party/external APIs in order to complete requests.

In a monolithic environment in which all user identities are man‐
aged by the local user directory, where there is a small number of
services, and where there are no external services to access, it can be

40 | Chapter 4: Securing Traffic

1 https://tools.ietf.org/html/rfc7519

sufficient to assign every identity a single set of roles (“guest,” “pay‐
roll,” “sales,” “sysadmin,” etc.) for the life of all requests for that iden‐
tity. However, as the number of services increases, as you add
external users (e.g., partners, end users), and you add third-party
API usage, assigning one set access control profile for each identity
becomes difficult to manage and scale.

In this section, we talk about the importance of adopting an access
token approach for authorization as well as the two ways to grant an
identify access control: grants by value and grants by reference. A
good API traffic management program supports both approaches,
and with just a bit of planning and design of your actual tokens, you
can easily switch between implementations at runtime.

The JWT Specification
JWT, or JSON Web Token,1 is a specification designed to make it
easy to transfer access control rights between parties. It is part of a
collection of standards for representing security elements in the
JSON format. Following is the full set of related specifications:

• JWS: JSON Web Signature
• JWE: JSON Web Encryption
• JWK: JSON Web Key
• JWA: JSON Web Algorithms
• JWT: JSON Web Token

For now, we’ll focus only on JWT.

The JWT series and the JSON Object Signing and
Encryption (JOSE) specification is not the only way to
handle access tokens. There are some similar specifica‐
tions including Branca, PASETO, and Macaroons.

For our purposes here, I review the basics of token-based access
control using JWT as the example. Your API traffic management
platform should guide you through the details of implementing a
secure, reliable, and scalable JSON-related token support process,

Managing Access with Tokens | 41

https://tools.ietf.org/html/rfc7519
http://bit.ly/2YSWXMp
http://bit.ly/31qIF7u
http://bit.ly/33qf53Z
http://bit.ly/2Koo3an
http://bit.ly/2YQVH0t
http://bit.ly/2YSWXMp
http://bit.ly/31x633s
http://bit.ly/31x633s
https://branca.io/
http://bit.ly/2YzRQW8
http://bit.ly/2ZKEZgo

and you should check out how your platform approaches token-
based access control and how you can observe and manage token
lifetimes.

The JWT
JWTs are compact ways to share data between parties. Each token
has three distinct parts: header, body, and signature.

Header
The header holds preamble information—the information needed to
understand the rest of the token. JWT headers have two fields. The
typ field identifies the token type, and the alg field identifies the
hashing algorithm used to encode and sign the token:

{
 "typ": "JWT",
 "alg": "HS256"
}

Body
The body holds the claims information—the data that is to be passed
between parties. There are a series of predefined properties for JWT
claims outlined in the specification. In the example that follows, the
three predefined properties, called reserved claims, are iss (the
issuer), iat (the expiration time), and sub (token subject). Then
there is a series of private claim names. These are not standard and
are understood only by the two parties sharing the message:

{
 "iss" : "bigco",
 "iat" : 1516239022 ,
 "sub" : "authorization",
 "http://users.bigco.org/" : "admin",
 "http://accounts.bigco.org/" : "user",
 "http://products.bigco.org/" : "guest",
 "http://identity.bigco.org" : "q1w2e3r4t5y6"
}

Signature
The signature holds the check-value—the information that you can
use to verify that the body you received is actually the body that was
originally sent. This signature string becomes part of the token sent
between parties in the form of header.body.signature and is wrap‐

42 | Chapter 4: Securing Traffic

ped using the hashing algorithm identified in the header. Following
is an example using the encoding string of "big-co-is-awesome" as
the secret shared between both the sender and the receiver:

HMACSHA256(
 base64UrlEncode(header) + "." +
 base64UrlEncode(payload),
 "big-co-is-awesome"
)

The resulting hashed string would look something like this:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJqdWxlcyIsImlhdC
I6MTUxNjIzOTAyMiwic3ViamVjdCI6IkJpZ0NvIiwiaHR0cDovL3VzZXJzLmJpZ
2NvLm9yZy8iOiJhZG1pbiIsImh0dH6Ly9hY2NvdW50cy5iaWdjby5vcmcvIjoid
XNlciIsImh0dHA6Ly9wcm9kdWN0cy5iaWdjby5vcmcvIjoiZ3Vlc3QifQ.RnMdw
Bv3t4_tK5ZZy0nDQWQ7hKFtkGn5rmchZSDzuN8

It is important to keep in mind that the JWT specification is
designed as a way to reliably encode messages that are shared
between two parties to ensure data integrity and prevent tampering.
This encoding, however, is not at the level of encryption. The con‐
tents are not encrypted in a way that secures the data from prying
eyes (see “Encryption Considerations” on page 38).

Grants by Value
The most common way to ship authorization information via JWTs
is to use the grants by value method—you load the JWT with all the
grant information. The previous example (see “Body” on page 42)
illustrates this approach. This approach works well for cases in
which your API traffic platform knows ahead of time all of the serv‐
ices to which you’ll need access. For example, when you log in to a
system, that platform is able to locate all of your access control
grants and load them into a single JWT, which is then carried with
the request as it runs through the system “talking” to services along
the way. As the request reaches a service point (e.g., a function in the
code), that end point can check the JWT for the appropriate grant
property and act accordingly.

In monolith-style architectures, this usually works quite well. There
is a fixed number of possible services (often just one big one) and a
fixed number of possible access control grants for each user. When
the system doing the authentication work (e.g., handling the user
login) is the same system hosting all of the components, the access
control data is usually easy to find and load for each user request.

