
How Security can take on a new role in the
DevOps movement by embracing modern
principles, practices, and tooling

The
DevOps
Roadmap
for
Security

By James Wickett

https://www.signalsciences.com/

PG 2 | THE DEVOPS ROADMAP FOR SECURITY

The
DevOps Roadmap
for
Security
By James Wickett

Copyright © 2018 Signal Sciences. All rights reserved.
Published by Signal Sciences, 8520 National Blvd, Suite A, Culver City, CA 90232.

VERSION INFORMATION

This is the all-new, 2nd Edition of the The DevOps Roadmap for Security. This document was last updated on
August 15, 2018. The 1st Edition of the The DevOps Roadmap for Security was released on July 29th, 2016. Some
changes in this updated second edition were made to chronicle changes to DevOps particularly in practices that get
placed in the domain of DevSecOps. New data and metrics from recent reports, like the DevSecOps Community Report
have been added as well as quotes from practitioners in our field. Also new and updated in this version are numerous
graphics throughout.

SPECIAL THANKS

Signal Sciences, PagerDuty, Pivotal, BugCrowd, Threatstack

https://www.signalsciences.com/

PG 3 | THE DEVOPS ROADMAP FOR SECURITY

Table of Contents

Introduction � 4
Where DevOps Fits In . 5
Unifying the Tribes . 6

Create Feedback Loops � 7
A Defensive Thinking Approach . 8
Application Security Feedback . 8
Usage Feedback. 9

Unite Security and Engineering Culture � 10
Business Impact of DevOps Culture. . 10
What Culture Means to Security . 11
Pragmatic Technical Changes. . 11

Lean Security and Eliminating Waste . 12
Democratization of Security Data . 13

Delivery Cadence � 14
Why is Delivery Cadence Important? . 14
Three Common Practices with Security Implications . 15

1. Smaller Changes are Easier to Rationalize . 15
2. Automated Testing. . 15
3. Assurance and Confidence in Changes . 15

Treat Everything as Code � 16
Version Controlled Artifacts . 17
Configuration Management . 17
Testing . 18
Cloud and Distributed Computing . 18
Software Supply Chain . 19

Following the Roadmap � 20

About Signal Sciences � 22

https://www.signalsciences.com/

PG 4 | THE DEVOPS ROADMAP FOR SECURITY

“Security is joining forces with DevOps and this paper shows you how to get started with
common principles and practices to effectively integrate security in your DevOps transition,
written by some of the best in the game.”

Gene Kim, co-author of The Phoenix Project and the DevOps Handbook

Introduction

Information security is in crisis. We see it in the murmurs of product teams, we see it in the countenance of other infosec
professionals as they pass us in the hallways. Much worse, we see it in the headlines which serve as a nagging reminder
that no matter what we do, we have an inability to deliver software without vulnerabilities. This isn’t a crisis that has
sprung up all of a sudden, but a long-standing, systemic outpouring of the practices and policies that security has built
over decades of misalignment inside organizations large and small.

In the book Agile Application Security, the authors point out that “many security teams work with a world-view where
their goal is to inhibit change as much as possible.”1 When was the last time you heard of a business touting that it
inhibited change as a competitive advantage? Of course, never. Inhibiting change shows a disconnect between security
and the reality of modern software delivery practices. Is it any wonder that security is often the most disliked group in
organizations and is facing a crisis among its ranks?

This aversion to change would be very forgivable if it actually made software safer. If organizations with security teams
that inhibited as much change as possible stood up and announced that, through their tough posture on change, they
were delivering their software vulnerability-free, then this aversion to change would be more forgivable because it would
result in safer software. The problem is that this just isn’t the case.

In his latest book, Thinking Security, Steven Bellovin writes, “Companies are spending a great deal on security, but we
still read of massive computer-related attacks. Clearly something is wrong.” We see this truth in the daily media deluge of
security breaches and the headline-making by the failings of major companies, some of which even specialize in security.
Bellovin goes on to highlight the same point that the authors of the Agile Application Security share. He writes, “The
root of the problem is twofold: we’re protecting (and spending money on protecting) the wrong things, and we’re hurting
productivity in the process.”2

Yet, all is not lost. It doesn’t have to be this way. In fact, there are many organizations that are integrating security with
business outcomes in mind. This is often done under the banner of DevOps or DevSecOps. The DevSecOps movement
represents the joining of Security to DevOps, because it turns out the two have more in common than people think,
and the organization as a whole benefits immensely from the outcomes of their collaboration.

https://www.signalsciences.com/

PG 5 | THE DEVOPS ROADMAP FOR SECURITY

Where DevOps Fits In

DevOps is a culture, movement, and practice that enables collaboration
between development and operations teams throughout the entire
software delivery lifecycle, from design and development to production
support. It breaks down entrenched silos, allowing organizations to
transition from functional area delivery to a more holistic approach. This
results in robust processes, exponential improvements in deployment
times, and ultimately, superior results for a company’s bottom-
line. Since DevOps was first coined in 2009,3 it has been a massive
movement among engineering focused organizations. In the 2015 State of DevOps report, it was found that high-
performers were able to deliver thirty times more frequently—rapidly decreasing the time from concept to cash.4 5

DevOps is transformational in four key transformation areas:

1. It creates feedback loops in the runtime environment to inform development and operations
2. It treats all systems and infrastructure as code
3. It shifts engineering culture towards total delivery and user experience.
4. It favors a faster delivery cadence and a reduction in changes per delivery.

