
01

 HIGH-
 PERFORMANCE

 CACHING
 with NGINX & NGINX Plus

0202NGINX and NGINX Plus are registered trademarks of NGINX, Inc.
All other trademarks listed in this document are the property of their respective owners.

by Floyd Smith

 HIGH-
 PERFORMANCE
 CACHING
 with NGINX & NGINX Plus

i

 Preface ii

1 Overview 1

2 Basic Principles of Caching 4

3	 How	to	Configure	Caching 7

4 Controlling Caching 12

5 Microcaching with NGINX 16

6 The Inner Workings of Caching in NGINX 19

7 Shared	Caches	with	NGINX	Cache	Clusters 25

 FAQ 36

		 Further	Reading 42

 Selected Website Links 43

Table of Contents

ii

NGINX is the leading web server and reverse proxy server for high-performance
websites,	in	use	by	more	than	50%	of	the	top	100,000	websites

One of the most important capabilities of NGINX is content caching, which is
a	highly	effective	way	to	improve	the	performance	of	a	website.	In	this	ebook,	
we	describe	how	NGINX	caches,	how	to	use	caching	and	cache	clustering,	
and	some	of	the	ways	that	you	can	improve	performance.	

We’ll	do	a	deep	dive	into	how	content	caching	really	works	so	that	you’re	
equipped	to	debug	and	diagnose	what’s	happening	within	NGINX.	We	also	round	
up	some	clever	hints	and	tips	to	give	you	fine-grained	control	over	what	NGINX	
does	with	content	that	can	be	cached,	and	point	you	to	additional	resources	
to	take	caching	even	further.

Caching	takes	the	burden	of	serving	and	generating	repetitive	content	away	
from	your	upstream	servers,	so	they’re	freed	up	to	run	the	applications	that	
your	business	really	needs.	This	gives	your	end	users	a	better	level	of	service	
and	increases	the	reliability	of	your	service	as	a	whole	in	the	face	of	big	spikes	
of	traffic	from	the	Internet	and,	potentially,	failures	of	upstream	servers.	

This	ebook	is	adapted	from	a	wide	range	of	caching-related	resources	available	
on	the	NGINX	website.	See	the	Resources	section	at	the	end	of	this	ebook	for	
more information and links

 Preface

https://w3techs.com/technologies/cross/web_server/ranking
https://www.nginx.com/products/nginx/caching/

1High-Performance Caching with NGINX and NGINX Plus Ch. 1 – Overview

You	create	web	applications	to	deliver	services	to	users.	Your	application	
delivery	infrastructure	makes	a	huge	difference	in	the	performance	and	
reliability	that	your	users	experience	and,	ultimately,	in	the	success	or	failure	
of	your	business	or	organization.	

You	need	to	justify	the	investments	you	make	to	improve	performance.	Here	
you’ll	find	important	justifications	for	your	efforts	to	improve	web	application	
performance	through	caching	and	other	optimizations.	

Why is Page Speed Important?

Web page speed is really, really important For years, analysts have been
monitoring	user	behavior,	and	have	come	up	with	what’s	colloquially	known	as	
the	“N	second	rule”.	This	is	how	long	an	average	user	is	prepared	to	wait	for	a	
page to load and render before he or she gets bored and impatient and
moves	to	a	different	website,	to	a	competitor:

• 10-second	rule	(Jakob	Nielsen,	March	1997)

• 8-second	rule	(Zona	Research,	June	2001)

• 4-second	rule	(Jupiter	Research,	June	2006)

• 3-second	rule	(PhocusWright,	March	2010)

As	standards	have	improved	and	user	expectations	have	gotten	higher	and	
higher,	the	period	that	users	are	prepared	to	wait	is	dropping	and	dropping.	
You	could,	through	some	slightly	dubious	math,	extrapolate	that	on	and	
conclude	that	users	will	have	a	negative	level	of	patience	within	a	few	years.

Overview1

2High-Performance Caching with NGINX and NGINX Plus Ch. 1 – Overview

Google Changed the Rules

“ We want you to be able to get from one

page to another as quickly as you turn

the page on a book.“
	–	Urz	Holzle,	Google

With	Google	Instant	Search,	when	you	type	a	search	term	in	a	search	box,	
even	before	you	finish	typing,	Google	is	presenting	candidate	search	results.	
This	illustrates	the	huge	shift	in	expectations	on	the	modern	Internet.	Google	
Instant	can	save	two	to	five	seconds	per	search.	As	Google	itself	has	said,	
“users	now	expect	web	pages	to	react	in	the	same	way	that	turning	pages	in	
a	book	react”	–	as	quickly	and	as	seamlessly	and	as	fluidly.

The Costs of Poor Performance

If	you	fail	to	meet	expected	levels	of	performance,	then	there	can	be	significant	
impacts	on	the	success	of	your	website	or	web	application:

• Whether	it’s	ad	click-through	rates:	Google	themselves	find	that	their	ad	
clickthrough	rate	dropped	20%	when	their	search	pages	took	a	half	a	second	
further	to	load.	

• Whether	it’s	revenue:	in	a	deliberate	attempt	to	investigate	the	effect	of	slow	
web	pages,	Amazon	deliberately	increased	page	load	in	multiples	of	100ms	
and	found	that	the	revenues	from	those	affected	customers	typically	dropped	
by	1%	for	each	100ms	increase.	

Many	other	analysts,	websites,	and	investigators	reported	similar	effects	on	
the	metrics	for	a	website,	whether	that	be	time	on	page,	bounce	rate,	etc.	
Recently,	Google	has	started	taking	page	speed	into	account	when	they	
calculate	page	rank	in	search	results.	

What	appears	to	count	is	the	time	to	first	byte	–	the	longer	it	takes	to	get	the	
first	byte	of	a	page	load,	the	more	heavily	your	page	rank	is	penalized.	A	website	
may	suffer	from	the	situation	to	the	extent	that	it’s	not	even	visited	often,	
because	it	appears	on	page	two,	three,	or	later	of	Google’s	search	results.	

3High-Performance Caching with NGINX and NGINX Plus Ch. 1 – Overview

NGINX Caching and Your Site

The	caching	capabilities	of	NGINX	allow	you	to	improve	the	end-user	experience	
by	reducing	time	to	first	byte,	and	by	making	web	content	feel	snappier	and	
more responsive

NGINX	is	so	capable	for	caching	that	it	is	widely	used	by	major	content	
distribution	networks	(CDNs)	at	the	core	of	their	architecture.	See	this	panel
discussion from nginx conf 2017 for some interesting details

Caching	is	used	at	all	levels	of	the	Internet	and	the	web,	and	we	encourage	you	
to	use	caching	extensively	on	your	own	site,	even	if	you	are	also	using	a	CDN.	
Caching	will	help	you:

• Improve	end-user	performance

• Consolidate	and	simplify	your	web	infrastructure

• Increase	the	availability	of	application	servers	by	offloading	caching	work	
from them

• Insulate	yourself	from	server	failures

NGINX	allows	you	to	increase	server	capacity	by	taking	repetitive	tasks	away	
from	the	upstream	servers.	In	fact,	even	for	content	which	appears	to	be	
uncacheable	(the	front	page	of	a	blogging	site,	for	example),	there’s	merit	in	
microcaching	–	caching	content	on	the	NGINX	proxy	just	for	a	second	or	so.	

When	a	hundred	users	request	the	same	content	in	the	same	second,	NGINX	
will	reduce	that	down	to	a	single	request	to	the	origin	server.	NGINX	will	serve	
content	back	to	ninety-nine	of	those	users	from	its	cache,	with	a	promise	that	
content	is	never	more	than	one	second	out	of	date.	That’s	often	more	than	
enough	for	a	blog	site	or	a	similar	website,	yet	makes	a	huge	difference	in	
performance	–	both	in	the	load	on	the	upstream	servers	and	the	expense	that	
you	have	in	managing	and	deploying	sufficient	capacity.	

Another	strategic	use	of	NGINX	is	to	insulate	you	from	failures	of	upstream	
servers	through	the	“use	stale”	capability.	If	the	upstream	servers	are	running	
slowly,	returning	errors,	or	experiencing	some	sort	of	fault,	then	NGINX	can	fall	
back	to	the	local	cached	version	of	the	content,	and	continue	to	use	that	until	
your	upstream	servers	recover.	

https://www.youtube.com/watch?v=WGyrs0ER8sc
https://www.youtube.com/watch?v=WGyrs0ER8sc

4High-Performance Caching with NGINX and NGINX Plus Ch. 2 – Basic Principles of Caching

Offloading Repetitive Work

Internet

Get /index html

Get /index html

A	content	cache	sits	between	a	client	and	an	“origin	server”	and	saves	copies	
of	all	the	content	it	sees.	If	a	client	requests	content	that	the	cache	has	stored,	
it	returns	the	content	directly,	without	contacting	the	origin	server.	This	improves	
performance,	as	the	web	cache	is	closer	to	the	client,	and	makes	more	efficient	
use	of	the	application	servers,	because	they	don’t	have	to	do	the	work	of	
generating	pages	from	scratch	for	many	requests.

There	are	potentially	multiple	caches	between	the	web	browser	and	the	
application	server:	the	client’s	browser	cache,	intermediary	caches,	content	
delivery	networks	(CDNs),	and	the	load	balancer	or	reverse	proxy	sitting	in	
front	of	the	application	servers.	Caching,	including	at	the	reverse	proxy/load	
balancer level, can greatly improve performance

As	an	example,	I	recently	took	on	the	task	of	performance-tuning	a	website	
that	was	loading	slowly.	One	of	the	first	things	I	noticed	was	that	it	took	more	
than	a	second	to	generate	the	main	home	page.	I	discovered	that,	because	
the page was marked as not cacheable, it was being dynamically generated in
response	to	each	request.	

The	page	itself	was	not	changing	very	often	and	was	not	personalized,	so	this	
was not necessary As an experiment, I marked the homepage to be cached
for	5	seconds	by	the	load	balancer,	and	just	doing	that	resulted	in	noticeable	

Basic Principles
of Caching2

5High-Performance Caching with NGINX and NGINX Plus Ch. 2 – Basic Principles of Caching

improvement.	The	time	to	first	byte	went	down	to	a	few	milliseconds,	and	the	
page loaded visibly faster

The	basic	principle	of	content	caching	is	to	offload	repetitive	work	from	the	
upstream	servers.	When	the	first	user	requests	an	item	of	content	on	the	
website	(illustrated	by	the	green	icon	and	green	lines),	his	or	her	HTTP	request	
is	forwarded	to	NGINX,	and	from	there	onto	the	upstream	server	in	gray	on	
the right-hand side

The	response	is	forwarded	back	to	the	remote	user,	but	if	it	is	cacheable	(and	
we’ll	talk	about	what	that	means	shortly),	then	NGINX	stores	a	copy	of	that	
response.	When	another	user,	the	gray	chap,	comes	along	asking	for	the	
same content, then NGINX can serve that directly from its local cache rather
than	forging	the	request	from	the	upstream	server.	This	second	scenario	can	
then	be	repeated,	often	for	many,	many	users.	