Managing Access with Tokens | 43

Grants by Reference
In the grants by reference model, the JWT does not contain the
actual access control information. Instead, it contains a single
pointer to a claims store that contains the list of all possible grants
for this authenticated identity. Following is an example of a JWT
that relies on the grants by reference model:

{
 "iss" : "bigco",
 "iat" : 1516239022 ,
 "sub" : "authorization",
 "http://identity.bigco.org" : "q1w2e3r4t5y6",
 "http://claims.bigco.org" :
 "http://api.bigco.org/claims-store/"
}

In this example, you can see that instead of a series of rights claims,
this token contains two private name claims. One represents the
authenticated identity for this request (q1w2e3r4t5y6), and the
other points to an endpoint for the claims store service (http://
api.bigco.org/claims-store/). Now, when a request reaches a
service endpoint (e.g., a microservice entry point or monolith func‐
tion), that endpoint can use the supplied identity and some local
information (e.g., the function name, action associated with the
request, etc.) and send all that to the claims service identified by the
http://claims.bigco.org property. The claims service can then
evaluate the request and return a response indicating the actual
access control rights this request should be granted.

The key advantage for this approach is that as the number of serv‐
ices and/or grants grows, the size of the JWT does not need to
change. This is especially handy in a microservice-style architecture
in which the number of grants is often changing and can be difficult
to predict at runtime. It is also helpful when the party authenticating
the request identity is not the same as the party managing access
control rights.

There are, however, downsides to this approach. First, each individ‐
ual service endpoint needs to take on the responsibility of making a
call to the claims store for each request. This will add traffic to your
internal system. Also, because rights-checking now includes another
network call, your access control system is more vulnerable to sys‐
tem outages than when you use a grants by value approach. You can

44 | Chapter 4: Securing Traffic

use cached responses and other techniques to address this problem.
I talk more about dealing with the network in Chapter 5.

Summary
In this chapter, we covered security basics, including API keys,
authentication, authorization, and encryption. We also covered the
notion of authentication risk scoring and mediating identity
between systems. Finally, we focused on using JWTs to document
and manage access control via two approaches: the grants by value
and grants by reference models.

Now that we have the basic elements of securing API traffic covered,
we can look at the ways in which you can use your API traffic plat‐
form to improve the scalability and reliability of all your services.
And that’s the topic of the next chapter.

Additional Reading
• Securing Microservice APIs, Morrison, Wilson, McLarty
• Network Security Through Data Analysis, 2nd Edition, Collins

Summary | 45

https://oreil.ly/smAPIs
https://oreil.ly/nstda2e

CHAPTER 5

Scaling Traffic

One of the biggest challenges to successfully managing API traffic is
dealing with the network on which the API travels. Monolith-style
implementations need to deal with the network because every API
call starts and ends with a network call. Microservice-style imple‐
mentations, however, are usually more vulnerable to network fail‐
ures because there are usually multiple network “hops” involved in
completing just one external API call. In fact, this is one of the big
drawbacks of adopting a microservice approach—the increased
dependency on the network to complete your API calls.

In this chapter, we discuss the importance of dealing with network-
related problems and review a handy set of patterns you can use to
meet most of the challenges of unreliable networks. It is important
that your API traffic platform is able to recognize and mitigate these
common network failures in order to keep your system up and run‐
ning at a level of reliability and resilience you and your API con‐
sumers expect.

And the first step in this journey to reliability is to recognize that
instead of focusing only on preventing network errors, you should
also focus on surviving them when they happen.

Surviving Network Errors
Many of the network problems you’ll encounter are things that hap‐
pen outside your own internal network and events that are out of
your control. Your service provider can experience upstream out‐

47

ages, Domain Name System (DNS) routers can be misconfigured,
other services that you depend upon might become unreachable or
unreliable, and the list goes on. All these things can be compounded
if you are relying on a cloud host provider (Amazon Web Services
[AWS], Microsoft, Google, etc.) given that they, too, can experience
these same problems.

And, to make matters more complicated, many network problems
are not out-and-out failures but just issues of latency (slow respon‐
ses) or unreliability (flaky responses). This all adds up to a bit of a
challenge for companies that need to provide highly available and
reliable services both within and outside the organization’s network
boundary.

Because you cannot prevent network problems from happening, the
logical response is to work to survive them. In fact, healthy systems
are ones that continue to operate successfully, even when parts of
that system are failing. This idea was captured in Richard Cook’s
“How Complex Systems Fail,” in which he states, “Complex [net‐
worked] systems run in degraded mode.”

Safety I and Safety II
Of course, if there are steps you can take to prevent network errors
from occurring, you should take these steps. But they are not
enough. It is also important to assume network errors will happen
anyway and plan to respond proactively to these errors. This
approach of using both prevention and proactive attempts is defined
by Erik Hollnagel as “Safety I and Safety II.” As Hollnagel describes
it: “A Safety I approach presumes that things go wrong because of
identifiable failures or malfunctions of specific components.”

As Figure 5-1 illustrates, in Safety I mode, API platforms are
designed and managed to prevent problems from occurring. This
means preventing bad requests from getting into the system, identi‐
fying and removing misbehaving requests, and blocking API con‐
sumers that continue to cause problems for your system. This is how
most API platforms approach security, too (see Chapter 4).

48 | Chapter 5: Scaling Traffic

http://bit.ly/2yZKxYM
http://bit.ly/2Z1BjWl

Figure 5-1. Hollnagel’s Safety I and Safety II

This works for problems that you know about ahead of time and
errors that occur when systems act in a malicious or dangerous
manner (e.g., denial-of-service attacks, failure to properly authenti‐
cate requests). Many of the topics covered in Chapter 3 fall into this
category.

