
REPORT

Compliments of

NGINX Unit
Cookbook
Derek DeJonghe

Download at nginx.com/freetrial

Cost Savings
Over 80% cost savings
compared to hardware
application delivery con-
trollers and WAFs, with
all the performance and

features you expect.

Get high‑performance application delivery for
microservices. NGINX Plus is a software load
balancer, web server, and content cache.
The NGINX Web Application Firewall (WAF)
protects applications against sophisticated
Layer 7 attacks.

 Try NGINX Plus
 and NGINX WAF
 free for 30 days

NGINX WAF
A trial of the

NGINX WAF, based
on ModSecurity,

is included when you
download a trial of

NGINX Plus.

Exclusive Features
JWT authentication,
high availability, the

NGINX Plus API, and
other advanced

functionality are only
available in NGINX Plus.

Reduced Complexity
The only all-in-one

load balancer, content
cache, web server,

and web application
firewall helps reduce
infrastructure sprawl.

https://nginx.com/freetrial

Derek DeJonghe

NGINX Unit Cookbook

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05428-3

LSI

NGINX Unit Cookbook
by Derek DeJonghe

Copyright © 2019 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or cor‐
porate@oreilly.com.

Acquisitions Editor: Mary Treseler
Developmental Editors: Nikki McDonald
and Eleanor Bru
Production Editor: Nan Barber
Copyeditor: Arthur Johnson

Proofreader: Nan Barber
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2019: First Edition

Revision History for the First Edition
2019-06-11: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492054306 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. NGINX Unit
Cookbook, the cover image, and related trade dress are trademarks of O’Reilly Media,
Inc.

The views expressed in this work are those of the author, and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions, includ‐
ing without limitation responsibility for damages resulting from the use of or reli‐
ance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or
describes are subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and NGINX. See our statement
of editorial independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492054306
http://www.oreilly.com/about/editorial_independence.html
http://www.oreilly.com/about/editorial_independence.html

Table of Contents

1. Unit Introduction and Features. 1
Introduction 1
Application Landscape and Unit Project History 1
Dynamic Application Server 2
Polyglotism 2
API-Driven Configuration and Server Management 3

2. Installation. 5
Introduction 5
Red Hat–Based Systems (.rpm) 5
Debian-Based Systems (.deb) 6
Third-Party Repositories 8
Installing from Source 9

3. Configuration. 13
Introduction 13
Application Object 13
Listener Object 14
Route Object 15

4. Usage and Operations. 19
Introduction 19
Startup and Shutdown 19
Applying Configuration 20

5. Security. 23
Introduction 23

iii

Application Isolation 23
Unix User Permissions 24
API Security through Encryption 25

6. Application Integration. 27
Introduction 27
WordPress 27
Django 31
Express 33

7. Ecosystem Integration. 37
Introduction 37
Reverse Proxying to Unit Applications through NGINX 37
Securely Serving the NGINX Unit Control API 39
Containerized Environment 40
Deployments 42

iv | Table of Contents

CHAPTER 1

Unit Introduction and Features

Introduction
This chapter will introduce you to NGINX Unit in a traditional
book format before switching to the O’Reilly Cookbook format in
Chapter 2. Throughout this chapter you will learn about what makes
Unit different from other middleware application servers. Before
learning the how, you’ll learn the why, with a brief history of the
problem Unit aims to solve. From that understanding, the architec‐
ture of NGINX Unit will be introduced, followed by the language
support, and finally the API that drives the configuration.

Application Landscape and Unit Project
History
The landscape of web applications has changed. In the past, applica‐
tions were written from the ground up to serve specific needs, and
upgrades were seldom issued compared to the present day. Today,
applications are released frequently, in piecemeal fashion, and por‐
tions are completely rewritten over time. As teams and web applica‐
tion offerings grow, the likelihood of the logic being diverse in both
language and code base grows as well.

As web applications diversify through microservices, languages, and
language versions, so does the operational complexity of managing
middleware, where middleware is defined as the application server
that receives requests and ushers them to the application code.