In each of these areas, there’s a common body of principles, practices, and tooling that’s rapidly evolving. The
DevOps Roadmap for Security will help you navigate these areas and suggest ways for security teams to get more
involved with DevOps.

Why DevOps Matters to Security

In early 2015, Gartner, a leading market research firm, stated that: “By 2016, DevOps will evolve from a niche strategy
employed by large cloud providers to a mainstream strategy employed by 25 percent of Global 2000 organizations.”6 It’s
safe to assume that if you aren’t considering DevOps now, the market may soon decide for you. According to a survey
and published report by CA,7 there are five key benefits to DevOps adoption:

• Provides new software or services that would otherwise not be available� This arms organizations with a new
playbook for cloud delivery, microservices and software as a service offerings.

• Reduces time spent fixing and maintaining applications� DevOps practices have proven to require less break-fix
work and decrease the mean time to recover (MTTR) from outages.

• Improves cross departmental collaboration� DevOps enables collaboration across functional silos. Organizations
that adopt it are witnessing the benefits first hand.

“Security is not only failing to protect,
it’s also hindering the organization’s
productivity.”
Steven Bellovin

https://www.signalsciences.com/

PG 6 | THE DEVOPS ROADMAP FOR SECURITY

• Increases revenue� In his book, Leading the Transformation: Applying Agile and DevOps Principles at Scale,8 Gary
Gruver directly tied DevOps transformations to bottom-line impact in HP’s printer business by reducing costs by
$45MM and freeing up 35% capacity for new innovation. This is a significant impact to the business.

• Improves quality and performance of deployed applications� One other tangible outcome of DevOps is a reduced
failure rate. The 2016 State of DevOps report showed that high-performers had a 3X lower rate of failure.9

The benefits of DevOps are clear for organizations of all sizes, and the adoption rate suggests that even more evidence
will be forthcoming.

Unifying the Tribes

The term “tribes” is used throughout this report. To add clarity, tribes are simply groups of people found in organizations
that rally together around common concerns. DevOps is concerned with uniting two particular tribes: development and
operations. These tribes have seemingly opposing concerns: developers value features while operations value stability.
However, these contradictions are largely mitigated by DevOps. A strong argument could be made that the values of the
security tribe—defensibility—could just as easily be brought into the fold, forming a triumvirate under the DevOps umbrella.

The security tribe’s way forward is to find ways to unify with DevOps in its four key areas: (1) create feedback loops, (2)
unite security and engineering culture, (3) enable delivery velocity, and (4) treat everything as code. Each of these areas
will be covered in the following sections of this report.

https://www.signalsciences.com/

PG 7 | THE DEVOPS ROADMAP FOR SECURITY

TRANSFORMATION AREA 1

Create Feedback Loops

For security, the worst feedback loop is the breach feedback loop—the one where your company’s name is in the
headlines for the wrong reasons. Companies want to avoid the breach feedback loop and DevOps teams see this as part
of their mission. The DevSecOps Community Survey 201810 found that mature DevOps teams are very concerned about
high-profile breaches, with 73% of respondents indicating breaches as a driver.

What is interesting about many high-performing DevOps teams is where and how they’re layering in defenses. The first
place where many DevOps teams are focused on is defending the application layer. The DevSecOps Community Survey
2018 found that one-in-three companies experienced a web application security breach in the last 12 months. Across the
board, the industry is seeing the attack surface move to the application.

Since the web application is the modern attack surface, it’s often the best place to start for instrumenting feedback
loops. The kind of feedback loops we want to create are the ones that connect application runtime in production to
development. This way, when breaches occur—or begin to occur—automated defenses are triggered, or development
staff is notified and ready to respond.

Feedback loops aren’t a new idea—they’re almost so inherent, so human, that
it feels odd to specifically call them out at times. From human relationships to
complex industrial systems to military strategy, feedback loops are foundational.
In military strategy, there are Observe, Orient, Decide, Act (OODA) loops11 and
in the best selling book The Lean Startup, the feedback loop is identified as the
Build-Measure-Learn cycle.12 Yet somehow, software development struggles
with defining feedback loops. It’s still common, though increasingly less so, to
have production software where users report outages before the development,
operations, and security staff are even aware of it. If security is to be successful in
the new, shorter DevOps cycles, feedback loops have to improve.

Once an organization has shifted thinking and processes to orient around a fast delivery cycle, the security team will
need to quickly put feedback loops in place. Gaining insight into the rapidly-changing runtime environment gives
security the ability to collaborate with development and operations to respond to an event before it becomes a threat.

33%

reported a web app breach
or suspected breach within
the past 12 months.

https://www.signalsciences.com/

PG 8 | THE DEVOPS ROADMAP FOR SECURITY

A Defensive Thinking Approach

At the risk of over-simplifying security concepts, defense
requires knowing answers to two first-order questions:

• Am I currently being attacked?
• What vector of attack is being attempted?