You can learn more about Hollnagel’s approach to han‐
dling errors in complex systems in his book The ETTO
Principle: Efficiency Thoroughness Trade-Off.

For Hollnagel, “Safety II … relates to the system’s ability to succeed
under varying conditions.” In other words, even when errors occur,
the system keeps working. For your API platform, this means imple‐
menting a system that assumes things will go wrong and works to
overcome these problems in a way that allows requests and respon‐
ses to succeed anyway.

There are lots of possible ways to create a “survivable” API traffic
platform. In the next section, I’ll review one well-known approach.

Surviving Network Errors | 49

Stability Patterns
In 2007, programmer and software architect Michael Nygard pub‐
lished the first edition of the book Release It!. Now in its second edi‐
tion (released in 2018), this book teaches the writing of software that
works in the face of the harsh realities of runtime systems. In the
book, Nygard explains: “Bugs will happen. They cannot be elimina‐
ted, so they must be survived instead.”

Nygard offers quite a few patterns, antipatterns, and case studies to
illustrate the challenges and solutions related to making sure your
software stays up and running, even in the face of failures. In this
section, I’ll review a small collection of the patterns that relate easily
to those charged with managing API traffic in a complex and com‐
plicated collection of services.

You’ll find a wealth of advice and experience in
Nygard’s Release It!, and I encourage you to pick up a
copy and share it with others in your organization.

Health Check
One of the things you can to do keep track of the overall perfor‐
mance of your network as a whole and individual services and end‐
points in particular is to implement the Health-Check pattern.
Health checks allow services to report on their current runtime sta‐
tus, and you can use that information to make decisions—even pre‐
dictions—about the status of the network, too.

There are two key ways in which you can implement health checks
for your API traffic. You can use network-level health checks, or you
can use service-level health checks. Each has its advantages and
drawbacks. In an ideal scenario, you should use both.

Network-level health checks
You can add network-level health checks (NLHs) at various places
within your network infrastructure such as on any proxy or gateway
server within your network boundary. NLHs can give you a good
view of the overall network status, including the average time it
takes for a single request to traverse the network from start to finish.
You can also monitor the average number of errors and total request

50 | Chapter 5: Scaling Traffic

http://shop.oreilly.com/product/9781680502398.do
http://shop.oreilly.com/product/9781680502398.do

throughput. We covered examples of these kinds of metrics in “Typ‐
ical Traffic Metrics” on page 27.

A key advantage of using NLHs is that you can add them to any part
of your infrastructure without having to coordinate with any single
service running within your system. Another valuable aspect of
NLHs is that you can monitor selected transaction paths from start
to finish to gain information that no single service within your net‐
work has.

The problem with relying on NLHs for monitoring system health is
that they don’t provide you with much detail. You might notice that
some requests are running slower than others, but not be able to
determine why. For these cases, you need a different kind of health
check—one at the service level.

Service-level health checks
When you need to understand what is happening inside a single ser‐
vice, you should use service-level health checks (SLHs). SLHs are
implemented at the service level (often within the code) and can be
used to collect key metrics about how a particular service is per‐
forming, right down to individual functions within a service compo‐
nent. In monolith-style implementations, SLHs are often your best
opportunity to uncover bottlenecks and resource-expensive
operations.

A big challenge with implementing SLHs is that they become part of
the code execution of the service. In other words, adding health-
checking code can take up more of your valuable computing resour‐
ces and degrade the performance of your service. Be careful that in
your zeal to add data collection and health reporting to a service
that you do not become the source of bad performance for that
component!

Health Reporting
The most common way to implement health reporting—the reflec‐
tion of the health data collected at the proxy or service level—is to
implement network endpoints (e.g., http://api.bigco.org/

customer-services/health/) that respond with the latest status
information for the target service or network segment. Typically, the
health data is also spooled to disk-level logs that can be collected
and used for postmortem checking. That way, you can establish a

Stability Patterns | 51

trend analysis and look at the data in various ways to find patterns
and/or problems not easily discovered at runtime.

TimeOut and FailFast
One of the most common challenges to “surviving the network” is
dealing with slow connections and/or responses. An effective solu‐
tion for slow and long-running requests is to implement the Time‐
Out and FailFast patterns.

The TimeOut pattern is implemented by incoming API calls to deal
with slow and nonresponsive replies from API providers. If the
request is made and the response does not appear within a fixed
time limit (e.g., 200 ms), the API caller “gives up” and abandons the
request. This prevents API callers from waiting too long on services
that are unresponsive.

The FailFast pattern is a way for those receiving API calls to proac‐
tively “cancel” requests that might take longer than the API caller is
willing to wait. In this case, the API caller sends a “wait limit” (e.g.,
200 ms) in the request metadata. For cases in which an API provider
knows (from its own health-check data) that it is only able to com‐
plete the request in about 300 ms, that API provider can just skip
attempting the call and return a timeout error (e.g., HTTP 504)
immediately. This prevents the API provider from taking work that
it will not be able to complete in time and thus would be abandoned
anyway.

A good API traffic management platform will let you establish time‐
out values at the proxy level and abandon requests that take too long
to complete. You might also be able to set up a fail-fast rule at your
proxies and gateways.

In both cases, it is important to log these proxy-level actions and
include them in your health-check reporting as errors. As you’ll see
later, you can combine these patterns with another pattern, “Circuit-
Breaker” on page 53, too.

Bulkhead
A pattern that helps services avoid running into the TimeOut and
FailFast situations is to wrap important (and possibly unreliable)
services in a cluster. This is called the Bulkhead pattern because it
allows you to contain any problems caused by a single machine. Any

52 | Chapter 5: Scaling Traffic

failures within the cluster are unlikely to “leak” beyond the cluster
into the rest of the network.