NGINX is commonly deployed as a reverse proxy or load balancer in an
application	stack	and	has	a	full	set	of	caching	features.	It	operates	as	a	
reverse proxy	cache,	typically	deployed	in	the	data	center	or	on	the	cloud	next	
to	the	origin	servers	that	are	hosting	your	web	content	and	web	applications.		

Static File Caching

Static	file	caching	is	a	core	function	of	NGINX.	Static	files	usually	include	
graphics	files	such	as	JPEGs	and	PNGs,	and	code	files	such	as	CSS	and	
JavaScript	files.	

You	can	implement	static	file	caching	on	a	web	server	or	a	reverse	proxy	server:	

• On	an	NGINX	web	server,	static	file	caching	offloads	the	application	server;	
files	are	retrieved	faster	and	with	much	less	memory	overhead.	However,	file	
retrieval	is	still	being	driven	off	the	same	physical	server	or	virtual	server	
instance, so the server’s processor is still forced to deal with tasks other
than	running	your	application.

• An	NGINX	reverse	proxy	server	runs	on	a	different	machine	or	instance	from	
the	web	server,	so	its	caching	of	static	files	consumes	no	resources	on	
application	servers.	The	application	server	can	focus	exclusively	on	running	
your	application.

https://www.nginx.com/resources/admin-guide/reverse-proxy/
https://www.nginx.com/resources/admin-guide/serving-static-content/

6High-Performance Caching with NGINX and NGINX Plus Ch. 2 – Basic Principles of Caching

There	are	three	overall	steps	to	implementing	static	file	caching	on	NGINX:

• Specifying the root directory for searches

• Processing	requests

• Optimizing	response	speed

On	an	NGINX	web	server,	with	no	reverse	proxy	server	involved,	you	don’t	
cache	in	the	usual	sense.	You	simply	redirect	inquiries	for	static	files	to	the	web	
server,	using	the	X-Accel-Redirect header The application server never
sees	the	request	and	can	devote	all	its	resources	to	application	requests.	
With	a	reverse	proxy	server,	you	do	use	static	file	caching	–	and	the	physical	
server	or	virtual	server	instance	that	runs	the	application	doesn’t	have	any	
part	in	answering	the	static	file	requests.	

As	an	example	of	optimizing	response	speed,	the	following	configuration	
snippet	enables	NGINX	to	use	the	operating	system’s	sendfile system call,
which	saves	a	step	in	file	transmission	by	not	copying	the	file	to	an	
intermediate	buffer:

location /mp3 {
	 sendfile		 on;
	 sendfile_max_chunk	1m;
 # ...
}

For	specifics	on	configuring	NGINX	for	static	file	caching,	see	the	NGINX	Plus	
Admin	Guide

https://www.nginx.com/resources/wiki/start/topics/examples/x-accel/
http://nginx.org/en/docs/http/ngx_http_core_module.html#sendfile
https://www.nginx.com/resources/admin-guide/
https://www.nginx.com/resources/admin-guide/

7High-Performance Caching with NGINX and NGINX Plus Ch. 3 – How to Configure Caching

Basic Caching

To	enable	basic	caching	functionality,	you	only	need	two	directives:	
proxy_cache_path and proxy_cache The proxy_cache_path directive
sets	the	path	and	configuration	of	the	cache,	and	the	proxy_cache directive
activates it

proxy_cache_path /path/to/cache levels=1:2
keys_zone=my_cache: 10m max_size=10g inactive=60m
use_temp_path=off;

server {
 # ...
 location / {
 proxy_cache my_cache;
 proxy_pass http://my_upstream;
 }
}

The parameters to the proxy_cache_path	directive	define	the	
following	settings:

• The local disk directory for the cache is called /path/to/cache/

• levels	sets	up	a	two-level	directory	hierarchy	under /path/to/cache/ Having
a	large	number	of	files	in	a	single	directory	can	slow	down	file	access,	so	we	
recommend a two-level directory hierarchy for most deployments If the
levels	parameter	is	not	included,	NGINX	puts	all	files	in	the	same	directory.

• keys_zone	sets	up	a	shared	memory	zone	for	storing	the	cache	keys	and	
metadata	such	as	usage	timers.	Having	a	copy	of	the	keys	in	memory	enables	
NGINX	to	quickly	determine	if	a	request	is	a	HIT	or	a	MISS	without	having	to	
go	to	disk,	greatly	speeding	up	the	check.	A	1	MB	zone	can	store	data	for	
about	8,000	keys,	so	the	10	MB	zone	configured	in	the	example	can	store	
data	for	about	80,000	keys.

How to
Configure Caching3

http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_cache_path
http://nginx.org/en/docs/http/ngx_http_proxy_module.html?&_ga=2.58271402.1441066047.1509638586-1537405530.1506552169#proxy_cache

8High-Performance Caching with NGINX and NGINX Plus Ch. 3 – How to Configure Caching

• max_size	sets	the	upper	limit	of	the	size	of	the	cache	(to	10	GB,	in	this	
example).	It’s	optional;	not	specifying	a	value	allows	the	cache	to	grow	to	use	
all	available	disk	space.	When	the	cache	size	reaches	the	limit,	a	process	
called	the	cache	manager	removes	the	files	that	were	least	recently	used	to	
bring	the	cache	size	back	under	the	limit.

• inactive	specifies	how	long	an	item	can	remain	in	the	cache	without	being	
accessed.	In	this	example,	a	file	that	has	not	been	requested	for	60	minutes	
is	automatically	deleted	from	the	cache	by	the	cache	manager	process,	
regardless	of	whether	or	not	it	has	expired.	The	default	value	is	10	minutes	
(10m).	Inactive	content	differs	from	expired	content.	NGINX	does	not	
automatically	delete	content	that	has	expired	as	defined	by	a	cache	control	
header	(Cache-Control:max-age=120	for	example).	Expired	(stale)	content	
is	deleted	only	when	it	has	not	been	accessed	for	the	time	specified	by	
inactive When expired content is accessed, NGINX refreshes it from the
origin server and resets the inactive timer

• NGINX	first	writes	files	that	are	destined	for	the	cache	to	a	temporary	
storage area, and the use_temp_path=off	directive	instructs	NGINX	to	
write them to the same directories where they will be cached We recommend
that	you	set	this	parameter	to	off	to	avoid	unnecessary	copying	of	data	
between	file	systems.	

And	finally,	the	proxy_cache directive activates caching of all content that
matches	the	URL	of	the	parent	location	block	(in	the	example,	/).	You	can	also	
include	the	proxy_cache	directive	in	a	server	block;	it	applies	to	all	location	
blocks for the server that don’t have their own proxy_cache directive

Delivering Cached Content When the Origin is Down

A	powerful	feature	of	NGINX	content caching	is	that	NGINX	can	be	configured	
to	deliver	stale	content	from	its	cache	when	it	can’t	get	updated	content	from	
the	origin	servers.	This	can	happen	if	all	the	origin	servers	for	a	cached	resource	
are	down	or	temporarily	busy.	Rather	than	relay	the	error	to	the	client,	NGINX	
delivers	the	stale	version	of	the	file	from	its	cache.	This	provides	an	extra	level	
of	fault	tolerance	for	the	servers	that	NGINX	is	proxying	and	ensures	uptime	in	
the	case	of	server	failures	or	traffic	spikes.	

https://www.nginx.com/products/content-caching-nginx-plus/

9High-Performance Caching with NGINX and NGINX Plus Ch. 3 – How to Configure Caching

To	enable	this	functionality,	include	the	proxy_cache_use_stale	directive:

location / {
 # ...
 proxy_cache_use_stale error timeout http_500
 http_502 http_503 http_504;
}

With	this	sample	configuration,	if	NGINX	receives	an	error,	timeout,	or	any	of	
the	specified	5xx	errors	from	the	origin	server	and	it	has	a	stale	version	of	the	
requested	file	in	its	cache,	it	delivers	the	stale	file	instead	of	relaying	the	error	
to the client

Note:	With	NGINX	1.11.10	and	NGINX	Plus	R12,	you	can	also	use	the	stale-if-error extension
of the Cache-Control	header	field	to	permit	using	a	stale	cached	response	in	case	of	an	error.

Fine-Tuning the Cache

NGINX	has	a	wealth	of	optional	settings	for	fine-tuning	the	performance	of	
the	cache.	Here	is	an	example	that	activates	a	few	of	them:

proxy_cache_path /path/to/cache levels=1:2 keys_zone=my_
cache:10m max_size=10g
 inactive=60m use_temp_path=off;

server {
 # ...
 location / {
 proxy_cache my_cache;
 proxy_cache_revalidate	on;
 proxy_cache_min_uses	3;
 proxy_cache_use_stale error timeout updating
 http_500 http_502 http_503 http_504;
 proxy_cache_lock	on;
 proxy_pass http://my_upstream;
 }

http://nginx.org/en/docs/http/ngx_http_proxy_module.html?&_ga=2.104467968.1441066047.1509638586-1537405530.1506552169#proxy_cache_use_stale
https://tools.ietf.org/html/rfc5861#section-4

10High-Performance Caching with NGINX and NGINX Plus Ch. 3 – How to Configure Caching

These	directives	configure	the	following	behavior:

• proxy_cache_revalidate instructs	NGINX	to	use	conditional	GET	
requests	when	refreshing	content	from	the	origin	servers.	If	a	client	requests	
an	item	that	is	cached	but	expired,	as	defined	by	the	cache	control	headers,	
NGINX	includes	the	If-Modified-Since	field	in	the	header	of	the	GET	request	
it	sends	to	the	origin	server.	This	saves	on	bandwidth,	because	the	server	
sends	the	full	item	only	if	it	has	been	modified	since	the	time	recorded	in	the
Last-Modified	header	attached	to	the	file	when	NGINX	originally	cached	it.

• proxy_cache_min_uses	sets	the	number	of	times	an	item	must	be	
requested	by	clients	before	NGINX	caches	it.	This	is	useful	if	the	cache	is	
constantly	filling	up,	as	it	ensures	that	only	the	most	frequently	accessed	items	
are	added	to	the	cache.	By	default,	proxy_cache_min_uses is set to 1

• The updating parameter to the proxy_cache_use_stale directive
instructs	NGINX	to	deliver	stale	content	when	clients	request	an	item	while	
an	update	to	it	is	being	downloaded	from	the	origin	server,	instead	of	
forwarding	repeated	requests	to	the	server.	The	stale	file	is	returned	for	all	
requests	until	the	updated	file	is	fully	downloaded.