This is further complicated by second-order factors such
as analyzing the likelihood of success and determining
the potential cost of compromise. The security industry
at large generally isn’t equipped to address these
questions due to a lack of first-order data—namely their
limited insight into the frequency and types of attacks.
Surprisingly, most organizations can’t even approximate
an answer to these questions.

In a DevOps context, there are three areas where security provides direct value to the enterprise, utilizing value from
integrations across the organization. Each of these areas can give insight into the first-order questions, and through
instrumentation, can shift to a defensive thinking approach. When providing security defense in a web context, there are
two key areas to evaluate: application security and usage feedback.

Application Security Feedback

It’s hard to think about modern approaches to delivering services without thinking about delivering them over the web.
With the rise of microservices13 and the decoupled architecture patterns therein, you find an even higher dependence
on web-based REST APIs. Today, most systems are collections of loosely coupled applications delivered over the web.
This hasn’t been an abrupt transition but has been an ongoing shift over the last 20 years. But even with a long history of
using the web, we have a dearth of mechanisms for detecting security problems in real-time.

Many organizations implemented web application firewalls (WAFs) a decade ago, however rarely has anyone
operationalized them. Most WAFs were put in place for compliance adherence, namely PCI, and were generally put in

“listening,” or passive mode with no defensive posture. However, in the last ten years we have continued to see common
web application security vectors get compromised, and the Open Web Application Security Project (OWASP) continues
to issue guidance on the same threat vectors.14 The problem hasn’t been solved. We are clearly lacking feedback loops to
improve on our application security stance in the face of changing underlying technology models.

THE SECURITY TRAINING FALLACY

It’s common for application security teams to see
application-level vulnerabilities like XSS or command
execution and turn to developer training as a solution.
While training is a good thing, it cannot replace a
true feedback loop to developers. A feedback loop
that works is one that instruments the application
runtime and involves developers in security events
as they’re actively happening. This moves application
security from a push model to a pull model which is
considerably more effective for developers.

https://www.signalsciences.com/

PG 9 | THE DEVOPS ROADMAP FOR SECURITY

There are two main feedback loops to implement in application security: divergent patterns and known attacks.
Divergent patterns, or signals, are seen in traffic that perhaps attempts to access resources that don’t exist or spikes
in traffic from uncommon sources. Known attacks are common OWASP Top Ten items like XSS or injection attacks.
Feedback loops in both areas bring visibility to an otherwise neglected aspect of our systems.

Usage Feedback

Customer usage is an often overlooked, yet very important, feedback
loop for security and DevOps. Are you experiencing a higher volume of
logins? What about password changes? Have you seen more accounts
created in the last hour than normal? These are all subjective questions
that are specific to the current business state. More than likely, some of
these metrics are already being tracked within the organization, but aren’t
visible throughout. Enterprise security teams should use these feedback
loops to check for anomalous behaviors that are indicators of current or
successful attack signals.

When combined with application security feedback, usage metrics
become more powerful. Often these will give clues to how successful
the attacks are. If there’s a spike in XSS attacks, it’s a more powerful
metric when correlated with the number of password change requests
happening in the application. Instrumenting the common flows for users
in your system and tying them to application security feedback can bring
tremendous value to all sides: development, operations, security, and most
importantly, the business.

Real time attack and
event data are required
for application security
success. Next-gen WAF
and RASP technologies,
when properly integrated
with a DevOps toolchain,
can provide the feedback
necessary to make
informed actionable
security decisions.

https://www.signalsciences.com/

PG 10 | THE DEVOPS ROADMAP FOR SECURITY

TRANSFORMATION AREA 2

Unite Security and
Engineering Culture

Culture is the foundation of any business function, and that’s especially true for DevOps. In fact, many of DevOps’ early
adopters define it first and foremost as a cultural movement followed by operational and technology requirements. The
adherence to a culture-first approach to DevOps was an outcropping of the organizational divide between development
and operations. The cultural divide was often apparent just by
examining an organizational chart. With staffing ratios of ten developers
to one operations staff, coupled with different chain-of-command paths,
it was easy to pinpoint the source of the problem. There were also
competing priorities between stability (operations) and features
(development). This tension created silos based on functional roles in
many organizations.

Before DevOps had a name, it was originally referred to as Agile
Infrastructure. Agile was successful at transforming development practices and behaviors. It seems obvious now that if
the same Agile principles were applied to operations, the cultural divide could be resolved. Due to the close relationship
between Agile and operations, behaviors did start to change. New practices arose like Scrums, Kanban boards, standups
and planning poker sessions. These collaboration practices were evidence of the behaviors that would eventually
influence cultural change.

Business Impact of DevOps Culture

As DevOps amasses a larger following, the industry has begun to quantify
the cultural impact that DevOps makes. The 2016 State of DevOps Report
released a significant finding on culture: “Employees in high-performing
teams were 2.2 times more likely to recommend their organization as a great
place to work.” This statistic alone demonstrates the potential for culture
change using DevOps concepts but even more interesting stats help solidify
the fact that DevOps is a business enabling ideal.

