
Django Optimization

Ikhsan N. Rosyidin
@essanpupil

What are we optimizing for?
1. Fewer processing time
2. Less database query
3. Lower memory consumption
4. Easier maintenance &

development

“Improvements in one area will often bring about improved
performance in another, but not always; sometimes one can
even be at the expense of another.”

Know Your Profile
1. Django debug toolbar
2. Silk
3. django-querycount
4. Newrelic
5. Datadog
6. Elasticsearch APM

We must know our condition before
doing optimization.

Use widely available tools to
measure your current condition.

https://github.com/jazzband/django-debug-toolbar
https://github.com/jazzband/django-silk
https://github.com/bradmontgomery/django-querycount

Database Indexing
class Student(models.Model):
 address = models.CharField(max_length=255)
 name = models.CharField(max_length=128, db_index=True)
 class Meta:
 Indexes = [

models.Index(fields=[‘name’], name=’name_idx’)
]

Use class Meta or db_index, don’t need to use both technic for same field

Consider adding indexes to fields that you frequently query using filter(),
exclude(), & order_by().

Django ORM
Optimization To avoid performance problems, it

is important to understand:
1. queryset evaluation.
2. queryset data caching.

Queryset

https://docs.djangoproject.com/en/2.2/ref/models/querysets/#when-querysets-are-evaluated
https://docs.djangoproject.com/en/2.2/topics/db/queries/#caching-and-querysets

QuerySets Evaluation
q = Entry.objects.filter(headline__startswith="What") # Not evaluated
q = q.filter(pub_date__lte=datetime.date.today()) # Not evaluated
q = q.exclude(body_text__icontains="food") # Not evaluated

Queryset will be evaluated when it is used for:

for person in Person.objects.all(): # Iteration
if person.age >= 10:

print(“You are not a kid”)

first_person = Person.objects.all()[0] # Slicing/Indexing
json_persons = pickle.dumps(Person.objects.all()) # Pickling (i.e. serialization)
print(q) # Function evaluation
list_person = [person for person in Person.objects.all()] # List comprehensions

if person in Person.objects.all(): # `in` checks
print(“You are included”)

QuerySets data Caching
Not cached

QuerySet evaluated and cached
print([p.name for p in Person.objects.all()])

New QuerySet is evaluated and cached
print([p.name for p in Person.objects.all()])

Slicing/indexing unevaluated QuerySets
queryset = Person.objects.all()

Queries the database
print(queryset[0])

Queries the database again
print(queryset[0])

Printing
print(Person.objects.all())

Cached
queryset = Person.objects.all()

QuerySet evaluated and cached
print([p.name for p in queryset])

Cached results are used
print([p.name for p in queryset])

Slicing/indexing evaluated QuerySets
queryset = Person.objects.all()

Queryset evaluated and cached
list(queryset)

print(queryset[0]) # Cache used
print(queryset[0]) # Cache used

When you have a lot of objects, the
caching behavior of the QuerySet
can cause a large amount of memory
to be used. In this case,
iterator() may help.

Too Much Cache Will Kill You.
Save memory by not caching
anything

for person in
Person.objects.iterator():
 # Some logic

Hitting the database multiple times for different parts of a single ‘set’ of
data that you will need all parts of is, in general, less efficient than
retrieving it all in one query. Use:
1. select_related()
2. prefetch_related()
3. prefetch_related_objects()

Retrieve Everything at Once

Foreign Key & One to One
Child.objects.select_related(‘parent’).all()

Many to Many & Many to One
Parent.objects.prefetch_related(‘children’).all()

https://docs.djangoproject.com/en/2.2/ref/models/querysets/#django.db.models.query.QuerySet.select_related
https://docs.djangoproject.com/en/2.2/ref/models/querysets/#django.db.models.query.QuerySet.prefetch_related
https://docs.djangoproject.com/en/2.2/ref/models/querysets/#django.db.models.prefetch_related_objects

Don’t retrieve things you don’t need
1. Values() & values_list() used

to get value of specific field
in list format.

2. Defer() & only() used to avoid
unused querying field.

3. count() & exists() used if only
care about number of rows.

4. update() & delete() used when
we don’t need object value but
want to delete & update it.

HTTP Performance
1. Middleware

a. ConditionalGetMiddleware, adds support for modern browsers to conditionally GET
responses based on the ETag and Last-Modified headers.

b. GZipMiddleware, compresses responses for all modern browsers, saving bandwidth
and transfer time. Warning: Compression techniques used on a website increase
attack possibility. Read detail possible attack in http://breachattack.com/

2. Sessions
a. Use cached sessions instead of default database sessions.

3. Static Files
a. ManifestStaticFilesStorage, appends a content-dependent tag to the filenames of

static files to make it safe for browsers to cache them long-term.
b. Minification, several third-party Django tools and packages provide the ability

to “minify” HTML, CSS, and JavaScript. They remove unnecessary whitespace,
newlines, and comments, and shorten variable names, and thus reduce the size of
the documents that your site publishes.

http://breachattack.com/
https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/#django.contrib.staticfiles.storage.ManifestStaticFilesStorage

Template Performance
1. Using {% block %} is faster than using {% include %}
2. Heavily-fragmented templates, assembled from many small

pieces, can affect performance.
3. cached template loader often improves performance

drastically, as it avoids compiling each template every
time it needs to be rendered.

4. Use alternative template language, like; jinja2, mako,
etc.

https://docs.djangoproject.com/en/2.2/ref/templates/api/#django.template.loaders.cached.Loader
http://jinja.pocoo.org/docs/
https://github.com/ahmedaljazzar/django-mako

Dev is not Prod
1. Hardware specs.
2. Software configuration.
3. Database size.
4. Request numbers.

Setup staging environment, make it
similar with production environment
as much as possible.

Final Test
1. Server Side

a. Locust.io
b. Httperf
c. jMeter

2. Client side
a. Sitespeed.io
b. webpagetest.org

References
1. https://docs.djangoproject.com/en/2.2/topics/performance/
2. https://techbeacon.com/app-dev-testing/web-performance-te

sting-top-12-free-open-source-tools-consider

https://docs.djangoproject.com/en/2.2/topics/performance/
https://techbeacon.com/app-dev-testing/web-performance-testing-top-12-free-open-source-tools-consider
https://techbeacon.com/app-dev-testing/web-performance-testing-top-12-free-open-source-tools-consider

Maturnuwun

@essanpupil