• With proxy_cache_lock	enabled,	if	multiple	clients	request	a	file	that	is	
not	current	in	the	cache	(a	MISS),	only	the	first	of	those	requests	is	allowed	
through	to	the	origin	server.	The	remaining	requests	wait	for	that	request	to	be	
satisfied	and	then	pull	the	file	from	the	cache.	Without	proxy_cache_lock
enabled,	all	requests	that	result	in	cache	misses	go	straight	to	the	origin	server.

Note:	With	NGINX	1.11.10	and	NGINX	Plus	R12	and	later,	you	can	also	use	the	
stale-while-revalidate extension of the Cache-Control	header	field	to	permit	using	
a	stale	cached	response	while	content	is	being	updated.

http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_cache_revalidate
http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_cache_min_uses
http://nginx.org/en/docs/http/ngx_http_proxy_module.html?&_ga=2.104467968.1441066047.1509638586-1537405530.1506552169#proxy_cache_use_stale
http://nginx.org/en/docs/http/ngx_http_proxy_module.html?&_ga=2.62656044.1441066047.1509638586-1537405530.1506552169#proxy_cache_lock
http://nginx.org/en/docs/http/ngx_http_proxy_module.html?&_ga=2.62656044.1441066047.1509638586-1537405530.1506552169#proxy_cache_lock
https://tools.ietf.org/html/rfc5861#section-3

11High-Performance Caching with NGINX and NGINX Plus Ch. 3 – How to Configure Caching

Splitting the Cache Across Multiple Hard Drives

With	NGINX,	there’s	no	need	to	build	a	redundant	array	of	inexpensive	disks	
(RAID).	If	there	are	multiple	hard	drives,	NGINX	can	be	used	to	split	the	cache	
across them Here is an example that splits clients evenly across two hard
drives	based	on	the	request	URI:

proxy_cache_path /path/to/hdd1 levels=1:2 keys_
zone=my_cache_hdd1:10m
 max_size=10g inactive=60m use_temp_
path=off;

proxy_cache_path /path/to/hdd2 levels=1:2 keys_
zone=my_cache_hdd2:10m
 max_size=10g inactive=60m use_temp_path=off;

split_clients $request_uri $my_cache {
 50% “my_cache_hdd1”;
 50% “my_cache_hdd2”;
}

server {
 # ...
 location / {
 proxy_cache $my_cache;
 proxy_pass http://my_upstream;
 }
}

The two proxy_cache_path	directives	define	two	caches	(my_cache_hdd1
and my_cache_hdd2)	on	two	different	hard	drives.	The	split_clients
configuration	block	specifies	that	the	results	from	half	the	requests	(50%)	are	
cached in my_cache_hdd1 and the other half in my_cache_hdd2 The hash
based on the $request_uri	variable	(the	request	URI)	determines	which	
cache	is	used	for	each	request,	the	result	being	that	requests	for	a	given	URI	
are always cached in the same cache

levels

http://nginx.org/en/docs/http/ngx_http_split_clients_module.html

12High-Performance Caching with NGINX and NGINX Plus Ch. 4 – Controlling Caching

So we’ve looked at how caching works, we’ve looked at the implementation
within	NGINX,	and	done	a	deep	dive	as	to	how	caching	stores	files	on	disk.	
Now	let’s	get	a	little	bit	smarter	about	caching.	

For	simple	sites,	you	can	turn	caching	on	and	generally	it	will	do	precisely	
what	it	needs	to	do	to	keep	giving	you	the	level	of	performance	and	the	cache	
behavior	that	you	want.	But	there	are	always	optimizations	to	be	made,	and	
there	are	often	situations	where	the	default	behavior	doesn’t	match	the	
behavior	that	you	want.	

Perhaps	your	origin	servers	are	not	setting	the	correct	response	headers,	
or	perhaps	you	want	to	override	what	they’re	specifying	inside	NGINX	itself.	
There	are	a	myriad	of	ways	you	can	configure	NGINX	to	fine-tune	how	
caching operates

Delayed Caching

You	can	delay	caching	using	two	directives	that	relate	to	cache	revalidation:

• proxy_cache_min_uses	number;
(saves	on	disk	writes	for	very	cool	caches)

• proxy_cache_revalidate	on;
(saves	on	upstream	bandwidth	and	disk	writes)

Delaying	caching	is	a	very	common	need	if	you	have	a	large	corpus	of	content,	
much	of	which	is	only	accessed	once	or	twice	in	an	hour	or	a	day.	In	that	case,	
if	you	have	your	company	brochure	that	very	few	people	read,	it’s	often	a	
waste of time to try to cache that content

Delayed	caching	allows	you	to	put	a	watermark	in	place.	It	will	only	store	a	
cached	version	of	this	content	if	it’s	been	requested	a	certain	number	of	times.	
Until	you’ve	hit	that	proxy_cache_min_uses watermark, it won’t store a
version in the cache

Controlling
Caching4

http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_cache_min_uses

13High-Performance Caching with NGINX and NGINX Plus Ch. 4 – Controlling Caching

This	allows	you	to	exercise	more	discrimination	for	what	content	goes	in	your	
cache.	The	cache	itself	is	a	limited	resource,	typically	bounded	by	the	amount	
of	memory	that	you	have	in	your	server,	because	you’ll	want	to	ensure	that	the	
cache	is	paged	into	memory	as	much	as	possible.	So	you	often	want	to	limit	
certain	types	of	content	and	only	put	the	popular	requests	in	your	cache.	

Cache	revalidation	modifies	the	If-Modified-Since capability so that, when
NGINX	needs	to	refresh	a	value	which	has	been	cached,	it	doesn’t	make	a	simple	
GET	to	get	a	new	version	of	that	content;	it	makes	a	conditional	GET,	saying,	
“I	have	a	cached	version	that	was	modified	on	this	particular	time	and	date”.	

The origin server has the option of responding with 304	Not	Modified,
effectively	saying	the	version	you	have	is	still	the	most	recent	version	there	is.	
That	saves	on	upstream	bandwidth;	the	origin	server	doesn’t	have	to	re-send	
content that hasn’t changed, and it saves potentially on disk writes as well
NGINX doesn’t have to stream that content to the disk and then swap it into
place, overwriting the old version

Control Over Cache Time

You	have	fine-grained	control	over	how	long	content	should	be	cached	for.	
Quite	often,	the	origin	server	will	serve	content	up	with	cache	headers	that	are	
appropriate	for	the	browsers	–	long-term	caching	with	a	relatively	frequent	
request	to	refresh	the	content.	However,	you	might	like	the	NGINX	proxy	sitting	
directly	in	front	of	your	origin	server	to	refresh	files	a	little	bit	more	often,	to	
pick	up	changes	more	quickly.	

There’s	a	huge	increase	in	load	if	you	reduce	the	cache	timeout	for	the	browsers	
from	60	seconds	to	10	seconds,	but	there’s	a	very	small	increase	in	load	if	you	
reduce	the	cache	timeout	in	NGINX	from	60	seconds	to	10	seconds.	For	each	
request,	that	will	add	five	more	requests	per	minute	to	your	origin	servers.	
By	contrast,	with	the	remote	clients,	it	all	depends	on	the	number	of	clients	
with	similar	requests	active	on	your	site.	

So,	you	can	override	the	logic	and	the	intent	that	your	origin	server	specifies.	
You	can	mask	out	or	tell	NGINX	to	ignore	certain	headers:	X-Accel-Expires,
Cache-Control, or Expires.	And	you	can	provide	a	default	cache	time	
using	the	proxy_cache_valid	directive	in	your	NGINX	configuration.

http://nginx.org/en/docs/http/ngx_http_proxy_module.html?&_ga=2.4401459.1441066047.1509638586-1537405530.1506552169#proxy_cache_valid

14High-Performance Caching with NGINX and NGINX Plus Ch. 4 – Controlling Caching

Examples	include:

• proxy_cache_valid	200	302	10m;

• proxy_cache_valid	404	1m;	

Priority	for	headers	is:

• X-Accel-Expires

• Cache-Control

• Expires

• proxy_cache_valid

The Set-Cookie response header means no caching

Cache / Don’t Cache

Sometimes	you	may	not	cache	content	that	the	origin	server	says	is	cacheable,	
or	you	may	want	to	ensure	that	you	bypass	the	version	of	content	stored	in	
NGINX The proxy_cache_bypass and proxy_no_cache directives give
you	that	degree	of	control.	

You	can	use	them	as	a	shortcut	to	say	that	if	any	of	a	certain	set	of	request	
headers	are	set,	such	as	HTTP	authorization,	or	a	request	parameter	is	present,	
then	you	want	to	bypass	the	cache	–	either	to	automatically	update	the	cache	
in	NGINX,	or	to	just	skip	the	cache	completely	and	always	retrieve	content	
from the origin server

Typically	these	are	done	for	fairly	complex	caching	decisions,	where	you’re	
making	fine-grained	decisions	over	the	values	of	cookies	and	authorization	
headers	to	control	what	should	be	cached,	what	should	always	be	received	
from	the	origin	server,	and	what	should	never	be	stored	in	the	NGINX	cache.

For	example:

• proxy_cache_bypass	string	...;
(go	to	origin;	may	cache	result)

• proxy_no_cache	string	...;
(if	we	go	to	origin,	don’t	cache	result)

• proxy_no_cache $cookie_nocache $arg_nocache
$http_authorization;
(typically	used	with	a	complex	cache	key,	and	only	if	the	origin	des	not	send	
appropriate	cache-control	responses)

http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_cache_bypass
http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_no_cache

15High-Performance Caching with NGINX and NGINX Plus Ch. 4 – Controlling Caching

Multiple Caches

Finally,	for	very	large-scale	deployments,	you	might	want	to	explore	multiple	
caches	within	an	individual	NGINX	instance,	for	a	couple	of	reasons.	You	might	
have	different	cache	policies	for	different	tenants	on	your	NGINX	proxy,	
depending	on	the	nature	of	your	site	and	depending	on	the	importance	of	the	
performance	of	that	site	–	even	depending	on	the	particular	plan	that	each	
tenant	is	signed	up	for	in	a	shared	hosting	situation.	