Using the Bulkhead pattern is rather easy for services that are self-
contained or stateless. For example, a service that performs address
validation by accessing an in-memory data store is stateless. It
doesn’t rely on other services to do its work (for more on this, see
“Machine-Level Caching” on page 55).

It is important to report health checks both on the
cluster and on each of the individual components
within the cluster. That way, even though the cluster
reports high availability, you’ll still be able to inspect
individual machines and notice any changes in the
service-level health logs.

As with the other patterns mentioned here, you can implement the
Bulkhead pattern without having to alter the architecture of the ser‐
vice component. In fact, the component doesn’t even need to know
it has been included in a cluster at all.

Circuit-Breaker
The Circuit-Breaker pattern is actually a more proactive way to
respond to the TimeOut pattern. With the Circuit-Breaker pattern,
request timeouts are treated to additional handling that can allow
the failed API request to be automatically rerouted and handled
without the API caller ever experiencing a timeout. In all cases, the
request failures are used as a trigger to force the network to treat the
failing service as “suspect” for a short time and not send it any
requests. After waiting a short period of time (to allow the suspect
service to clear up any problems), requests are again routed to the
service. If there are still problems, the process of rerouting and wait‐
ing begins again.

There are a number of write-ups on the history and
implementation of the Circuit-Breaker pattern. Specifi‐
cally, I recommend Martin Fowler’s “CircuitBreaker,”
Chris Richardson’s “Pattern: Circuit Breaker,” and
NGINX’s “Implementing the Circuit Breaker Pattern.”

Stability Patterns | 53

http://bit.ly/33B1Ugm
http://bit.ly/2YLHwKR
http://bit.ly/2H6iWtn

It is possible for some API traffic platforms to implement the
Circuit-Breaker pattern without requiring coordination with the
service programmers and architects. To do this, your API traffic sys‐
tem needs to be able to associate requests to a service with a “circuit”
that includes a timeout handler, at least one alternate service, and a
waithandler that is able to flip the circuit back to the target service
after waiting the appropriate amount of time.

As usual, you need to make sure to log all activities in order to make
them available to health check reporting and for later postmortem
analysis, to find larger trends and find and fix repeating problems
with failing services.

Summary of Survival Patterns
The patterns listed here from Nygard’s Release It! book are examples
of ways in which you can use your API traffic platform to add resil‐
iency and reliability to your network infrastructure without rewrit‐
ing your individual services. They all focus on the challenge of
maintaining uptime even when parts of the network are failing. In
the next section, I talk about ways that you can handle requests for
data even when the network is not available through the use of
caching.

Caching
A key element that you can use to reduce the effects of network
errors is to proactively store network responses in a cache for future
use. By caching (storing) responses you receive over the network in
local storage, you gain the ability to respond to future requests
without using the network at all. As Roy Fielding, one of the princi‐
pal authors of the HTTP specification and originator of the Repre‐
sentational State Transfer (REST) software architectural style, points
out: “[T]he most efficient network request is one that doesn’t use the
network.”

There are two main types of caching patterns that you can use to
protect your system from failure: machine-level and network-level
caching. Each has advantages and challenges worth considering as
you design your API traffic platform to reduce the adverse effects of
unreliable and/or slow networks.

54 | Chapter 5: Scaling Traffic

http://bit.ly/2yUzQXt
http://bit.ly/2yUzQXt

Machine-Level Caching
You can use machine-level caching when you want to improve your
system’s perceived performance for a single machine in the network.
For example, you might have a stateless service that handles postal
code lookup and validation. That service might support passing in a
single postal code and validating it against a small database of all the
postal codes in your company’s sales areas. Reading the data off the
disk for each request adds latency and offers the possibility of a disk
read error for every request. This might happen hundreds of thou‐
sands of times each day.

You can improve your system’s safety and resilience by loading the
entire database into server memory on startup and simply using
random access memory lookups for each validation request. This
can greatly speed up response time and reduce the number of read
errors to a small fraction.

Note that this machine-level example can be applied to
a collection of postal code lookup servers in a cluster
(see “Bulkhead” on page 52), too.

This kind of caching can improve a single machine’s ability to con‐
tinue to work even when that machine experiences disk errors, but it
does nothing to help that machine respond when there are network
problems. For that, you need to employ network-level caching.

Network-Level Caching
You can use network-level caching to improve your system’s per‐
ceived performance across machines in a network. To use the previ‐
ous example, you could set up a postal-code validation service
(PCVS) on the network and allow lots of other machines on the net‐
work to call the PCVS using a simple API. While the internals of
that service might use the aforementioned in-memory technique to
make the machine work efficiently, that will not help if the PCVS
machine is unreachable (e.g., DNS routing problem, broken connec‐
tion, etc.).

To survive network unavailability, you can use network-level cach‐
ing. For example, postal codes are unlikely to change over the space
of days or weeks, so you might ship metadata with the response

Caching | 55

informing any client that receives a copy of the record that the
response would remain valid for up 48 hours. Upon receiving the
response, the API consumer could then save it to local memory (or
disk) and use that as a valid response for up to 48 hours into the
future.

The HTTP protocol has extensive support for
network-level caching outlined in RFC7234. Your API
traffic platforms should understand and honor HTTP
caching metadata directives, and most of them will
allow you to establish rules and storage locations for
caching responses from any other HTTP-aware
servers.

Employing content delivery networks (CDNs) is one important way
to take advantage of network-level caching. CDNs understand the
network caching directives mentioned here and offer caching
servers strategically placed around the world to allow you to “stage”
cache content close to your target audience. These also support cus‐
tom caching templates called server-side includes (SSIs) that allow
you to optimize the actual content that is cached, and to customize
the content for your target audience.