“You can’t directly change culture, but
you can change behavior, and behavior
becomes culture.”
Lloyd Taylor VP Infrastructure, Ngmoco

Employees in high-performing teams
were twice as likely to recommend their
organization as a great place to work.

– 2016 State of DevOps Report

https://www.signalsciences.com/

PG 11 | THE DEVOPS ROADMAP FOR SECURITY

Employees working in high performing teams are twice as likely to recruit friends to work with them. Improved recruiting
means that employees are not simply happy, but proud to associate their personal brand with the company. This is a
direct reflection of the organization’s culture and that teams are accomplishing their goals. Having personal pride in
work is something that everyone strives for. It’s one thing to work somewhere, but it’s a completely different thing to ask
your friends to join you.

What Culture Means to Security

If culture is the foundation of DevOps, and solving the cultural divide is important, shouldn’t security take notice? It’s
easy for security to identify with the problems between developers and operations—security faces similar issues. An
average staffing ratio of one hundred developers to one security engineer illustrates an even larger divide than that
which exists between developers and operations (1:10 as mentioned above). Alongside this inequitable distribution of
labor, there’s the very real challenge of differing priorities: speed and features vs. defense and compliance.

As security makes the cultural transition to DevOps, security professionals must:

• Recognize that if security blocks progress and speed, it will be ignored and marginalized� Building or fostering a
culture of gating functions surrounding security is not a sustainable or forward-thinking model. Security must get out
of the way of progress in order to survive.

• Collaborate across the organizational landscape and deputize security champions� Enterprise security can’t be
solved by simply hiring additional resources as there isn’t enough security talent available to fill the current needs,
let alone future growth. Instead, the most effective security organizations are discovering ways to deputize security
champions across their organization.15

Pragmatic Technical Changes

It’s often said you don’t fix cultural problems with technology. Generally, this statement is true, however, there are
some technical changes that can influence cultural behavior. For example, the 2016 State of DevOps Report highlights
one development pattern that actually led to higher performance and a better culture: the practice of trunk based
development. This development pattern consists of having branches or forks in low quantities, with short lifetimes, and
is an important aspect of continuous delivery. Lowering branch count was found to contribute to fostering a much
higher performing team.

For security engineers there are two practices that impact culture: a Lean Security approach to eliminate waste and the
democratization of security data.

100:1 A normal staffing ratio of developers to security staff.14

https://www.signalsciences.com/

PG 12 | THE DEVOPS ROADMAP FOR SECURITY

LEAN SECURITY AND ELIMINATING WASTE

Currently, the entire software security industry is built on inspections
at the end of development through processes like annual penetration
testing or compliance assessments. This model runs counter to Lean
Software Development practices.16 Using annual cycles and end-of-cycle
inspection is harmful because it creates waste, delays learning, and
slows down overall delivery.

One of the first considerations of a Lean Methodology is identifying
waste and eliminating it from your production. At RSAC 2016, Ernest
Mueller and James Wickett presented on Lean Security18 and how to
identify waste with security practitioners in mind. Security professionals should focus their process improvement energy
on lowering or otherwise improving:

• Excess Inventory: Caused by handing off a thousand page PDF of vulnerabilities to an already busy team,excess
inventory can be solved by prioritization and limiting the Work In Progress (WIP) queue. Focus on attainable goals
that don’t overwhelm your staff.

• Overproduction: Security controls stemming from fear, uncertainty, and doubt (FUD)—the lingua franca of security—
cause a misalignment with actual business need. Instead, choose to align with actual needs and eliminate ideas that
can’t be solved and only lead to confusion and FUD.

• Extra Processing: Relying on compliance testing cycles as opposed to
designing processes to eliminate problems from inception is a major
issue. Security practitioners must decide to be involved in the earlier
stages of software creation rather than post-development testing.

• Handoffs: Handing problems to others to solve instead of collaborating
and being a part of the solution limits collaboration and long term
effectiveness. Solve problems together—don’t pass the buck.

• Waiting: Lag time waiting for approvals or analysis for security fixes
impedes the goals of the business. Create self-service flows by
automating security tooling, thus lowering the impact on development
and operations.

• Task Switching: Rapid “break-fix” work or hot patching should be avoided. Security should adapt to use the current
“work intake” processes that the development team prefers. Whenever security can operate within the confines of the
current operational model, they should do so.

“Cease dependence on inspection to
achieve quality. Eliminate the need for
inspection on a mass basis by building
quality into the product in the first
place.”
W� Edwards Deming17

LEAN SOFTWARE
DEVELOPMENT PRACTICES

• Eliminate waste
• Amplify learning
• Decide as late as possible
• Deliver as fast as possible
• Empower the team
• Build integrity in
• See the whole

https://www.signalsciences.com/

• Inaccurate Defects: Both false positives and false negatives are unimportant findings that often get reported,
resulting in zero-value rework items and a waste of development and operational resources. Validate findings before
reporting them to the team, and make sure they’re legitimate to streamline software security improvement.

The process of finding waste and eliminating it in your system will increase productivity and boost culture. Shifting
security engineering efforts earlier in development is not just about the removal of waste—it has plenty of cultural
benefits as well. Making gains both on your culture and your productivity will give your teams a one-two punch of
security improvement.