Or	you	may	have	multiple	disks	in	the	NGINX	host	and	it’s	most	efficient	to	
deploy	an	individual	cache	on	each	disk.	The	golden	rule	is	to	minimize	the	
number	of	copies	from	one	disk	to	another,	and	you	can	do	that	by	pinning	a	
cache	to	each	disk	and	pinning	the	temp	file	for	each	proxy	that	uses	that	
cache to the correct disk

The standard operation is that when NGINX receives content from an
upstream	proxy,	it	will	stream	that	content	to	disk	unless	it’s	sufficiently	small	
and	it	fits	in	memory.	Then,	once	that	content	streams	to	disk,	it	will	move	it	
into	the	cache.	That	operation	is	infinitely	more	efficient	if	the	location	on	
cache	for	the	temp	files	(the	disk	where	the	temp	files	are	stored)	is	the	same	
as the disk where the cache is stored

Here	are	examples	using	proxy_cache_path and proxy_temp_path:

• proxy_cache_path /tmp/cache1 keys+zone=one:10m levels=1:2
inactive=60s;

• proxy_cache_path /tmp/cache1 keys+zone=one:10m levels=1:2
inactive=60s;

• proxy_temp_path	path	[level1	[level2	[level3]]];

16High-Performance Caching with NGINX and NGINX Plus Ch. 5 – Microcaching with NGINX

Static Content
images

CSS
simple web pages

Easy to cache Micro-cacheable? Cannot cache

Dynamic Content
blog posts

status pages

Personalized Content
shopping cart,
account data

Cache content for a short time, as little as 1 second

Site content is out of date for max 1 second

Significant performance gains even for that short of a time

In	microcaching,	you	cache	content	that’s	somewhere	in	the	middle	here	on	
the	scale	–	between	static	content	(such	as	images,	CSS,	stuff	that’s	typically	
easily	cached	and	quite	often	put	into	some	sort	of	CDN)	and	stuff	that’s	all	
the	way	on	the	right.	That’s	personalized	content,	your	shopping	cart,	your	
account	data,	stuff	that	you	do	not	ever	want	to	cache.

Between	those	two	extremes,	there’s	a	whole	load	of	content	(blog	posts,	
status	pages)	that	we	consider	dynamic	content,	but	dynamic	content	that	is	
cacheable By microcaching this content, which is to say caching it for a short
amount	of	time	–	as	little	as	1	second	–	we	can	get	significant	performance	
gains	and	reduce	the	load	on	the	servers.

The	nice	part	of	microcaching	is	you	can	set	your	microcache	validity	to,	for	
example,	one	second,	and	your	site	content	will	be	out	of	date	for	a	maximum	
of	one	second.	That	takes	away	a	lot	of	the	typical	worries	you	have	with	
caching,	such	as	accidentally	presenting	old	stale	content	to	your	users,	or	
having	to	go	through	the	hassle	of	validating	and	purging	the	cache	every	
time	you	make	a	change.	If	you’re	doing	microcaching,	updates	can	be	taken	
care	of	just	by	leveraging	existing	caching	mechanisms.	

Microcaching
with NGINX5

17High-Performance Caching with NGINX and NGINX Plus Ch. 5 – Microcaching with NGINX

Configuring NGINX for Microcaching

Here’s	a	very	simple	NGINX	configuration	that	enables	caching.	

proxy_cache_path /tmp/cache keys_zone=my_cache:10m
levels=1:2 inactive=600s max_size=100m;

server {
 proxy_cache	cache;
 proxy_cache_valid	200	1s;
 ...

}

This code caches 200 responses for 1 second proxy _ cache _ valid is
the magic line here It takes all the content that is cacheable and says that, for
this content, we’re going to cache it for one second, and then we’re going to
mark it as stale

There’s another directive on the top – proxy_cache_path;	specifically,	its	
inactive	parameter	–	that	says	if	content	is	inactive	for	600	seconds	(or	in	
other	words,	no	one	has	accessed	it	for	10	minutes)	it’s	going	to	be	deleted	
from the NGINX cache, whether it’s stale or not

So there are two separate concepts here There’s the idea of stale cache This
is set by the proxy_cache_valid directive and marks an entry as being
stale	but	does	not	delete	it	off	NGINX.	It	just	sits	there	as	stale	content,	which	
can	be	desirable.	We’ll	see	why	that	matters	in	a	few	minutes.	

And there’s the inactive parameter, which deletes content – whether or not
it’s	stale	–	if	it	has	not	been	accessed	by	a	user	for	a	given	amount	of	time;	in	
this	case,	10	minutes.

http://nginx.org/en/docs/http/ngx_http_proxy_module.html?&_ga=2.4401459.1441066047.1509638586-1537405530.1506552169#proxy_cache_valid

18High-Performance Caching with NGINX and NGINX Plus Ch. 5 – Microcaching with NGINX

Optimized Microcaching with NGINX

That’s how we enable microcaching on a basic level within NGINX Then there
are some directives that we determined, based on testing, can improve
performance	even	more	in	the	microcaching	case.	(Some	of	these	directives	
were	described	earlier	in	the	book,	but	they’re	described	here	in	a	
microcaching	context.)	

server {
 proxy_cache	one;
 proxy_cache_lock	on;
 proxy_cache_valid	200	1s;
 proxy_cache_use_stale	updating;
 # ...
}

proxy_cache_lock
The	first	directive,	proxy_cache_lock,	says	that	if	there	are	multiple	
simultaneous	requests	for	the	same	uncached	or	stale	content	–	in	other	
words,	content	that	has	be	refreshed	–	only	the	first	of	those	requests	is	
allowed	through,	and	subsequent	requests	for	the	same	content	are	queued	
up.	That	way,	when	the	first	request	is	satisfied,	the	other	guys	will	get	it	from	
the	cache.	This	saves	a	significant	amount	of	work	on	the	backend.

proxy_cache_valid
The proxy_cache_valid	directive	marks	the	entry	as	being	stale,	but	does	
not	clear	it.	This	makes	the	entry	available	for	use	in	microcaching.	

proxy_cache_use_stale
proxy_cache_use_stale	allows	you	to	serve	stale	content	in	various	
scenarios when fresh content is not available In this case, we’re restricting it
to	updating,	so	we’re	instructing	NGINX	to	serve	stale	content	when	a	cached	
entry	is	in	the	process	of	being	updated.

That’s	microcaching	with	NGINX	in	a	nutshell.	If	you	want	more	details	on	
microcaching with NGINX, see our	blog

http://nginx.org/en/docs/http/ngx_http_proxy_module.html?&_ga=2.62656044.1441066047.1509638586-1537405530.1506552169#proxy_cache_lock
http://nginx.org/en/docs/http/ngx_http_proxy_module.html?&_ga=2.4401459.1441066047.1509638586-1537405530.1506552169#proxy_cache_valid
http://nginx.org/en/docs/http/ngx_http_proxy_module.html?&_ga=2.104467968.1441066047.1509638586-1537405530.1506552169#proxy_cache_use_stale
https://www.nginx.com/blog/benefits-of-microcaching-nginx/

19High-Performance Caching with NGINX and NGINX Plus Ch. 6 – The Inner Workings of Caching in NGINX

Now,	having	looked	at	how	we	can	examine	contact	caching	from	the	outside,	
let’s	have	a	look	at	it	from	inside.	How	does	it	function	within	NGINX?	As	I	
mentioned	earlier,	the	content	cache	in	NGINX	functions	in	much	the	same	way	
as	files	on	disk	are	handled.	You	get	the	same	performance,	the	same	reliability,	
and	the	same	operating	system	optimizations	when	you’re	serving	content	from	
your	content	cache	as	you	do	when	you	serve	static	content	–	the	performance	
that NGINX is renowned for

NGINX	uses	a	persistent	disk-based	cache;	the	operating	system	page	cache	
keeps content in memory, with hints from NGINX processes In this chapter,
we’ll	look	at:

• How content is stored in the cache

• How	the	cache	is	loaded	at	startup

• Pruning	the	cache	over	time

• Purging	content	manually	from	the	cache

The content cache is stored on disk in a persistent cache We work in
conjunction	with	the	operating	system	to	swap	that	disk	cache	into	memory,	
providing	hints	to	the	operating	system	page	cache	as	to	what	content	should	
be stored in memory This means that when we need to serve content from
the	cache,	we	can	do	so	extremely	quickly.	

The	metadata	around	the	cache,	information	about	what	is	there	and	its	
expiration time, is stored separately in a shared memory section across all the
NGINX	processes	and	is	always	present	in	memory.	So	NGINX	can	query	the	
cache,	search	the	cache,	extremely	fast;	it	only	needs	to	go	to	the	page	cache	
when	it	needs	to	pull	the	response	and	serve	it	back	to	the	end	user.	

We’ll look at how content is stored in the cache, we’ll look at how that persistent
cache	is	loaded	into	empty	NGINX	worker	processes	on	startup,	we’ll	look	at	

The Inner Workings
of Caching in NGINX6

20High-Performance Caching with NGINX and NGINX Plus Ch. 6 – The Inner Workings of Caching in NGINX

some	of	the	maintenance	NGINX	does	automatically	on	the	cache,	and	we’ll	
round	up	by	looking	at	how	you	can	manually	prune	content	from	the	cache	in	
particular	situations.

How is Cached Content Stored?

You	recall	that	the	content	cache	is	declared	using	a	directive	called	
proxy_cache_path.	This	directive	specifies	a	number	of	parameters:	where	
the	cache	is	stored	on	your	file	system,	the	name	of	the	cache,	the	
size	of	the	cache	in	memory	for	the	metadata,	and	the	size	of	the	cache	on	
disk In this case there’s a 40 MB cache on disk

Here’s	a	description	of	how	key	directives	interact	to	get	content	into	the	cache:

proxy_cache_path /tmp/cache keys_zone=my_cache:
10m levels=1:2 max_size=40m;

proxy_cache_key $scheme$proxy_hosturiis_args$args
(define	the	cache	key)

$ echo –n “httplocalhost:8002/time.php” | md5sum
6d91b1ec887b7965d6a926cff19379b4

$ cat /tmp/cache/4/9b/6d91b1ec887b7965d6a926cff19379b4
(verify	it’s	there)

The	key	to	understanding	where	the	content	is	stored	is	understanding	the	
cache	key	–	the	unique	identifier	that	NGINX	assigns	to	each	cacheable	
resource.	By	default	that	identifier	is	built	up	from	the	basic	parameters	of	the	
request:	the	scheme,	Host	header,	the	URI,	and	any	string	arguments.	