Reducing network traffic is one way to improve overall scalability
and reliability. Using caches also improves the perceived perfor‐
mance of the network in general. But there are limits to this pattern
of caching responses from requests.

Preemptive caching
One way to expand your ability to cache content in case of network
failure is to preemptively cache responses. For example, on startup, a
server on your network in charge of making requests to the afore‐
mentioned PCVS service might automatically fire off a series of
requests for the 100 most commonly requested postal codes and
keep a local copy ready to respond.

Data snapshots
Another way to improve network resilience is to arrange to keep a
copy of the data set locally. This is sometimes called a data snapshot.
For example, our PCVS might support a special API call that spools

56 | Chapter 5: Scaling Traffic

http://bit.ly/2N3lImX
http://bit.ly/3040YPs
http://bit.ly/2Zd1j5z

the full postal code validation dataset to another machine within our
local network.

Data snapshots work well for datasets that have a fixed size and
rarely change. If the data is of a varying size and/or changes often
another possibility to improve overall network resilience is to
arrange for a data replica.

Data replicas
For datasets that change quite a bit, you can arrange to keep a data
replica locally. In this case, all data reads and writes are eventually
executed on one or more remote copies of the data store. This works
well when you need to keep a more accurate copy of the data than,
for example, a daily snapshot. However, data replication has its
challenges.

First, supporting data replication increases network traffic. If you
are working to improve system reliability in the face of network fail‐
ures, increasing network traffic is not the right way to go. Also, if
you want to support not just reads but also writes to data replicas,
you’ll need use a data storage technology built for this added
functionality.

Choose wisely
It is important to point out that the first two solutions: request-
caching and preemptive caching rely on network-level metadata and
work between any two servers that support HTTP caching
(RFC7234). This means that you can apply these approaches to any
interactions over HTTP, including those with third-party services
that you do not control.

The second two approaches (snapshots and replicas) focus on pass‐
ing copies of the target data and require coordination by both the
provider and consumer using technologies like Apache Kafka or
other protocols. Thus, you will be able to implement these
approaches only when both the API provider and the API consum‐
ers already agree on the details of the storage formats and data
models.

Caching | 57

Summary
In this chapter, we reviewed the challenge of maintaining network
reliability and resilience even when parts of that network (or com‐
ponents within the network) are failing. This notion of “surviving
the network” is an essential aspect of establishing a healthy and scal‐
able infrastructure for your API platform.

We covered Nygard’s stability patterns (TimeOut, FailFast, Bulkhead,
and Circuit-Breaker) and reviewed various data caching options at
the machine and network levels. With the exception of in-memory
caching and data snapshots and replication, you can implement all
of these patterns at the network level using gateways and proxies—
all without the need to rewrite or rearchitect individual service
components.

Next, we talk about how you can use your API traffic platform to
help you track your company’s progress on business-level goals, how
to diagnose runtime traffic problems, and how to use automation to
improve your platform’s ability to “fix itself ” when typical problems
arise.

Additional Reading
• Architecting for Scale, Atchison (O’Reilly)
• Release It!, 2nd Edition, Nygard (O’Reilly)
• Intelligent Caching, Barker (O’Reilly)

58 | Chapter 5: Scaling Traffic

http://shop.oreilly.com/product/0636920047070.do
http://shop.oreilly.com/product/9781680502398.do
https://www.oreilly.com/library/view/intelligent-caching/9781492049067/

CHAPTER 6

Diagnosing and
Automating Traffic

In this chapter, we’ll take what we’ve covered so far and use it to
begin mapping out what you can do with your API traffic platform
to help proactively support and enhance your company’s API eco‐
system. Building on top of the level of API Traffic Management (see
the lowest level of Figure 6-1), we dig into three additional topics:

• Supporting runtime experiments and the principles of Site Reli‐
ability Engineering and chaos engineering

• Adding the automation of traffic rules and metrics in testing,
deployment, runtime

• Dealing with business goals through the use of Objectives and
Key Results (OKRs)

59

Figure 6-1. Aspects of diagnosing and automating API traffic, showing
three new layers added on top of your API Traffic Management foun‐
dation

Business Metrics
Most of this book has focused on the network- and component-level
aspects of monitoring and reporting system health. But that is just
part of the story. It is also important to ensure that your API traffic
platform can provide reliable monitoring and feedback on your key
business goals and objectives. This focus at the overall business level
can help your API program provide timely, real-time data on the
company’s progress on key business metrics.

There’s an old adage by Steven A. Lowe: “You can measure almost
anything but you can’t pay attention to everything.”

As you build up your API traffic practice, it is important to identify
the kinds of metrics that matter to your business, not just the ones
that matter to the network or individual components within the net‐
work.

The topic of appropriate business metrics and the process for defin‐
ing, selecting, implementing, and tracking them is beyond the scope
of this book, but some basics can be helpful if you’re the person
charged with supporting the process in general and implementing
the details of an ongoing business metrics initiative.

As outlined in Chapter 1, there is an important difference between
the OKRs used to monitor business-level goals and the Key Perfor‐
mance Indicators (KPIs) used to measure progress on those goals.

60 | Chapter 6: Diagnosing and Automating Traffic

http://bit.ly/2z0nI7m

We focused on KPI-style metrics in Chapter 3. Here, we can dig into
the OKR-style metrics.

Pirating Your Business Metrics
In 2007, entrepreneur and angel investor Dave McClure presented
what he called “Startup Metrics for Pirates: AARRR!!!” His
“AARRR” acronym for identifying key business metrics stands for
“acquisition, activation, retention, referral, revenue.” Although
McClure’s talk is geared toward internet startups, his ideas are a
great start for thinking about establishing your initial business met‐
rics. Even for internally focused API programs, tracking added
“users,” how often they actively engage in your company’s API plat‐
form, how many stick with it over time, and how “viral” your pro‐
gram is (based on referrals to other “users”) can be good indicators
of the value your API program is providing to the organization.