DEMOCRATIZATION OF SECURITY DATA

The rise of DevOps has spurred other sub-movements, one being
ChatOps. ChatOps is the practice of integrating your monitoring,
logging, and other operational tasks into the team communication
medium. Many organizations achieve ChatOps goals via Internet Relay
Chat (IRC) or other chat client systems like Slack. Almost every piece of
tooling you use integrates in some way—from code deploys to
monitoring to new customer signups—with the leading technologies in
the ChatOps space.

From a security vantage point, many teams have benefited from
integrating their security tooling into their development and operational
ChatOps efforts. Security and ChatOps integration takes the siloed
knowledge of where attacks are happening and distributes it across the
organization, opening up major lines of communication. As you might have
guessed, security plus ChatOps has changed the way security is perceived
at many enterprise organizations by quickly turning the ChatOps concept
into a security-centered cultural win.

PG 13 | THE DEVOPS ROADMAP FOR SECURITY

At Signal Sciences, we
distribute security events
to the entire team through
methods that encourage
collaboration. Many of our
customers integrate with
Slack and Atlassian Stride,
or alerting products like
OpsGenie, VictorOps, and
PagerDuty.

https://www.signalsciences.com/

PG 14 | THE DEVOPS ROADMAP FOR SECURITY

TRANSFORMATION AREA 3

Delivery Cadence

Continuous Integration and Continuous Delivery (often referred to
collectively as CI/CD) are not wholly new concepts but growth and adoption
are on the rise. The focus on delivering software rapidly is influenced by
the rapid growth of DevOps, and in many ways the delivery cadence of an
organization is an indicator of how successful your organization has been at
adopting DevOps. This doesn’t mean that faster is always better. Success is
better measured by reducing Mean Time Between Delivery (MTBD) for your
organization. Moving from monthly to weekly to daily delivery is a journey—
and it’s a journey worth making.

Why is Delivery Cadence Important?

In the 90s and throughout the early 2000s, most of IT followed a waterfall
model for delivering software. Software spent the majority of its time in
architecture and design, and only towards the end of development did it
actually come together to function. The window for design and development
could easily have been six to twelve months or longer, with the last month
being the integration phase where it was all connected, ran together to
be tested as one final unit. In many cases, this would be the first time the
software would come together to function as a whole.

The theory behind waterfall development is that if all the requirements were
gathered first to specify all the development tasks upfront, then at the end
it would produce the correct result—within budget and on time. Effectively,
all changes are batched together into a release in the latter stages of the
software engineering effort. Since delivering a batch of changes is quite
an undertaking, it’s untenable to do it that often. This causes releases
to happen as slow as twice a year or, worse, once every twelve months in many organizations. Since releases are so
infrequent, waterfall also encourages stuffing as many changes as you could fit into each individual release so you don’t
have to wait for the next release that may be months away.

HIGH-PERFORMING
IT ORGANIZATIONS:

experience

60x
fewer failures

recover from failure

168x
faster

deploy

30x
more frequently

have

200x
shorter lead times

– 2015 State of DevOps Report

https://www.signalsciences.com/

PG 15 | THE DEVOPS ROADMAP FOR SECURITY

Many believed that waterfall would result in less rework due to upfront specificity, increased stability, and security since
all changes would be made in large batches. Today, the industry has realized this type of thinking is incorrect.

The 2016 State of DevOps Report found that high performing organizations actually deploy 200 times more frequently
than their peers resulting in faster recovery times, less rework, and faster cycles from concept to cash. In addition,
security gets better from faster delivery, not worse. The report continues, “We found that high performers were spending
50 percent less time remediating security issues than low-performing organizations. In other words, because they were
building security into their daily work, as opposed to retrofitting security at the end, they spent significantly less time
addressing security issues.”

Two key tools that need to be in place to influence enhanced delivery
cadence:

• CI/CD System� Using a CI system like Jenkins or a service like
TravisCI or CircleCI that runs tests and creates artifacts that can
move on to the next stage in the delivery pipeline.

• A deployment system with minimal gates that handles orchestration.

Three Common Practices with Security Implications

There exists an excellent book titled Continuous Delivery by Jez Humble and David Farley that is the comprehensive and
definitive work on the subject. This book defines three specific practices that improve security:

1. SMALLER CHANGES ARE EASIER TO RATIONALIZE

One of the benefits of having a higher frequency of deploys is that you will also have smaller number of changes going
out each time. This makes each deploy simpler and easier to rationalize as well as giving security the ability to isolate
changes made to the more sensitive portions of the code base.

2. AUTOMATED TESTING

Continuous Delivery pipelines hinge on automated testing. Each commit, no matter how small, goes through the same
testing before getting released to a pre-production environment and ultimately to production. This is a good thing—
and security can take advantage of this playing field by adding in static and dynamic security tooling (SAST and DAST
respectively) to the pipeline.