But	you	can	extend	that	if	you	want	using	things	like	cookie	values	or	
authentication	headers	or	even	values	that	you’ve	calculated	at	runtime.	Maybe	
you	want	to	store	different	versions	for	users	in	the	UK	than	for	users	in	the	US.	
This	is	all	made	possible	by	configuring	the	proxy_cache_key directive

When	NGINX	handles	a	request,	it	will	calculate	the	proxy_cache_key, and
from	that	value	it	will	then	calculate	an	MD5	sum.	You	can	replicate	that	
yourself	using	the	command-line	example	I’ve	shown	further	down	the	slide.	
We take the cache key httplocalhost:8002/time.php and	pipe	that	through	
md5sum.	(Be	careful,	when	you’re	doing	this	from	the	shell,	not	to	pipe	a	new	
line	through	as	well.)

http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_cache_key

21High-Performance Caching with NGINX and NGINX Plus Ch. 6 – The Inner Workings of Caching in NGINX

That	will	calculate	the	MD5	hash	value	that	corresponds	to	that	cacheable	
content.	NGINX	uses	that	hash	value	to	calculate	the	location	on	disk	that	
content	should	be	stored.	You’ll	see	in	the	proxy_cache_path that we
specify a two-level cache with a one-character and then a two-character
directory.	We	pull	those	characters	off	the	end	of	the	string	to	create	a	directory	
called	4	and	a	subdirectory	called	9b,	and	then	we	drop	the	content	of	the	
cache	(plus	the	headers	and	a	small	amount	of	metadata)	into	a	file	on	disk.	

You	can	test	the	content	caching.	You	can	print	out	the	cache	key	as	one	of	
the	response	headers,	you	can	pump	it	through	md5sum	to	calculate	the	
hash	correspondence	of	that	value.	Then	you	can	inspect	the	value	on	disk,	
to	see	if	it’s	really	there,	and	the	headers	that	NGINX	cached,	to	understand	
how	this	all	fits	together.

Loading Cache From Disk

Now that content is stored on disk and is persistent, when NGINX starts it
needs to load that content into memory – or rather, it needs to work its way
through	that	disk	cache,	extract	the	metadata,	and	then	load	the	metadata	
into	memory	in	the	shared	memory	segment	used	by	each	of	the	worker	
processes.	This	is	done	using	a	process	called	the	cache	loader.	

A	cache	loader	spins	up	at	startup	and	runs	once,	loading	metadata	onto	disk	
in	small	chunks:	100	files	at	a	time,	sandboxed	to	200	ms,	and	then	pausing	
for	50	ms	in-between,	and	then	repeating	until	it’s	worked	its	way	through	the	
entire	cache	and	populated	the	shared	memory	segment.	

The	cache	loader	then	exits	and	doesn’t	need	to	run	again	unless	NGINX	is	
restarted	or	reconfigured	and	the	shared	memory	segment	needs	to	be	
reinitialized.	You	can	tune	the	operation	of	the	cache	loader,	which	may	be	
appropriate	if	you	have	very	fast	disks	and	a	light	load.	You	can	make	it	run	
faster;	or,	you	might	want	to	wind	it	back	a	little	bit	if	you’re	storing	a	cache	
with	a	huge	number	of	files	and	slow	disks,	and	you	don’t	want	the	cache	
loader	to	use	excessive	amounts	of	CPU	when	NGINX	starts	up.	

22High-Performance Caching with NGINX and NGINX Plus Ch. 6 – The Inner Workings of Caching in NGINX

Here	are	a	few	keys	to	using	the	cache	loader:

• Cache metadata stored in a shared memory segment…

• …populated	at	startup	from	the	cache	by	the	cache	loader

proxy_cache_path path keys_zone=name:size
[loader_files=number]	[loader_threshold=time]
[loader_sleep=time]

Default	values	are	100	for	the	number	of	files,	200ms	for	the	threshold	time,	
and	50ms	for	the	sleep	time.	If	these	values	are	used,	the	cache	loader	loads	
files	in	blocks	of	100,	takes	no	longer	than	200ms,	then	pauses	for	50ms	
and repeats

Managing the Disk Cache

Once	the	cache	is	in	memory,	and	files	are	stored	on	disk,	there’s	a	risk	that	
cached	files	that	are	never	accessed	may	hang	around	forever.	NGINX	will	
store	them	the	first	time	it	sees	them,	but	if	there	are	no	more	requests	for	a	
file,	then	the	file	will	just	sit	there	on	disk	until	something	comes	along	and	
cleans	it	out.	

This something is the cache manager;	it	runs	periodically,	purging	files	
from the disk that haven’t been accessed within a certain period of time, and
it	deletes	files	if	the	cache	is	too	big	and	has	overflowed	its	declared	size.	
It	deletes	them	in	a	least-recently-used	fashion.	

You	can	configure	this	operation	using	parameters	to	the	proxy_cache_path
directive,	just	as	you	configure	the	cache	loader:	

• The	inactive	time	defaults	to	10	minutes.

• The max-size	parameter	has	no	default	limit.	If	you	impose	a	max-size
limit	on	the	cache,	at	times	it	may	exceed	that	limit,	but	when	the	cache	
manager	runs	it	will	then	prune	the	least	recently	used	files	to	take	it	back	
underneath	that	limit.

23High-Performance Caching with NGINX and NGINX Plus Ch. 6 – The Inner Workings of Caching in NGINX

Cache Purging with NGINX Plus

Let’s	talk	quickly	about	cache	purging	in	NGINX.	There	are	different	ways	to	
accomplish	this.	You	can	compile	a	third-party	module	and	load	it	into	NGINX,	
and	that’s	fine.	But	for	our	customers	with	NGINX	Plus,	there’s	a	built-in	cache	
purging	module	written	by	the	same	developers	that	made	NGINX,	with	the	
backing	of	our	support	team	and	engineering	staff.

So,	for	NGINX	Plus	it’s	prebundled,	and	this	is	a	sample	configuration	that	
enables	it.	It	allows	you	to	run	the	curl	command	with	the	PURGE	verb	(as	
opposed	to	GET)	…	to	delete	everything	with	that	root	URL.	Or,	you	can	name	
a	specific	file	to	purge;	for	example,	www.example.com/image.jpg So NGINX
Plus	includes	this	powerful	prebuilt	cache-purging	mechanism.	

Finally,	there	are	times	that	you	may	wish	to	purge	content	from	disk.	You	want	
to	find	a	file	and	delete	it;	it’s	relatively	easy	to	do	if	you	know	the	techniques	
that	we	talked	about	earlier	–	running	the	cache	key	through	md5sum	–	or	just	
running	a	recursive	grep	across	the	file	system	to	identify	the	file	or	files	that	
you	need	to	delete.	

Alternatively,	if	you’re	using	NGINX	Plus,	you	can	use	the	cache	purge	capability	
built	into	that	product.	The	cache	purge	capability	allows	you	to	take	a	particular	
parameter	from	the	request;	generally,	we	use	a	method	called	PURGE	as	the	
way	to	identify	that	it’s	a	cache-purge	request.	

The	following	code	sets	up	purging	in	NGINX	Plus.	

proxy_cache_path /tmp/cache keys_zone=my_cache:10m
levels=1:2	inactive=60s;

map $request_method $purge_method {
	 	 PURGE	1;
	 	 default	0;
}

server {
 proxy_cache	mycache;
 proxy_cache_purge $purge_method;
}

$ curl –X PURGE –D – http://www.example.com/*

HTTP/1.1 204 No Content

http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_cache_purge

24High-Performance Caching with NGINX and NGINX Plus Ch. 6 – The Inner Workings of Caching in NGINX

Purging	is	handled	by	a	special	NGINX	Plus	handler	which	inspects	the	URI	
and	deletes	all	of	the	files	that	match	that	URI	from	the	cache.	The	URI	can	be	
suffixed	with	an	asterisk	so	that	it	becomes	a	stem.	In	this	case,	we’re	going	to	
use	the	purge	capability	to	delete	every	single	file	that’s	served	up	from	
localhost	host	port	8001,	but	of	course	you	could	put	subdirectories	as	well.	

Whichever	method	you	use,	at	any	point	you	are	entirely	safe	to	delete	files	
from the cache on disk, or even rm -rf the entire cache directory NGINX
won’t	skip	a	beat;	it’ll	continue	to	check	for	the	presence	of	files	on	disk.	If	
they’re missing, then that creates a cache miss NGINX will then go on and
retrieve the cache from the origin server and store it back in the cache on
disk.	So	it’s	always	safe	and	reliable	and	stable	if	you	need	to	wipe	individual	
files	from	the	cache.

25High-Performance Caching with NGINX and NGINX Plus Ch. 7 – Shared Caches with NGINX Cache Clusters

Shared Caches with
NGINX Cache Clusters7

This chapter describes how to implement high-capacity and high-availability
caching	with	the	open	source	NGINX	software	and	NGINX	Plus.	

Why Doesn’t NGINX Use a Shared Disk for Caching?

Each	NGINX	server	acts	as	an	independent	web	cache	server.	There	is	no	
technical	means	to	share	a	disk-based	cache	between	multiple	NGINX	
servers;	this	is	a	deliberate	design	decision.

Storing	a	cache	on	a	high-latency,	potentially	unreliable	shared	filesystem	is	
not	a	good	design	choice.	NGINX	is	sensitive	to	disk	latency,	and	even	though	
the thread pools capability	offloads	read() and write() operations from the
main	thread,	when	the	filesystem	is	slow,	and	cache	I/O	is	high,	then	NGINX	
may	become	overwhelmed	by	large	volumes	of	threads.	

Maintaining	a	consistent,	shared	cache	across	NGINX	instances	would	also	
require	cluster-wide	locks	to	synchronize	overlapping	cache	operations	such	
as	fills,	reads,	and	deletes.	Finally,	shared	filesystems	introduce	a	source	of	
unreliability	and	unpredictable	performance	to	caching,	where	reliability	and	
consistent	performance	is	paramount.

Why Share a Cache Across Multiple NGINX Servers?

Although	sharing	a	filesystem	is	not	a	good	approach	for	caching,	there	are	
still	good	reasons	to	cache	content	across	multiple	NGINX	servers,	each	with	
a	corresponding	technique.	This	chapter	will	cover	two	techniques:

• Cache	sharding	–	If	your	primary	goal	is	to	create	a	very	high-capacity	
cache,	shard	(partition)	your	cache	across	multiple	servers.	We’ll	cover	this	
technique	in	this	post.

https://www.nginx.com/blog/thread-pools-boost-performance-9x/

26High-Performance Caching with NGINX and NGINX Plus Ch. 7 – Shared Caches with NGINX Cache Clusters

• Cache	clustering	–	If	your	primary	goal	is	to	achieve	high	availability	while	
minimizing	load	on	the	origin	servers,	use	a	highly	available	shared	cache.	For	
this	technique,	see	the	next	section,	Method	2:	Creating	a	Highly	Available	
Cache	Cluster.

