traveloka¥

Cronjob on Steroids - Running Your
Scheduled Program with Apache Airflow

Rezha Julio
Data Engineer

27 July 2019

Who am | ? traveloka¥

Education
— (2014) B.Sc in Chemistry - ITB

- Working Experience
— (2014-2016) Full Stack Developer - Polatic
— (2016-Present) Data Engineer - Traveloka

Contact me at rezha@python.or.id for Python ID related

mailto:rezha@python.or.id

Table of Contents traveloka¥

01 02 03

Background Airflow Airflow
Deployment Showcase

The Problems System Architecture Demo
Enter Airflow Deploy Airflow Use Case

Airflow Concept

Best Practices

Table of Contents traveloka¥

01 02 03

Background Airflow Airflow
Deployment Showcase

The Problems System Architecture Demo
Enter Airflow Deploy Airflow Use Case

Airflow Concepts

Best Practices

The Problems traveloka¥

python my_program.py

Our Program is Simple traveloka¥

*

]
=

* command to execute
-+
|
|

L day of week (0 - 7)
L month (1 - 12)

day of month (1 - 31)
hour (0 - 23)

min (0 - 59)

— e %

python my_program.py

[e e e e e *

w*

.
I
I
I
I
I
L

He oA e A e e e e e

traveloka®

%
%
*

L day of week (0 - 7)

python my_program.py

* command to execute c r n
3 I F I
[|1
[|1
| |
|
L

day of month (1 - 31)
hour (0 - 23)
min (0 - 59)

e e He e e e e A e

The Problems traveloka¥

Retry ?

Error reportings ? Notifications ?
Monitoring ?

SLA?

Maintainability ?

Scalability ?

Enter Airflow traveloka¥

What is Airflow traveloka¥

An open source platform to author, orchestrate and monitor processes

It orchestrates tasks in a complex networks of job dependencies
« It's Python all the way down

 It's expressive and dynamic, workflows are defined in code
 Feature rich web interface

- Worker Process can be scaled vertically and horizontally

« Extensible

Concepts traveloka¥

Workflows are called DAGs for Directed Acyclic Graph.
Tasks : Workflows are composed of tasks called Operators.
« Operators can do pretty much anything that can be run on the Airflow machine.
Operators classified in 3 categories : Sensors, Operators, Transfers.
- BashOperator - executes a bash command

- PythonOperator - calls an arbitrary Python function

- EmailOperator - sends an email

- SimpleHttpOperator - sends an HTTP request

- MySqlOperator, SqliteOperator, PostgresOperator, MsSqlOperator,
OracleOperator, JdbcOperator, etc. - executes a SQL command

- Sensor - waits for a certain time, file, database row, S3 key, etc...

traveloka®

dag = DAG(
"tutorial’,
default_args=default_args,
description='A simple tutorial DAG',
schedule_interval=timedelta(days=1))

t1l = BashOperator(
task_id='print_date’,
bash command='date',
dag=dag)

Data Profiling ~ Browse ~ A

B DAG: example_bash_operator

Graph View ® Tree View oli Task Duration I Task Tries Alanding Times = Gantt iE Details 4 Code T Refresh ® Delete

) Basedater. 2018-09-06 00:00:01 Number of runs: 25 jRun: scheduled__2018-09-06T00:00:00+00:00 jLayout: Left->Right j Go Search for...

(BashOperator | (DummyOperator | ' nM\g |(failed) ' skipped | retry no status

~

[runme_1 H run_after_loop]\
run_this_last I
[runme_2]/[also_run_this]—/

Table of Contents traveloka¥

01 02 03

Background Airflow Airflow
Deployment Showcase

The Problems System Architecture Demo
Enter Airflow Deploy Airflow Use Case

Airflow Concept

Best Practices

Architecture traveloka¥

Sequence Executor

One CPU
Using SQLite

* Not Recommended
for production

\
]
]
]
Tasks e
p—]
1
]
/

DAG Directory

Architecture traveloka¥

lllllllllllllllllllllllll

Local Executor

Scales vertically
Runs in threads
allowing tasks
parallelism T
Suitable for

production usually
when there's not so : -

many DAGs E
>, RS Tasks e

Scheduler

Architecture traveloka¥

Celery Executor

Scales a lot

Each executor resides
in one node

Requires Celery to
manage nodes and
Redis or RabbitMQ for
communication

Node 1 Node N

1 \
" R '
I |
I |
"i ::
I .
1 |

DAG Directory

traveloka¥

git clone https://github.com/rezhajulio/docker-atirflow
docker pull rezhajulio/docker-atirflow: latest
docker-compose -f docker-compose-LocalExecutor.yml up -d

Table of Contents traveloka¥

01 02 03

Background Airflow Airflow
Deployment Showcase

The Problems System Architecture Demo
Enter Airflow Deploy Airflow Use Case

Airflow Concept

Best Practices

traveloka¥

Talk is Cheap, Show Me the Code

Airflow @Traveloka scale traveloka¥

We Run 500+ DAGs with ~50k task a day
DAG running with daily, 6 hourly and hourly granularities
100+ Data Engineer + Analyst authored or contributed to DAGs directly

Using Celery Executor with RabbitMQ as backend

Use Case traveloka¥

RDS PostgreSQL
on Product

Web Ul

DynamoDB

Executor

Use Case traveloka¥

Config table DAG

Testing Pipeline
status : “TESTING”, “RELEASED”, ... status: “TESTING”

granularity: “DAILY", “HOURLY", ...
is_running: False, True « Production Pipeline

status: “RELEASED”
granularity: “DAILY", “HOURLY", ...
is_running: True

Best Practice traveloka¥

Enable the email feature and EmailOperator/SlackOperator for monitoring.
Checkout the SLA feature to know when your jobs are not completing on time.

- The scheduler is still the weakest link as it is a single point of failure. Make a
monitor for scheduler.

As the number of jobs you run on Airflow increases, so does the load on the
Airflow database.

« Try to make you tasks idempotent. Airflow will then be able to handle retrying
for you in case of failure.

Resource traveloka¥

Website: https://airflow.apache.org/

Github: https://github.com/apache/airflow

Chat: https://apache-airflow-slack.herokuapp.com/

Mail list: https:/lists.apache.org/list.htm|?dev@airflow.apache.org

https://airflow.apache.org/
https://github.com/apache/airflow
https://apache-airflow-slack.herokuapp.com/
https://lists.apache.org/list.html?dev@airflow.apache.org

traveloka¥

Thanks!

traveloka¥

We Are Hiring!

rezha.pradana@traveloka.com