1

Installing, configuring, tuning, and maintaining multiple types of
middleware servers for different types of application languages and
versions requires a lot of work, expertise, and time and affects the
bottom line.

The team at NGINX Inc. has observed this change in the application
landscape and has worked to develop a solution from scratch, one
that is built for the new age of computing. This solution, NGINX
Unit, aims to reduce operational complexity by providing a single
middleware server that is able to run multiple applications of differ‐
ent languages and versions and to update on the fly without drop‐
ping a connection.

Dynamic Application Server
NGINX Unit is a dynamic application server, which means that it
can be dynamically reconfigured during runtime without dropping
requests. The architecture of Unit is such that request handling is
broken into layers. These layers comprise a control process, a router
process, and some application processes.

Each application served by Unit is run by an isolated process or set
of processes. The router process receives incoming connections and
asynchronously queues them for the destined application. The con‐
trol process manages the configuration of the application and rout‐
ing processes. The administrator, or operational automation,
interacts with the control process through an application program‐
ming interface (API). The control process is able to reconfigure
routing and application processes on the fly.

Polyglotism
Polyglotism is the ability to speak multiple languages. Prior to
NGINX Unit, a few polyglot middleware services have served the
web well—for example, the Common Gateway Interface (CGI) sup‐
ports languages such as PHP, Perl, and Python; the Web Server
Gateway Interface (WSGI) supports Perl, Python, and Ruby. Unit
provides a single middleware server to run both compiled and
scripting languages—including the aforementioned languages as
well as Node.js, Go, and Java—through a unified configuration.

With NGINX Unit, teams are able to code in the application lan‐
guage that makes the most sense for the service they’re providing to

2 | Chapter 1: Unit Introduction and Features

the end user. This technology reduces the difficulty of running com‐
plex systems to enable business value from all aspects.

API-Driven Configuration and Server
Management
The NGINX Unit control process is advertised through an API. The
API can be configured to be served through a Unix or TCP socket.
These two options allow the API to be tightly controlled but also
enable remote configuration. This API follows RESTful paths, meth‐
ods, and JSON bodies, as per industry standard.

The control process is able to start and stop application processes
and to reconfigure only necessary portions of the routing process’s
memory. This ability to start applications and configure traffic rout‐
ing accordingly is the core of the dynamic reconfiguration. These
paradigms enable native integration with operational workflows
found in DevOpsian organizations.

API-Driven Configuration and Server Management | 3

CHAPTER 2

Installation

Introduction
The first step toward using NGINX Unit is installing it. NGINX
Unit can be installed on a wide variety of systems. This chapter will
detail how to install Unit on the major Linux distributions such as
Debian, Ubuntu, Red Hat, and CentOS through NGINX package
repositories. Other installation methods, such as compiling from
source and using third-party repositories, are also included to
enable success with NGINX Unit on virtually any Linux-based plat‐
form.

Red Hat–Based Systems (.rpm)
Problem
You need to install NGINX Unit on Red Hat or CentOS.

Solution
Create a file named /etc/yum.repos.d/unit.repo that contains the fol‐
lowing contents:

[unit]
name=unit repo
baseurl=https://packages.nginx.org/unit/OS/$releasever/$basearch/
gpgcheck=0
enabled=1

5

Alter the file, replacing OS at the end of the URL with rhel or
centos, depending on your distribution.

Install the Unit base package:

sudo yum install unit

Install additional modules that you may want to use with Unit:

sudo yum install unit-php unit-python unit-go unit-perl \
 unit-devel unit-jsc-common unit-jsc8 unit-jsc11

Discussion
The file you just created for this solution instructs the yum package
management system to utilize the Official NGINX Unit package
repository. The command that follows installs Unit from the Official
repository, as well as the Unit modules needed for each application
language you may want to run.

Additional Resources
System Requirements
CentOS Package Documentation
RHEL Package Documentation

Debian-Based Systems (.deb)
Problem
You need to install NGINX Unit on a Debian or Ubuntu machine.