Large, Sharded
(Partitioned) Cache

Highly Available,
Shared Cache

Orgin
Server

Orgin
Server

Method 1: Sharding Your Cache

Sharding a	cache	is	the	process	of	distributing	cache	entries	across	multiple	
web	cache	servers.	NGINX	cache	sharding	uses	a	consistent	hashing	algorithm
to select the one cache server for each cache entry

The	figures	show	what	happens	to	a	cache	sharded	across	three	servers	
when either one server goes down or another server is added

Three cache servers: each URL
is assigned to the red, blue,

or green server according to
the hash value

If the blue cache server fails, its
share is distributed between the
remaining red and green servers

If a new cache server (yellow)
is added, it takes share from each
of the currently working servers

https://www.nginx.com/blog/shared-caches-nginx-plus-cache-clusters-part-1/

27High-Performance Caching with NGINX and NGINX Plus Ch. 7 – Shared Caches with NGINX Cache Clusters

The	total	cache	capacity	is	the	sum	of	the	cache	capacity	of	each	server.	
You	minimize	trips	to	the	origin	server	because	only	one	server	attempts	to	
cache	each	resource;	you	don’t	have	multiple	independent	copies	of	the	
same	resource.

Cache TierLBTier

Each resource is cached
on only one server

Consistent-hash
load balancing

Orgin
Server

This pattern is fault-tolerant in the sense that if you have N cache servers and
one fails, you lose only 1/N of your cache. This ‘lost portion’ is evenly
distributed by the consistent hash across the remaining N–1 servers. Simpler
hashing methods instead redistribute the entire cache across the remaining
servers, so you lose almost all of your cache during the redistribution.

When	you	perform	consistent-hash	load	balancing,	use	the	cache key	(or	a	
subset	of	the	fields	used	to	construct	the	key)	as	the	key	for	the	consistent	hash:

upstream cache_servers {
 hash $scheme$proxy_host$request_uri	consistent;
	 server	red.cache.example.com;
	 server	green.cache.example.com;
	 server	blue.cache.example.com;
}

You	can	distribute	incoming	traffic	across	the	Load	Balancer	(LB)	tier	using	
the active-passive	high	availability	solution	in	NGINX	Plus,	round-robin	DNS,	
or	a	high-availability	solution	such	as	keepalived

http://nginx.org/en/docs/http/ngx_http_proxy_module.html?&_ga=2.249261889.792797775.1509385182-1537405530.1506552169#proxy_cache_key
https://www.nginx.com/resources/admin-guide/nginx-ha-keepalived-nodes/

28High-Performance Caching with NGINX and NGINX Plus Ch. 7 – Shared Caches with NGINX Cache Clusters

Optimizing Your Sharded Cache Configuration

You	can	choose	either	of	two	optimizations	to	your	cache-sharding	
configuration:	combining	the	load	balancer	and	cache	tiers,	or	configuring	a	
first-level	“hot”	cache.

Combining the Load Balancer and Cache Tiers

You	can	combine	the	load	balancer	and	cache	tiers.	In	this	configuration,	two	
virtual	servers	run	on	each	NGINX	instance.	

The	load-balancing	virtual	server	(“LB	VS”	in	the	figure)	accepts	requests	from	
external	clients	and	uses	a	consistent	hash	to	distribute	them	across	all	
NGINX	instances	in	the	cluster,	which	are	connected	by	an	internal	network.	
The	caching	virtual	server	(“Cache	VS”)	on	each	NGINX	instance	listens	on	its	
internal	IP	address	for	its	share	of	requests,	forwarding	them	to	the	origin	
server and caching the responses This allows all NGINX instances to act as
caching	servers,	maximizing	your	cache	capacity.

Combined LB
and Cache Tier

Traffic is internally
load-balanced across
the cache servers

Incoming traffic
distributed using RR
DNS, keepalived, etc.

LB VS

Cache VS

LB VS

Cache VS

LB VS

Cache VS

http://nginx.org/en/docs/http/ngx_http_core_module.html?&_ga=2.249253697.792797775.1509385182-1537405530.1506552169#server

29High-Performance Caching with NGINX and NGINX Plus Ch. 7 – Shared Caches with NGINX Cache Clusters

Configuring a First-Level “Hot” Cache

Alternatively,	you	can	configure	a	first-level	cache	on	the	front-end	load	
balancing	tier	for	very	hot	content,	using	the	large	shared	cache	as	a	second-
level	cache.	This	can	improve	performance	and	reduce	the	impact	on	the	
origin	server	if	a	second-level	cache	tier	fails,	because	content	only	needs	to	
be	refreshed	as	the	first-tier	cache	content	gradually	expires.

Cache TierLoad Balancing
and Hot Cache Tier

Internal traffic
distributed using
consistent hash

Incoming traffic
distributed using RR
DNS, keepalived, etc.

LB VS

LB VS

Cache VS Cache VS

Cache VS Cache VS

Cache VS Cache VS

If	your	cache	cluster	is	handling	a	very	large	volume	of	hot	content,	you	may	
find	that	the	rate	of	churn	on	the	smaller,	first-level	cache	is	very	high.	In	other	
words, the demand for the limited space in the cache is so high that content
is	evicted	from	the	cache	(to	make	room	for	more	recently	requested	content)	
before	it	can	be	used	to	satisfy	even	one	subsequent	request.

One	indicator	of	this	situation	is	a	low	ratio	of	served	content	to	written	
content,	two	metrics	included	in	the	extended	statistics	reported	by	the	
NGINX	Plus	Status	module.	They	appear	in	the	Served	and	Written	fields	on	
the	Caches	tab	of	the	built-in	live activity monitoring dashboard.	(Note	that	
the	Status	module	and	live	activity	monitoring	dashboard	are	not	available	
in	open	source	NGINX.)

http://nginx.org/en/docs/http/ngx_http_status_module.html
https://www.nginx.com/products/live-activity-monitoring/

30High-Performance Caching with NGINX and NGINX Plus Ch. 7 – Shared Caches with NGINX Cache Clusters

This	screen	shot	indicates	the	situation	where	NGINX	is	writing	more	content	
to	the	cache	than	it’s	serving	from	it:

In	this	case,	you	can	fine-tune	your	cache	to	store	just	the	most	commonly	
requested	content.	The	proxy_cache_min_uses directive can help to
identify this content

Summary of Method 1

Sharding	a	cache	across	multiple	NGINX	or	NGINX	Plus	web	cache	servers	is	
an	effective	way	to	create	a	very	high-capacity,	scalable	cache.	The	consistent	
hash	provides	a	good	degree	of	high	availability,	ensuring	that	if	a	cache	fails,	
only its share of the cached content is invalidated

The next section describes an alternative shared cache pattern that replicates
the	cache	on	a	pair	of	NGINX	or	NGINX	Plus	cache	servers.	Total	capacity	is	
limited	to	the	capacity	of	an	individual	server,	but	the	configuration	is	fully	fault-
tolerant,	and	no	cached	content	is	lost	if	a	cache	server	becomes	unavailable.

Method 2: Creating a Highly Available Cache Cluster

The	previous	section	described	a	pattern	for	creating	very	large,	sharded	cache	
clusters.	This	section	describes	how	to	use	two	or	more	NGINX	or	NGINX	Plus	
cache	servers	to	create	a	highly	available	cache	cluster.	

This	pattern	is	effective	when	you	need	to	create	a	very	large-capacity	
cache	that	can	be	scaled	up	at	will.	Because	each	resource	is	only	cached	
on	one	server,	it	is	not	fully	fault-tolerant,	but	the	consistent-hash	load	
balancing	ensures	that	if	a	server	fails,	only	its	share	of	the	cached	content	
is invalidated

http://nginx.org/en/docs/http/ngx_http_proxy_module.html?&_ga=2.178401250.792797775.1509385182-1537405530.1506552169#proxy_cache_min_uses

31High-Performance Caching with NGINX and NGINX Plus Ch. 7 – Shared Caches with NGINX Cache Clusters

If	minimizing	the	number	of	requests	to	your	origin	servers	at	all	costs	is	your	
primary	goal,	then	the	cache	sharding	solution	is	not	the	best	option.	Instead,	
a	solution	with	careful	configuration	of	primary	and	secondary	NGINX	instances	
can	meet	your	requirements:

• The	primary	NGINX	instance	receives	all	traffic	and	forwards	requests	to	
the secondary instance

• The secondary instance retrieves the content from the origin server and
caches	it;	the	primary	instance	also	caches	the	response	from	the	
secondary	instance	and	returns	it	to	the	client.

Both	devices	have	fully	populated	caches,	and	the	cache	is	refreshed	according	
to	your	configured	timeouts.

Configuring the Primary Cache Server

Configure	the	primary	cache	server	to	forward	all	requests	to	the	secondary	
server and cache responses As indicated by the backup parameter to the
server	directive	in	the	upstream	group,	the	primary	server	forwards	requests	
directly	to	the	origin	server	in	the	event	that	the	secondary	server	fails:

proxy_cache_path /tmp/mycache keys_zone=mycache:10m;
server {
 status_zone	mycache;	#	for	NGINX	Plus	extended	status

	 listen	80;

 proxy_cache	mycache;
 proxy_cache_valid	200	15s;

 location / {
 proxy_pass	http://secondary;
 }
}

upstream secondary {
	 zone	secondary	128k;	#	for	NGINX	Plus	extended	status

	 server	192.168.56.11;	#	secondary
	 server	192.168.56.12	backup;	#	origin
}

http://nginx.org/en/docs/stream/ngx_stream_upstream_module.html?&_ga=2.249890752.792797775.1509385182-1537405530.1506552169#backup

32High-Performance Caching with NGINX and NGINX Plus Ch. 7 – Shared Caches with NGINX Cache Clusters

Configuring the Secondary Cache Server

Configure	the	secondary	cache	server	to	forward	requests	to	the	origin	server	
and cache responses

proxy_cache_path /tmp/mycache keys_zone=mycache:10m;

server {
 status_zone	mycache;	#	for	NGINX	Plus	extended	status

	 listen	80;

 proxy_cache	mycache;
 proxy_cache_valid	200	15s;

 location / {
 proxy_pass	http://origin;
 }
}

upstream origin {

	 zone	origin	128k;	#	for	NGINX	Plus	extended	status	

	 server	192.168.56.12;	#	origin
}

Configuring High Availability

Finally,	you	need	to	configure	high	availability	(HA)	so	that	the	secondary	
server	takes	the	incoming	traffic	if	the	primary	fails;	the	primary	takes	the	
traffic	back	when	it	subsequently	recovers.

In	this	example,	we	use	the	active-passive	HA	solution	for	NGINX	Plus
The	externally	advertised	virtual	IP	address	is	192.168.56.20,	and	the	primary	
acts	as	the	master	in	the	cluster.	If	you	are	using	open	source	NGINX,	you	can	
manually	install	and	configure	keepalived	or	a	different	HA	solution.