3. ASSURANCE AND CONFIDENCE IN CHANGES

One of the core tenets of Continuous Delivery is that the artifacts (the outcome of a build) are only built once, and
as much as possible, are immutable. Continuous Delivery tracks the artifact to a repository, through completion of
testing, to production deployment. This practice increases confidence and assures the security team that there’s an
audit chain for changes.

CI/CD systems are available as a
service with two great options as the
market leaders: TravisCI and CircleCI.

https://www.signalsciences.com/

PG 16 | THE DEVOPS ROADMAP FOR SECURITY

TRANSFORMATION AREA 4

Treat Everything as Code

The last area to explore where security fits into DevOps is treating everything as code (also called “Infrastructure as
Code”). It might seem odd to you that this was left until the end. This was intentional because it’s often the first thing
thought of when joining DevOps and Security, but by putting the other items first, the hope is to draw attention to the
more neglected areas of DevOps.

Infrastructure as Code is the complete codification of the system from networking and routing to system configuration
to all the acceptance and smoke tests. Everything that’s needed to create, run, test, change, monitor, secure, and destroy
infrastructure, and the system as a whole, is expressed in code. During the early days of DevOps, this was the force
du jour of the movement. Operations engineers moved from storing configs and scripts in shared drives and wikis to
actually using version control and building complete automation of their systems.

As DevOps grew, so did our understanding of Infrastructure as Code. The broader goals of Infrastructure as Code have
security implications:

• Version controlled artifacts that describe the system and all its components� This keeps configuration out of wikis
and documents and in a versionable, referenceable state.

• Configuration management of the system in running state� Configuration and runtime state tracking replaces CMDB.

• Testing as a first order priority with test-driven development (TDD) and integration testing as common practices�
Tests are written for infrastructure code as well as application code while under development. Writing tests while
creating your infrastructure both asserts desired state as well as provides a test suite for CI/CD efforts.

• Facilitating distributed computing and scaling� Without treating infrastructure as code, scaling is difficult and
distributed computing (cloud) becomes almost untenable. Seeing distributed computing and scaling as desired
outcomes guides the development practices.

https://www.signalsciences.com/

PG 17 | THE DEVOPS ROADMAP FOR SECURITY

• Understanding your software supply chain� Software is not merely the hundreds or thousands of lines of code that
are written by developers. It’s composed of much more, from dependencies to the OS to the virtualization framework.
Infrastructure as Code encourages software supply chain management by introducing specificity and an auditable
log for the actual runtime of the system.

Some practical artifacts of adopting Infrastructure as Code include Dockerfiles, Terraform Plans, or Chef cookbooks.
The use of such artifacts will change based on the underlying infrastructure shifts from bare metal to virtual machines,
to public cloud services, and now to containers and serverless patterns. No matter what types of infrastructure you’re
using, whether AWS EC2, Kubernetes, or Azure Functions, we see each of these broader goals of Infrastructure as Code
in practice. We will take each of these goals in turn and evaluate where security fits in.

Version Controlled Artifacts

Having version controlled artifacts is one of the first steps to doing Infrastructure as Code. These artifacts bring in
the core functions of auditability and change control to the operational process. Version Controlled Artifacts include
version controlling all of the configuration management code but also creation scripts and image packaging code.
There are often other pieces of the infrastructure that need to be added that can’t operate as readable artifacts. These
are components like ssl wild card certs, license files, or passwords and often will be version controlled but only in
encrypted binary form.

In Gene Kim’s book on the topic of change control, Visible Ops Security, Kim demonstrates a direct cause and effect
relationship between the ability to detect change in security components and the success of security initiatives. With
operations moving into version control, just like in development, the security team now has a foothold and view into the
entire system. This visibility encourages change control with alerting of changes to critical components and auditability
that was never available previously.

Configuration Management

Configuration management expresses the configuration of the running system in code. Convergence and idempotency
are the two core concepts behind configuration management.

• Convergence assures that the infrastructure will reach its desired state through the configuration management system.
• Idempotency guarantees that a command can be run over and over with the same results. Because configuration

management has both of these attributes, there can be better reasoning around the system.

From a security team’s perspective, there are two key benefits to configuration management. First, configuration
becomes accessible in an easy-to-read, federated format which simplifies auditing and gives security insight into how
the systems are built, complete with logs. The second benefit is compliance and adherence to policy. Policy enforcement
is a fundamental function of a successful security team. Configuration management allows security teams to reach their
goals in an automated fashion.

https://www.signalsciences.com/

PG 18 | THE DEVOPS ROADMAP FOR SECURITY

The majority of configuration management systems have built-in functionality to run in validation mode rather than to
attempt convergence. Running configuration management in validation mode allows verification of the system on a daily
(or more frequent) basis, ensuring deviations from compliance standards are kept in check. The popular configuration
management system, Chef, provides this exact benefit via Inspec, an open-source testing framework for specifying
compliance and policy requirements.19 Inspec provides a huge advantage by creating daily reports of runtime drift out of
compliance or even more importantly, identifying new exposure areas.

Testing

There are two main types of testing relevant to infrastructure as code: test-driven development and integration testing.
Test-driven development means that the developer writes tests alongside the development of the application or, in the
case of Infrastructure as Code, the infrastructure. There are numerous benefits, but one of the key improvements is the
creation of a functional test suite that can be used with continuous integration / continuous deployment efforts.