The OKR Cycle
Like all goal-setting systems, there is an overall cycle to follow in
order to get the most out of the process. In his article “The OKR
Cycle: Three Steps to OKR Success,” Felipe Castro says there are
three key parts to the process: set, align, and achieve.

Setting OKRs
Setting OKRs is the process of identifying actions and outcomes that
are valuable, engaging, and actionable, meaning that they are more
than a list of tasks. They need to be something that everyone under‐
stands and finds motivating and doable. Often OKRs read similar to
user stories from Agile. For example, “We will improve API developer
experience by reducing mean time to API sign-up by 10%.”

Note that, in this example, the organization wants to improve devel‐
oper experience. Thus, it is essential to have a baseline on what the
current developer experience looks like. The API platform needs to
be monitoring and reporting KPIs that are related to developer
experience before you can know whether you’ve improved them.

The work of identifying important business-related KPIs for your
shared OKRs is one of the key contributions your API traffic pro‐
gram can provide to your overall business goals.

Business Metrics | 61

http://bit.ly/2N4ZTTR
http://bit.ly/2N3xm1i
http://bit.ly/2N3xm1i

Aligning OKRs
Typically, setting OKRs affects multiple teams. It’s important to
review the defined goals and ensure that they make sense as net pos‐
itives for all parties involved. This means mapping team dependen‐
cies and identifying any roadblocks to attaining the goal. For
example, is it possible to reduce the time it takes for a new developer
to sign up for an API key without also including the legal
department?

This is another important element of a robust API traffic system.
You might learn that factors outside typical runtime metric gather‐
ing (e.g., interacting with the legal department to improve the devel‐
oper onboarding experience) will be important for tracking and
reporting on business-level OKRs. A robust API traffic program will
let you interpolate data from other sources in order to build a good
picture of your progress.

Achieving OKRs
The work of setting and aligning OKRs only pays off when you can
measure your progress (and hopefully report success) on meeting
those goals. In many organizations this process of reporting and
evaluating OKRs is a regular ritual, one often done quarterly,
monthly, or even weekly. The challenge here is that the time devoted
to reporting and review is often time “stolen” from more productive
work within the company. A robust traffic platform can help reduce
lost productivity by making OKR progress reporting continuous.

When the data is continuously updated and displayed, much of the
work of reporting and reviewing turns from a corporate chore into a
cultural norm. People can come to expect to see these figures and,
when the trend looks to be heading in the wrong direction, can be
motivated to initiate steps to adjust activities, update targets, and get
the trend back on track.

This ability to provide a timely and meaningful reflection of the
business’s stated key objectives is another way in which a robust API
traffic management system can contribute to your organization’s
bottom line.

Another important way traffic management can help contribute to
success is to make it easier for teams to automate metrics creation
and evaluation.

62 | Chapter 6: Diagnosing and Automating Traffic

Automation
Most of this book has focused on the work of discovering and
implementing traffic monitoring details. This work is, for the most
part, a “hand-crafted” experience that takes advantage of the curios‐
ity and intelligence of your API traffic team and allows it to apply its
skills to your own API traffic platform. Much like programming,
this level of API traffic engineering is a key element of any quality
API management practice. However, there are opportunities to
apply API traffic engineering in ways that do not rely completely on
individuals designing and implementing the traffic rules.

In this section, we explore three areas where you can introduce
automation to your API traffic management in order to improve
your system’s reliability, resilience, and testing, deployment, and
alerting/recover.

Automating Testing
There are two elements to the “testing” of API traffic platforms.
First, you need a way to test the various routing, security, monitor‐
ing, and resolution scripts and rules used to keep your production
platform safe and reliable. The second element is the work of pro‐
viding enough of a virtualized network to allow service teams to test
their own components before placing them in production.

Testing network-level traffic management
Like any testing environment, you’ll need to mock or virtualize
enough of your production network to make your testing meaning‐
ful. But you don’t need a complete duplicate of production. When
you need to test North-South traffic security and routing scripts,
you’ll need an environment that mimics your production network
perimeter and security elements. When you’re experimenting with
ways to optimize East-West traffic between service components,
you’ll need a different kind of environment—one that reflects the
proper mix of service components and proxy servers needed for
your current test parameters.

An important part of your API traffic management platform is the
ability to virtualize portions of your network for testing purposes.
Automating the process of allocating virtual machines (VMs) and/or
containers for a test run, spinning them up, and shutting them down

Automation | 63

after the tests are complete is an essential part of your traffic man‐
agement practice.

Testing service-level traffic management
Your traffic platform also needs to support all of the teams creating
service components that will run within your network. They’ll need
virtualized identity and access control elements and routing support
sufficient to validate their own service-level tests. They might also
need to spin up instances of proxies to handle the network surviva‐
bility patterns we discussed in “Stability Patterns” on page 50.

And all this support should appear in the form of an automated pro‐
cess that teams can include in their own build pipeline. The work of
spinning up virtualized network elements, installing new traffic
rules related to the component’s production release, emitting syn‐
thetic traffic for test cases, and eventually shutting down all of the
ephemeral test elements is all part of the work of a robust traffic
management practice.

Finally, in some cases, it might make sense to add API traffic experi‐
ence to the teams designing and building the components that will
end up in production. Just as teams need expertise in designing
code-level tests, they can also benefit from the advice and guidance
of experienced traffic management staff. This is especially true for
the active aspects of API traffic management, such as security (see
Chapter 4) and scaling (see Chapter 5).