Solution
Ensure that the Advanced Package Tool (APT) system is able to use
HTTPS repositories:

sudo apt-get install apt-transport-https

Create a file named /etc/apt/sources.list.d/unit.list that contains the
following contents:

deb https://packages.nginx.org/unit/OS/ CODENAME unit
deb-src https://packages.nginx.org/unit/OS/ CODENAME unit

Alter the file, replacing OS at the end of the URL with ubuntu or
debian, depending on your distribution. Replace CODENAME with the

6 | Chapter 2: Installation

http://bit.ly/2ISB4ss
http://bit.ly/2Vs0aF2
http://bit.ly/2UU7ZUD

code name of your system. If you don’t know the code name the fol‐
lowing command will output the value you need:

lsb_release -c
Codename: xenial # Example

Run the following commands to install the NGINX signing key and
install Unit:

wget http://nginx.org/keys/nginx_signing.key
sudo apt-key add nginx_signing.key
sudo apt-get update
sudo apt-get install unit

A version of the language needs to be specified for certain Unit
modules. At the time of this writing, not all versions of all languages
are supported across all versions of the OS. You can search for mod‐
ule packages available from the repository for your operating system
by using the following command:

apt-cache search unit- | grep NGINX

Install additional modules that you may want to use with Unit. The
following packages are available on all Debian-based systems:

sudo apt-get install unit-php unit-python2.7 unit-perl \
 unit-ruby unit-dev unit-jsc-common unit-jsc8

Discussion
The file you just created instructs the apt package management sys‐
tem to utilize the Official NGINX Unit package repository. The
commands that follow download the NGINX GPG package signing
key and import it into apt. Providing the APT system with the sign‐
ing key enables it to validate packages from the repository. The apt-
get update command instructs the APT system to refresh its
package listings from its known repositories. After the package list is
refreshed, you can install Unit and any necessary packages from the
Official NGINX repository. For Python 3 and Golang, not all minor
versions are supported on all systems. The search command demon‐
strated previously can assist in finding which language versions are
available for your system.

Debian-Based Systems (.deb) | 7

Additional Resources
System Requirements
Debian Package Documentation
Ubuntu Package Documentation

Third-Party Repositories
Problem
You want to run NGINX Unit on a system for which NGINX Inc.
does not have prebuilt packages, and you do not want to build from
source.

Solution
Install from a third-party repository. These named repositories are
maintained by the community; NGINX has no control or responsi‐
bility over these resources.

Third-Party Repositories

These third party repositories are maintained by the
community. NGINX Inc. is not responsible for them or
for what gets installed when using them.

Alpine Linux:

sudo apk update
sudo apk upgrade
sudo apk add unit
sudo apk add unit-openrc unit-perl unit-php7 unit-python3 unit-ruby

Arch Linux:

sudo pacman -S git
git clone
git clone https://aur.archlinux.org/nginx-unit.git
cd nginx-unit
makepkg -si

FreeBSD:

sudo pkg install -y unit

8 | Chapter 2: Installation

http://bit.ly/2ISB4ss
http://bit.ly/2GCVIv4
http://bit.ly/2Pu2hD1

Gentoo:

sudo emerge --sync
sudo emerge www-servers/nginx-unit

Remi’s RPM repository hosts the latest version of PHP for RHEL
and its derivatives such as CentOS and Fedora:

sudo yum install --enablerepo=remi unit \
 php54-unit-php php55-unit-php php56-unit-php \
 php70-unit-php php71-unit-php php72-unit-php php73-unit-php

Unit’s Node.js package is called unit-http. It uses Unit’s libunit
library; your Node.js applications require the package to run in
Unit:

sudo npm install -g --unsafe-perm unit-http

Discussion
This section has detailed the usage of a number of third-party repo‐
sitories maintained by the community. It is possible to utilize this
information to quickly install prebuilt Unit and Unit module pack‐
ages on systems that NGINX Inc. does not yet maintain a repository
for. Also, the Remi repository contains specific older PHP versions
that may be useful to some readers.

Additional Resources
System Requirements
Community Repositories Install Documentation

Installing from Source
Problem
You need to install Unit from source.