The second type is Integration Testing. This is an outside-in approach of asserting that the infrastructure and system meet
the requirements set forth at the time of design. Tools like Serverspec, KitchenCI, or Robot Framework are often used to
do this layer of testing. It’s tempting to think that integration testing is done at a later stage in the software development
lifecycle, but there’s a growing trend of shifting this testing “left,” or earlier in the development and delivery pipeline.20

The O’Reilly book, Agile Application Security, states, “The goal should be to come up with a set of automated tests that
probe and check security configurations and runtime system behavior for security features that will execute every time
the system is built and every time it is deployed.” This means that security testing is not treated differently from the
other types of testing.

In fact, the industry is continuing to move security testing further left in the pipeline using tooling like Gauntlt.21 With
these security-centric testing frameworks, you gain the ability to specify the security standards all software should meet.
For example, “our website should not fail a scan for XSS,” or, “when not logged in you should not be able access certain
resources.” Once the definition of the requirement is set, you can implement automated integration testing and test
driven development to ensure success.

Cloud and Distributed Computing

Cloud computing changes our threat landscape. In today’s world, we often find ourselves running our systems on
third-party providers like Amazon Web Services (AWS), Microsoft Azure, or Google App Engine. Running in these cloud
providers changes how we think about security incidents and lateral movement. Cloud computing changes our threat
landscape. Attackers are less likely to gain a foothold by pivoting across your systems through network segments, but
instead will attack your cloud provider’s configuration and seek to open holes in that environment.

https://www.signalsciences.com/

PG 19 | THE DEVOPS ROADMAP FOR SECURITY

One key weakness that most enterprise security departments have is that they’re not prepared to deal with the cloud
landscape. In fact, industry experts have dubbed it a “black hole” due to the disconnect that they often feel. 22

To deal with this, cloud providers like AWS provide a complete audit log
called CloudTrail which logs all changes to every single configuration
in your cloud architecture. Meanwhile, auditing monitors all system
commands run on the hosts. Combining these two vectors of logging
and auditing provides a clearer picture to changes happening
throughout the environment.

Software Supply Chain

Software is not merely the hundreds or thousands of lines of code that are written by developers. In reality, software is
composed of much more, from individual dependencies, to the operating system, to the virtualization framework.
Unfortunately, the software we build inherits vulnerabilities from the entire codebase—including code we didn’t write.

Infrastructure as Code encourages software supply chain management
by introducing specificity and an auditable log for the actual runtime of
the system. Software supply chain is a difficult problem to solve due to
the nature of code reuse, and knowing what code is shipping through a
software bill of materials (Software BOM) is an important task for both
engineering and security. Knowing what is in your current runtime down
to the specific version is critical, including all code libraries as well as
sub libraries that your inclusions use.

One company taking this approach
is ThreatStack. They actively look for
changes with security implications
both at the host and the cloud
provider configuration layer.

A solution like Sonatype can be
immensely helpful to understand your
Software BOM.

https://www.signalsciences.com/

PG 20 | THE DEVOPS ROADMAP FOR SECURITY

Following the Roadmap

The DevOps Roadmap for Security was written to help provide guidance to security practitioners preparing for, or
currently experiencing the transition to, DevOps and DevSecOps in their organizations. This is no small task—uniting
the DevOps and security tribes radically changes an company’s culture. Now that you have the roadmap and understand
the four areas to focus on, it’s time to follow the roadmap.

The first edition of the Roadmap put feedback loops as the last area, but in this edition it was moved to the first area
to explore. This was in part a reaction to the security industry’s belief that DevSecOps is all about shifting left—moving
security testing closer to development. This is a worthy pursuit; however, no matter how much testing is put in place,
there needs to be a focus on instrumenting the runtime environment and creating feedback loops. When are you under
attack? Are the attackers finding success? These are questions that no amount of “shifting left” could ever answer.

We suggest that you follow all of the Roadmap; but if you’re just getting started, beginning by creating security feedback
loops is usually the best place. This puts security instrumentation in your production applications and creates feedback
to developers, operations, and security. Adding this level of instrumentation with Signal Sciences can support faster
development cycles, and serves to change the perception of security in an organization from the “inhibitor to innovation”
to an accelerator of innovation. Using the DevSecOps practices discussed in the Roadmap, there’s a real chance for
security to add value to the organizations they’re protecting.

https://www.signalsciences.com/

PG 21 | THE DEVOPS ROADMAP FOR SECURITY

APPENDIX

1 Agile Application Security, Laura Bell, Jim Bird, Rich Smith,
Michael Brunton-Spall, O’Reilly Media, Inc., September 2017.
Emphasis added.