Automating Deployment
Just like the work of supporting API traffic testing, your API traffic
system needs to ensure that deploying updates into production is
safe and reliable. Sometimes, a release contains only network-level
changes (gateway and proxy changes), and sometimes a release is
focused on server-level (component) updates that rely on parallel
updates to the traffic system (e.g., new security profiles, routing
rules, stability side cars, monitoring definitions).

Whenever you can, make it possible for individual teams to include
all of the related traffic changes in their own release packages. This
means that your traffic platform needs to support scripted updates
and the ability to monitor and coordinate changes at both the ser‐
vice and network levels. Of course, your traffic team needs to make
it possible to not only reliably post updates into production, it must

64 | Chapter 6: Diagnosing and Automating Traffic

also make sure that it is possible to quickly and safely back out pro‐
duction changes when things don’t go as expected.

Your API traffic system is part of your change management system.

Automating Alerting and Recovery
The work of analyzing and modifying thresholds for altering is
another service your API traffic team can to provide to the organi‐
zation. Your company may even have dedicated analysts focused on
developing reporting/alerting systems. In that case, you need to
arrange your API traffic platform to make it easy for the analytics
staff to safely gain access to appropriate levels of traffic data, use that
data in their analysis, and (where needed) provide your traffic teams
updated advice on which values/levels to monitor and at what level
(business, network, service) to do that monitoring.

There is another step—one that goes beyond the work of sending
alerts when traffic becomes unhealthy. That is the work of actually
“fixing the problem” in reaction to the discovered traffic patterns.
There are lots of ways in which your platform can provide real-time
solutions to problems:

• Spinning up additional instances of services within a cluster
when traffic spikes (and spinning them down as traffic sub‐
sides)

• Rerouting traffic to different geographical regions to deal with
localized spikes in API traffic

• Automatically increasing identity security checks (e.g., requiring
two-factor authentication) for a class of users or geolocations
that exhibit a spike in risky activity

• Preemptively invoking traffic circuit breakers (see “Circuit-
Breaker” on page 53) when one or more clusters exhibit a sud‐
den increase in latency or are unresponsive

• Periodically adjusting TimeOut and FailFast values (see “Time‐
Out and FailFast” on page 52) to better reflect “new normal”
traffic loads

• Automatically reversing production updates when a new build
shows early signs of major failures

Automation | 65

This list contains actions that can be programmed into your API
traffic platform as a way to maintain a minimum level of reliability
and safety even in the face of unforeseen network problems. The
process of going beyond altering to fixing discovered problems is an
approach rooted in the principle of “Eliminating Toil,” from Google’s
Site Reliability Engineering program. It assumes that, instead of just
alerting a human when things begin to go poorly, your system
should be engineered in a way that supports the ability to self-
maintain whenever possible. As Google’s Carla Geisser describes it:
“If a human operator needs to touch your system during normal
operations, you have a bug. The definition of normal changes as
your systems grow.”

And this attention to runtime behavior—and the power to fix it
automatically—leads to one more area of diagnostics and automa‐
tion: supporting runtime experiments as a way to explore and dis‐
cover weaknesses in your production system before they become a
problem.

Runtime Experiments
Organizations that have already established a healthy business met‐
rics program, track and report on their build/deploy cycle, and rely
on automation for injecting monitoring and tracking metrics can
also take their traffic programs one step further: they can help teams
in the company implement and monitor runtime experiments on
the resilience and reliability of your system.

Using runtime experiments in production is a way of testing the
“bad path” (testing cases where things go wrong in your system)
instead of just testing the “happy path” (proving that things work as
expected). This is a kind of advanced testing regime that can be
introduced in addition to the typical “happy path” test suites more
commonly used in build and production environments.

Following is a quick review of two well-established ways to run these
kinds of experiments (Site Reliability Engineering and chaos engi‐
neering) along with some suggestions on how you can use your API
traffic management platform to help implement and gather the
monitoring data needed to run a robust runtime experiments
program.

66 | Chapter 6: Diagnosing and Automating Traffic

http://bit.ly/2KL2kIB

Site Reliability Engineering
Site Reliability Engineering (SRE) is the practice of applying soft‐
ware engineering practices to network infrastructure. The SRE that
we recognize today started as a practice at Google around 2003 that
involved fewer than 10 people. At last report, Google had more than
1,500 people dedicated to doing SRE work. There is also at least one
conference circuit, SRECon hosted by Usenix, that has run continu‐
ously since 2014.

Applying software engineering principles to operations means more
than automating deployment and monitoring system health. It also
means using engineering practices to explore and test the bound‐
aries of your running system. This means collecting data on both
individual services and the network that hosts them. It also means
using the collected data to establish hypotheses, run experiments,
and review the results in order to identify opportunities for improv‐
ing your system’s reliability and resilience—all things that we’ve
talked about in this book.

SRE has a handful of principles. They are:

• Embrace risk by measuring and managing the system.
• Rely on Service-Level Objectives (SLOs) to define expected user

outcomes.
• Eliminate toil through the use of automation.
• Monitor systems to ensure your agreed SLOs.
• Engineer releases to improve reproducibility and reliability.
• Aim for simplicity by eliminating accidental complexity.

As you can see, several of SRE’s stated principles fall well in line with
the kind of work a good API traffic management platform needs to
deal with. As you build out your API traffic management practice,
you can use it to embrace and promote SRE efforts within your
organization, too.