Failover Scenarios

Recall	that	we	want	to	create	a	highly	available	cache	cluster	that	continues	to	
operate even if a cache server fails We don’t want the load on the origin server
to increase, either when a cache server fails, or when it recovers and needs to
refresh stale content

https://www.nginx.com/resources/admin-guide/nginx-ha-keepalived/

33High-Performance Caching with NGINX and NGINX Plus Ch. 7 – Shared Caches with NGINX Cache Clusters

Suppose	the	primary	fails	and	the	NGINX	Plus	HA	solution transfers the
external IP address to the secondary

The	secondary	has	a	full	cache	and	continues	to	operate	as	normal.	There	is	
no additional load on the origin server

When	the	primary	cache	server	recovers	and	starts	receiving	client	traffic,	
its	cache	will	be	out	of	date	and	many	entries	will	have	expired.	The	primary	
will	refresh	its	local	cache	from	the	secondary	cache	server;	because	the	
cache	on	the	secondary	server	is	already	up-to-date,	there	is	no	increase	in	
traffic	to	the	origin	server.

Now	suppose	the	secondary	fails.	The	primary	detects	this	(using	a	health
check	configured	as	part	of	the	HA	solution)	and	forwards	traffic	directly	to	the	
backup	server	(which	is	the	origin	server).

The	primary	server	has	a	full	cache	and	continues	to	operate	as	normal.	
Once again, there is no additional load on the origin server

When	the	secondary	recovers,	its	cache	will	be	out	of	date.	However,	it	will	only	
receive	requests	from	the	primary	when	the	primary’s	cache	expires,	at	which	
point	the	secondary’s	copy	will	also	have	expired.	Even	though	the	secondary	
needs	to	make	a	request	for	content	from	the	origin	server,	this	does	not	
increase	the	frequency	of	requests	to	the	origin.	There’s	no	adverse	effect	on	
the origin server

Testing the Failover Behavior

To	test	our	HA	solution,	we	configure	the	origin	server	to	log	requests and to
return	the	current	time	for	each	request.	This	means	that	the	origin	server’s	
response	changes	every	second:

access_log	/var/log/nginx/access.log;

location / {
 return 200 “It’s now $time_local\n”;
}

The	primary	and	secondary	cache	servers	are	already	configured	to	cache	
responses	with	status	code	200	for	15	seconds.	This	typically	results	in	
cache	updates	every	15	or	16	seconds.

proxy_cache_valid	200	15s;

https://www.nginx.com/products/application-health-checks/
https://www.nginx.com/products/application-health-checks/
http://nginx.org/en/docs/http/ngx_http_log_module.html?&_ga=2.148113137.792797775.1509385182-1537405530.1506552169#access_log
http://nginx.org/en/docs/http/ngx_http_rewrite_module.html?&_ga=2.148113137.792797775.1509385182-1537405530.1506552169#return

34High-Performance Caching with NGINX and NGINX Plus Ch. 7 – Shared Caches with NGINX Cache Clusters

Verifying Cache Behavior

Once	per	second,	we	send	an	HTTP	request	to	the	highly	available	virtual	IP	
address	for	the	cache	cluster.	The	response	does	not	change	until	the	caches	
on the primary and secondary servers expire and the response is refreshed
from the origin server This happens every 15 or 16 seconds

$ while sleep 1 ; do curl http://192.168.56.20/ ; done
It’s now 9/Feb/2017:06:35:03 -0800
It’s now 9/Feb/2017:06:35:03 -0800
It’s now 9/Feb/2017:06:35:03 -0800
It’s now 9/Feb/2017:06:35:19 -0800
It’s now 9/Feb/2017:06:35:19 -0800
^C

We	can	also	inspect	the	logs	on	the	origin	server	to	confirm	that	it	is	receiving	
a	request	only	every	15	or	16	seconds.

Verifying Failover

We can verify that the failover is working correctly by stopping either the primary
or the secondary server – for example, by stopping the nginx processes The
constant-load	test	continues	to	run,	and	the	response	is	consistently	cached.

Inspecting	the	access	log	on	the	origin	server	confirms	that	it	only	ever	receives	
a	request	every	15	to	16	seconds,	no	matter	which	of	the	cache	servers	fails	
or recovers

Timing of Cache Updates

In	a	stable	situation,	the	cached	content	is	normally	updated	every	15	to	16	
seconds.	The	content	expires	after	15	seconds,	and	there	is	a	delay	of	up	to	
1	second	before	the	next	request	is	received,	causing	a	cache	update.

Occasionally,	the	cache	will	appear	to	update	more	slowly	(up	to	30	seconds	
between	changes	in	content).	This	occurs	if	the	primary	cache	server’s	content	
expires and the primary retrieves cached content that is almost expired from
the	secondary.	If	this	presents	a	problem,	you	can	configure	a	shorter	cache	
timeout	on	the	secondary	server.

35High-Performance Caching with NGINX and NGINX Plus Ch. 7 – Shared Caches with NGINX Cache Clusters

Summary of Method 2

Tiering caches between two or more NGINX cache servers in the way we’ve
described	here	is	an	effective	way	to	create	a	highly	available	cache	cluster	
that	minimizes	the	load	on	origin	servers,	protecting	them	from	spikes	of	
traffic	when	one	of	the	cache	servers	fails	or	recovers.

The total capacity of the cache is limited to the capacity of a single cache
server Method 1, above, describes an alternative sharded cache pattern that
partitions	a	cache	across	a	cluster	of	cache	servers.	In	that	case,	the	total	
capacity	is	the	sum	of	all	of	the	cache	servers,	but	content	is	not	replicated	to	
protect	against	spikes	in	traffic	to	the	origin	server	if	a	cache	server	fails.

36High-Performance Caching with NGINX and NGINX Plus FAQ

This	section	answers	some	frequently	asked	questions	about	NGINX	
content caching

Does proxy cache revalidation factor in ETags, or just the If-Modified-Since
date of the content?
The proxy cache revalidate capability is the capability that allows NGINX to
make	a	conditional	GET	to	the	upstream	server	to	check	whether	content	has	
changed.	The	answer	is,	NGINX	just	checks	the	If-Modified-Since date of
the	content.	As	a	point	of	practice,	it’s	generally	good	practice	to	always	include	
If-Modified-Since	in	your	responses	and	treat	ETags	as	optional,	because	
they’re	not	as	consistently	or	as	widely	handled	as	the	“last	modified”	date	
that	you’ll	handle	in	response.

Is it possible for NGINX to load balance its caching for a single site
between a few equal disks for best performance?
Yes	it	is;	it	takes	a	little	bit	of	work.	The	typical	scenario	is	to	deploy	a	bunch	
of	disks	with	no	RAID,	and	then	deploy	individual	caches,	one	pinned	to	each	
disk.	It	requires	some	additional	configuration	and	partitioning	of	the	traffic.	
If	you	want	some	help	configuring	that,	then	reach	out	to	our	community	and	
we’ll	deal	with	your	request	there.	If	you’re	using	NGINX	Plus,	reach	out	to	our	
support	team and we’ll be delighted to help

Are all the caching primitives and directives being respected?
In	general,	yes.	There	are	a	couple	of	edge	cases,	such	as	Vary headers, which
are	not	respected.	In	many	cases,	there	is	a	degree	of	latitude	in	how	various	
caches	interpret	the	requirements	of	the	RFC Where possible, we’ve gone for
implementations	that	are	reliable,	consistent,	and	easy	to	configure.

Are both upstream headers and data being cached?
Yes,	they	are.	If	you	receive	a	response	from	the	cache,	then	the	headers	are	
cached as well as the response body

 FAQ

https://www.nginx.com/support/
https://datatracker.ietf.org/doc/rfc7234/

37High-Performance Caching with NGINX and NGINX Plus FAQ

Does caching work for HTTP/2?
Absolutely.	You	can	think	of	it	as	a	frontend	proxy	for	NGINX,	although	in	
practice	it’s	very,	very	deeply	intertwined	in	the	NGINX	kernel.	And,	yes,	SPDY	
works for caching

Does PageSpeed use NGINX caching or its own caching mechanism?
That’s	a	question	that	you	would	need	to	share	with	the	PageSpeed developers

How do other content caches compare to NGINX?
CDNs	are	very	effective	content	caching	solutions.	CDNs	are	deployed	as	a	
service;	you	have	more	limited	control	over	how	content	is	cached	and	how	it	
expires	within	that,	but	they	are	a	very,	very	effective	tool	for	bringing	content	
closer	to	end	users.	NGINX	is	a	very	effective	tool	for	accelerating	the	web	
application.	Very	commonly,	both	are	deployed	together.	In	the	case	of	stand-
alone	caches	such	as	Varnish:	once	again,	they	are	very	capable	technologies	
that	work	in	a	similar	fashion	to	NGINX	in	many	respects.	One	of	the	benefits	
of NGINX is that it brings together origin-serving application gateways, caching,
and	load	balancing	into	one	single	solution.	So	that	gives	you	a	simpler,	more	
consolidated	infrastructure	that’s	easier	to	roll	out,	easier	to	manage,	and	
easier	to	debug	and	diagnose	if	you	have	any	issues.

Can the NGINX cache be instrumented?
Yes, with the add_header	directive:

add_header	X-Cache-Status	$upstream_cache_status;

This example adds an	X-Cache-Status HTTP header in responses to clients
The	following	are	the	possible	values	for	$upstream_cache_status:

• MISS	–	The	response	was	not	found	in	the	cache	and	so	was	fetched	from	
an origin server The response might then have been cached

• BYPASS – The response was fetched from the origin server instead of
served	from	the	cache	because	the	request	matched	a	proxy_cache_
bypass directive The response might then have been cached

• EXPIRED – The entry in the cache has expired The response contains fresh
content from the origin server

• STALE	–	The	content	is	stale	because	the	origin	server	is	not	responding	
correctly, and proxy_cache_use_stale	was	configured.

https://developers.google.com/speed/pagespeed/
http://nginx.org/en/docs/http/ngx_http_headers_module.html#add_header
http://nginx.org/en/docs/http/ngx_http_upstream_module.html#var_upstream_cache_status

38High-Performance Caching with NGINX and NGINX Plus FAQ

• UPDATING	–	The	content	is	stale	because	the	entry	is	currently	being	
updated	in	response	to	a	previous	request,	and	proxy_cache_use_stale
updating	is	configured.

• REVALIDATED – The proxy_cache_revalidate directive was enabled
and	NGINX	verified	that	the	current	cached	content	was	still	valid	
(If-Modified-Since or If-None-Match).