2 Thinking Security, Steven Bellovin
3 theagileadmin.com/what-is-devops/
4 puppet.com/resources/white-paper/2015-state-devops-report
5 DevOps borrows heavily from Lean and moving from Concept

to Cash was popularized in Lean Software Development: From
Concept to Cash by Mary Poppendieck and Tom Poppendieck

6 gartner.com/newsroom/id/2999017
7 CA Research Report: DevOps: The Worst-Kept Secret to

Winning in the Application Economy
8 amazon.com/Leading-Transformation-Applying-DevOps-

Principles/dp/1942788010
9 puppet.com/resources/white-paper/2016-state-of-devops-report
10 info.signalsciences.com/devsecops-community-survey-2018
11 medium.com/@aneel/theory-in-practice-ooda-mapping-

antifragility-df7f03a36a9c
12 theleanstartup.com/principles

13 Sam Newman rocked the industry with his recently released
book on Microservices. samnewman.io/books/building_
microservices/

14 The OWASP Top Ten is largely unchanged since 2004 even
though the list has been refreshed and updated with new data
every three years. owasp.org/index.php/Category:OWASP_Top_
Ten_Project

15 labs.signalsciences.com/more-silo-smashing-ideas-bringing-
infosec-and-devops-together-c338eb3b36ad

16 Lean Software Development practices were created by
Mary and Tom Poppendieck in their book Lean Software
Development: An Agile Toolkit (2003)

17 deming.org/explore/fourteen-points
18 slideshare.net/mxyzplk/lean-security-rsa-2016
19 chef.io/inspec/
20 en.wikipedia.org/wiki/Shift_left_testing
21 gauntlt.org
22 computerweekly.com/news/450300208/DevOps-a-black-hole-

for-security

ABOUT THE AUTHOR

James Wickett (@wickett) is the Head of Research at Signal Sciences, a web protection platform
that high performing DevOps teams love. He is the author of the most popular courses on DevOps
topics in the Lynda.com and LinkedIn Learning platforms. James lives in Austin, Texas and has
helped run DevOps Days Austin for the last six years. In his spare time he is trying to make a
perfect BBQ brisket.

https://www.signalsciences.com/
https://theagileadmin.com/what-is-devops/
https://puppet.com/resources/white-paper/2015-state-devops-report
http://www.gartner.com/newsroom/id/2999017
https://www.amazon.com/Leading-Transformation-Applying-DevOps-Principles/dp/1942788010
https://www.amazon.com/Leading-Transformation-Applying-DevOps-Principles/dp/1942788010
https://puppet.com/resources/white-paper/2016-state-of-devops-report
https://info.signalsciences.com/devsecops-community-survey-2018
https://medium.com/@aneel/theory-in-practice-ooda-mapping-antifragility-df7f03a36a9c
https://medium.com/@aneel/theory-in-practice-ooda-mapping-antifragility-df7f03a36a9c
http://theleanstartup.com/principles
http://samnewman.io/books/building_microservices/
http://samnewman.io/books/building_microservices/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://labs.signalsciences.com/more-silo-smashing-ideas-bringing-infosec-and-devops-together-c338eb3b36ad
https://labs.signalsciences.com/more-silo-smashing-ideas-bringing-infosec-and-devops-together-c338eb3b36ad
https://deming.org/explore/fourteen-points
http://www.slideshare.net/mxyzplk/lean-security-rsa-2016
https://www.chef.io/inspec/
https://en.wikipedia.org/wiki/Shift_left_testing
http://gauntlt.org
http://www.computerweekly.com/news/450300208/DevOps-a-black-hole-for-security
http://www.computerweekly.com/news/450300208/DevOps-a-black-hole-for-security
https://twitter.com/wickett

PG 22 | THE DEVOPS ROADMAP FOR SECURITYSIGNALSCIENCES.COM

About Signal Sciences

We make web applications more secure. Simple as that. We provide unparalleled web protection that security,
operations, and engineering teams actually want to use.

Learn more at signalsciences.com.

Reliable, automated blocking

• Runs directly in your web servers or application code
• Fail-open architecture keeps your site running fast
• Proprietary SmartParse detection requires no tuning or maintenance

Focused on DevOps

• Easily deployed by operations teams
• Cross-team visibility into metrics, performance and trends
• Integrated into toolchains for quick access and collaboration

Any platform, one UI

• Functions anywhere: in containers, on-prem, or in the cloud
• One unified view across your entire footprint
• Protects and monitors both internal and external services

Coverage against all threats

• Immediate blocking of common OWASP attacks
• Meets PCI 6.6 compliance requirements, but doesn’t stop there
• Blocks account takeovers, bad bots, application denial of service, and more

https://www.signalsciences.com/
https://www.signalsciences.com/
https://www.signalsciences.com/

	Introduction
	Where DevOps Fits In
	Unifying the Tribes

	Create Feedback Loops
	A Defensive Thinking Approach
	Application Security Feedback
	Usage Feedback

	Unite Security and Engineering Culture
	Business Impact of DevOps Culture
	What Culture Means to Security
	Pragmatic Technical Changes
	Lean Security and Eliminating Waste
	Democratization of Security Data

	Delivery Cadence
	Why is Delivery Cadence Important?
	Three Common Practices with Security Implications
	1. Smaller Changes are Easier to Rationalize
	2. Automated Testing
	3. Assurance and Confidence in Changes

	Treat Everything as Code
	Version Controlled Artifacts
	Configuration Management
	Testing
	Cloud and Distributed Computing
	Software Supply Chain

	Following the Roadmap
	About Signal Sciences