Chaos Engineering
In 2011, Netflix’s Yury Izrailevsky and Ariel Tseitlin published a blog
post that described their work toward improving the availability and
reliability of their systems. In their post they describe something
they called Chaos Monkey: “a tool that randomly disables our pro‐

Runtime Experiments | 67

http://bit.ly/2Z2Yks0
https://www.usenix.org/srecon
https://oreil.ly/OWHLT
https://oreil.ly/OWHLT

duction instances to make sure we can survive this common type of
failure without any customer impact.” This approach of purposefully
introducing “bugs” into running production systems has come to be
known as chaos engineering.

Similar to the work of SREs, chaos engineering is a way to test the
resilience of production systems directly. This works only if there is
a high degree of observability already in place within the network.
And, as we’ve seen already in this book, API traffic management
plays a key role in providing that observability both at the network
and service levels.

As you roll out your API traffic program, be sure to consider any
current or future chaos engineering practices that you’ll need to
support.

Summary
In this chapter, we brought together several earlier elements of the
book such as going from monitoring to managing, dealing with
security risks, and surviving network errors and using that informa‐
tion to lay out things you can do with your API traffic platform to
help set and track business metrics; introduce automation of traffic
testing, production, and recovery; and even help support runtime
experiments based on principles for SRE and chaos engineering.

That’s a lot to consider when it comes to establishing and maintain‐
ing a robust and flexible API traffic management practice. In
Appendix A, we take a moment to reflect on what’s been covered
here and how you can apply it to your own organization now and in
the future.

Additional Reading
• Introduction to OKRs, Wodtke (O’Reilly)
• Site Reliability Engineering, Petoff, Murphy, Jones, and Beyer

(O’Reilly)
• Learning Chaos Engineering, Miles (O’Reilly)

68 | Chapter 6: Diagnosing and Automating Traffic

https://www.oreilly.com/library/view/introduction-to-okrs/9781491971475/
http://shop.oreilly.com/product/0636920041528.do
http://shop.oreilly.com/product/0636920251897.do

APPENDIX A

From Monitoring to
Managing and Beyond

This book covered a lot of area in a short amount of time. But it is
important to keep in mind that no one can introduce all of the
things here all at once.

At the start you need to understand what’s at stake (Chapter 1) and
the fundamentals of establishing your traffic management approach
(Chapter 2) and tackling the basics of monitoring and reporting
important traffic values and trends (Chapter 3).

Once you have your foundation set, you can spend time shoring up
your system-wide security (Chapter 4) and begin to expand your
API traffic program’s scope from just dealing with day-to-day safety
and stability toward “surviving the network” (Chapter 5). Eventually
you can begin designing traffic management features that allow you
to fix problems automatically and run safe and valuable experiments
that help you anticipate the needs of your internal staff as well as
your external customers and partners (Chapter 6).

As more companies progress along this path of treating API traffic
management as another essential engineering practice, we’re bound
to see more tooling and API management platforms adopt these
same principles, and that means everyone gets better at monitoring,
securing, scaling, and ultimately managing not just your APIs but
also your business.

69

It all begins now with your initial steps to apply what you find here
to your own company in your own unique way.

70 | Appendix A: From Monitoring to Managing and Beyond

About the Author
Mike Amundsen is an internationally known author and speaker.
He travels the world discussing network architecture, web develop‐
ment, and the intersection of technology and society. He works with
companies large and small to help them capitalize on the opportuni‐
ties provided by APIs, microservices, and digital transformation.

Amundsen has authored numerous books and papers. He contrib‐
uted to the O’Reilly book Continuous API Management (2018), his
book RESTful Web Clients was published by O’Reilly in February
2017, and he coauthored Microservice Architecture (June 2016). His
latest book, Design and Build Great APIs, for Pragmatic Publishing is
scheduled for release in late 2019.

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	How to Get the Most from This Book
	Additional Reading
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. The Power of API Traffic Management
	Monitoring with KPIs
	Management Challenges
	Traffic Challenges
	Monitoring Challenges
	From Managing to Understanding

	OKRs
	Gaining Insight
	Solving Problems
	Anticipating Needs

	Summary
	Additional Reading

	Chapter 2. Managing Traffic
	Controlling External Traffic
	Crossing Boundaries
	Typical Responsibilities
	Common Challenges

	Optimizing Internal Traffic
	Enabling Services
	Typical Responsibilities
	Common Challenges

	Summary
	Additional Reading

	Chapter 3. Monitoring Traffic
	Monitoring Levels
	Infrastructure Metrics
	Service Metrics
	Business Metrics

	Typical Traffic Metrics
	Rate Limits
	Request Latency and Duration
	Error Rates
	Other Considerations

	Common Traffic Formulas
	The USE Method
	The RED Method
	The LETS Method

	Summary
	Additional Reading

	Chapter 4. Securing Traffic
	Security Basics
	API keys
	Identity/Authentication
	Access Control/Authorization
	Encryption Considerations
	Managing Authentication Risk
	Mediating External Security Systems

	Managing Access with Tokens
	The JWT Specification
	The JWT
	Grants by Value
	Grants by Reference

	Summary
	Additional Reading

	Chapter 5. Scaling Traffic
	Surviving Network Errors
	Safety I and Safety II

	Stability Patterns
	Health Check
	Health Reporting
	TimeOut and FailFast
	Bulkhead
	Circuit-Breaker
	Summary of Survival Patterns

	Caching
	Machine-Level Caching
	Network-Level Caching

	Summary
	Additional Reading

	Chapter 6. Diagnosing and Automating Traffic
	Business Metrics
	The OKR Cycle

	Automation
	Automating Testing
	Automating Deployment
	Automating Alerting and Recovery

	Runtime Experiments
	Site Reliability Engineering
	Chaos Engineering

	Summary
	Additional Reading

	Appendix A. From Monitoring to Managing and Beyond
	About the Author