• HIT – The response contains valid, fresh content direct from the cache

How does NGINX determine whether or not to cache something?
By	default,	NGINX	respects	the	Cache-Control headers from origin servers
It does not cache responses with Cache-Control set to Private, No-Cache,
or No-Store, or with Set-Cookie in the response header NGINX only caches
GET	and	HEAD	client	requests.	You	can	override	these	defaults,	as	described	
in the answers below

NGINX does not cache responses if proxy_buffering	is	turned	off.	It	is	on	
by	default.

Can Cache-Control headers be ignored?
Yes, with the proxy_ignore_headers directive For example, with
this	configuration:

location /images/ {
 proxy_cache my_cache;
 proxy_ignore_headers	Cache-Control;
 proxy_cache_valid	any	30m;
 # ...
}

NGINX ignores the Cache-Control	header	for	everything	under	/images/
The proxy_cache_valid directive enforces an expiration for the cached
data,	and	is	required	if	ignoring	Cache-Control headers NGINX does not
cache	files	that	have	no	expiration.

Can NGINX cache content with a Set-Cookie in the header?
Yes, with the proxy_ignore_headers	directive,	as	discussed	in	the	
previous	answer.

http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_cache_revalidate
http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_buffering
http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_ignore_headers
http://nginx.org/en/docs/http/ngx_http_proxy_module.html?&_ga=2.4401459.1441066047.1509638586-1537405530.1506552169#proxy_cache_valid

39High-Performance Caching with NGINX and NGINX Plus FAQ

Can NGINX cache POST requests?
Yes, with the proxy_cache_methods	directive:

proxy_cache_methods	GET	HEAD	POST;

This	example	enables	caching	of	POST	requests.

Can NGINX cache dynamic content?

Yes, provided the Cache-Control header allows for it Caching dynamic
content	for	even	a	short	period	of	time	can	reduce	load	on	origin	servers	
and	databases,	which	improves	time	to	first	byte,	as	the	page	does	not	have	
to	be	regenerated	for	many	requests.

Can I punch a hole through my cache?
Yes, with the proxy_cache_bypass	directive:

location / {
 proxy_cache_bypass $cookie_nocache $arg_nocache;
 # ...

The	directive	defines	request	types	for	which	NGINX	requests	content	from	
the	origin	server	immediately,	instead	of	trying	to	find	it	in	the	cache	first.	
This	is	sometimes	referred	to	as	“punching	a	hole”	through	the	cache.	In	this	
example,	NGINX	does	it	for	requests	with	a	nocachecookie	or	argument,	for	
example http://www.example.com/?nocache=true NGINX can still cache
the	resulting	response	for	future	requests	that	aren’t	bypassed.

What cache key does NGINX use?
The	default	form	of	the	keys	that	NGINX	generates	is	similar	to	an	MD5	hash	
of the following NGINX variables:	$scheme$proxy_host$request_uri;	
the	actual	algorithm	used	is	slightly	more	complicated.

proxy_cache_path /path/to/cache levels=1:2 keys_zone=my_
cache:10m max_size=10g
 inactive=60m use_temp_path=off;
server {
 # ...
 location / {
 proxy_cache my_cache;
 proxy_pass http://my_upstream;
 }
}

http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_cache_bypass
http://nginx.org/en/docs/varindex.html

40High-Performance Caching with NGINX and NGINX Plus FAQ

For	this	sample	configuration,	the	cache	key	for	http://www.example.org/
my_image.jpg	is	calculated	as	md5	(“http://my_upstream:80/my_image.jpg”).

Note:	The	$proxy_host	variable	is	used	in	the	hashed	value	instead	of	the	actual	host	
name	(www.example.com).	$proxy_host	is	defined	as	the	name	and	port	of	the	proxied	
server	as	specified	in	the	proxy_pass directive

To	change	the	variables	(or	other	terms)	used	as	the	basis	for	the	key,	use	the	
proxy_cache_key	directive	(see	also	the	following	question).

Can I use a cookie as part of my cache key?
Yes,	the	cache	key	can	be	configured	to	be	any	arbitrary	value,	for	example:

proxy_cache_key $proxy_host$request_uri$cookie_jessionid;

This	example	incorporates	the	value	of	the	JSESSIONID cookie into the cache
key.	Items	with	the	same	URI	but	different	JSESSIONID	values	are	cached	
separately	as	unique	items.

Does NGINX use the ETag header?
In NGINX 1 7 3 and NGINX	Plus	R5 and later, the ETag	header	is	fully	supported,	
along with If-None-Match

How does NGINX handle byte-range requests?
If	the	file	is	up-to-date	in	the	cache,	then	NGINX	honors	a	byte-range	request	
and	serves	only	the	specified	bytes	of	the	item	to	the	client.	If	the	file	is	not	
cached,	or	if	it’s	stale,	NGINX	downloads	the	entire	file	from	the	origin	server.	
If	the	request	is	for	a	single	byte	range,	NGINX	sends	that	range	to	the	client	
as	soon	as	it	is	encountered	in	the	download	stream.	If	the	request	specifies	
multiple	byte	ranges	within	the	same	file,	NGINX	delivers	the	entire	file	to	the	
client when the download completes

Once	the	download	completes,	NGINX	moves	the	entire	resource	into	the	cache	
so	that	all	future	byte-range	requests,	whether	for	a	single	range	or	multiple	
ranges,	are	satisfied	immediately	from	the	cache.

Please	note	that	the	upstream	server	must	support	byte-range	requests	for	
NGINX	to	honor	byte-range	requests	to	that	upstream	server.

http://nginx.org/en/docs/http/ngx_http_proxy_module.html#var_proxy_host
http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_pass
http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_cache_key
https://www.nginx.com/blog/nginx-plus-r5-released/

41High-Performance Caching with NGINX and NGINX Plus FAQ

Does NGINX support cache purging?
NGINX	Plus	supports	selective	purging	of	cached	files.	This	is	useful	if	a	file	
has	been	updated	on	the	origin	server	but	is	still	valid	in	the	NGINX	Plus	
cache	(the	Cache-Control:max-age	is	still	valid,	and	the	timeout	set	by	the	
inactive parameter to the proxy_cache_path	directive	has	not	expired).	
With	the	cache-purge	feature	of	NGINX	Plus,	this	file	can	easily	be	deleted.

How does NGINX handle the Pragma header?
The Pragma:no-cache header is added by clients to bypass all intermediary
caches	and	go	straight	to	the	origin	server	for	the	requested	content.	NGINX	
does	not	honor	the	Pragma	header	by	default,	but	you	can	configure	the	feature	
with the following proxy_cache_bypass	directive:

location /images/ {
 proxy_cache my_cache;
 proxy_cache_bypass $http_pragma;
 # ...
}

https://www.nginx.com/products

42High-Performance Caching with NGINX and NGINX Plus FAQ

Further Reading

There	are	many	more	ways	you	can	customize	and	tune	NGINX	caching.	
To	learn	even	more	about	caching	with	NGINX,	please	take	a	look	at	the	
following	resources:

• The ngx_http_proxy_module section of the of the NGINX
documentation	contains	all	of	the	configuration	options	for	content	caching.

• The NGINX Content Caching webinar is available on demand The webinar
steps	through	much	of	the	information	presented	in	this	blog	post.

• The Content Caching	section	of	the	NGINX	Plus	Admin	Guide	has	more	
configuration	examples	and	information	on	tuning	the	NGINX	cache.

• The Content	Caching	with	NGINX	Plus	product	page	contains	an	overview	
on	how	to	configure	cache	purging	with	NGINX	Plus	and	provides	other	
examples	of	cache	customization.

More	than	50%	of	the	world’s	busiest	websites	use	NGINX,	significantly	for	
its	web-acceleration	and	content-caching	capabilities.	For	more	solutions	
and	more	details,	check	out	the	blogs	and	the	feature	briefs	at	nginx com,
which	speak	to	capabilities	in	NGINX	and	NGINX	Plus.	And	take	a	look	at	our	
webinar list

And	if	you’d	like	to	investigate	these	capabilities	further,	of	course	there’s	the	
documentation	and	solutions	that	you	can	find	at	nginx org and nginx com,
but	nothing	beats	taking	a	download	and	trying	it	out.	The	open	source	
product	can	be	found	at nginx org,	or	try	the	supported	product	with	additional	
load	balancing,	application	delivery,	management,	and	ease-of-use	features	
at nginx com

http://nginx.org/en/docs/http/ngx_http_proxy_module.html
https://www.nginx.com/resources/webinars/content-caching-nginx-plus/
https://www.nginx.com/resources/admin-guide/content-caching/
https://www.nginx.com/products/content-caching-nginx-plus/
http://w3techs.com/technologies/cross/web_server/ranking
https://www.nginx.com/blog
https://www.nginx.com/resources/webinars
http://nginx.org/en/docs
https://www.nginx.com/solutions
http://nginx.org/en/download.html
https://www.nginx.com

43High-Performance Caching with NGINX and NGINX Plus FAQ

Selected Website Links:

1 https://www.nginx.com/blog/nginx-high-performance-caching/

2 https://www.nginx.com/blog/nginx-caching-guide/

3 https://www.nginx.com/blog/maximizing-php-7-performance-with-nginx-
part-i-web-serving-and-caching/

4 https://www.nginx.com/blog/maximizing-drupal-8-performance-nginx-
part-ii-caching-load-balancing/

5 https://www.nginx.com/blog/cache-placement-strategies-nginx-plus/

6 https://www.nginx.com/blog/benefits-of-microcaching-nginx/

7 https://www.nginx.com/blog/smart-efficient-byte-range-caching-nginx/

8 https://www.nginx.com/blog/shared-caches-nginx-plus-cache-clusters-part-1/

9 https://www.nginx.com/blog/shared-caches-nginx-plus-cache-clusters-part-2/

https://www.nginx.com/blog/nginx-high-performance-caching/
https://www.nginx.com/blog/nginx-caching-guide/
https://www.nginx.com/blog/maximizing-php-7-performance-with-nginx-part-i-web-serving-and-caching/
https://www.nginx.com/blog/maximizing-php-7-performance-with-nginx-part-i-web-serving-and-caching/
https://www.nginx.com/blog/maximizing-drupal-8-performance-nginx-part-ii-caching-load-balancing/
https://www.nginx.com/blog/maximizing-drupal-8-performance-nginx-part-ii-caching-load-balancing/
https://www.nginx.com/blog/cache-placement-strategies-nginx-plus/
https://www.nginx.com/blog/benefits-of-microcaching-nginx/
https://www.nginx.com/blog/smart-efficient-byte-range-caching-nginx/
https://www.nginx.com/blog/shared-caches-nginx-plus-cache-clusters-part-1/
https://www.nginx.com/blog/shared-caches-nginx-plus-cache-clusters-part-2/