Solution
You will have to install the packages needed to compile from source.
The following includes all the development packages for all sup‐
ported languages; skip the packages that you are not going to use.

For Debian and Ubuntu:

sudo apt-get install build-essential
sudo apt-get install golang

Installing from Source | 9

http://bit.ly/2ISB4ss
http://bit.ly/2GH0TKE

sudo curl -sL \
 https://deb.nodesource.com/setup_<Node.js version>.x \
 | bash -; apt-get install nodejs
sudo apt-get install php-dev libphp-embed
sudo apt-get install libperl-dev
sudo apt-get install python-dev
sudo apt-get install ruby-dev
sudo apt-get install libssl-dev

For Amazon Linux, CentOS, RHEL, and Fedora:

sudo yum install gcc make unzip
sudo yum install golang
sudo curl -sL \
 https://rpm.nodesource.com/setup_<Node.js version>.x \
 | bash -; yum install nodejs
sudo yum install php-devel php-embedded
sudo yum install perl-devel perl-libs
sudo yum install python-devel
sudo yum install ruby-devel
sudo yum install openssl-devel

Clone or download the source code from https://github.com/nginx/
unit. If you choose to download, you’ll need to unzip the package
that is downloaded. Once the source is cloned or unpacked, move
into the base of the project. The next example follows the download
path:

curl -O https://codeload.github.com/nginx/unit/zip/master
unzip master
cd unit-master/

Next, use the configure script to prepare the source code for instal‐
ling on your system. Run ./configure --help to fully understand
the flags available. In the following example, the --prefix option is
used to specify the installation directory. Each supported language
has an associated module that also needs to be built. Run the config
ure script with each application type you need to build a module
for:

./configure --prefix=/opt/unit/

./configure go

./configure perl

./configure php

./configure python

./configure ruby

Next, use the make command to run the Makefile created by the
configure script and install the software. You will need to run the
make command for each language. Depending on the location and

10 | Chapter 2: Installation

https://github.com/nginx/unit
https://github.com/nginx/unit

ownership of the --prefix flag specified by the configure com‐
mand, you may need to run the last command with elevated privi‐
leges:

make
make perl
make php
make python
make ruby
sudo make go-install
sudo make node-install
sudo make install

NGINX Unit is now installed. Validate the installation by getting the
help options from the binary:

sudo /opt/unit/sbin/unitd -h

Discussion
The preceding steps will build and install NGINX Unit from source.
A number of configuration flags can be used to modify the build
and installation. Unit is ready to use.

Additional Resources
System Requirements
Source Installation Documentation

Installing from Source | 11

http://bit.ly/2ISB4ss
http://bit.ly/2GtKNCC

CHAPTER 3

Configuration

Introduction
There are three main configuration objects used by NGINX Unit.
All are defined with JSON. The application object defines character‐
istics of the application being run by Unit, such as the language, the
process controls, and the location on the filesystem. The listener
object defines the Unit configuration that directs incoming requests
on a defined IP address and port to a specified application. The
route objects provide internal routing capabilities. This chapter will
build a foundational understanding of these objects.

Application Object
Problem
You need to understand the application object for a fundamental
understanding of NGINX Unit.

Solution
Define an application object that describes an application on the sys‐
tem. Each application type has different attributes and options that
can be applied. The following is a basic example of a PHP applica‐
tion object:

{
 "applications": {
 "my-app": {

13

 "type": "php",
 "processes": 2,
 "root": "/var/www/app/",
 "index": "index.php",
 "user": "app_user",
 "group": "app_group"
 }
 }
}

Discussion
Every application deployed on NGINX Unit is defined by an appli‐
cation object. The application object, defined in JSON, specifies the
attributes of the application. Each application type has its own
required and optional attributes. A number of different application
attributes control Unit process management and limitation. The
type attribute is the only process management attribute that is
required for an application; it defines the application language, such
as PHP, Python, Golang, Ruby, or Perl. Other attributes include lim‐
its on child process count, request time, user, group, environment
variables, and working directory.

In the example, some of the attributes that can be applied to a PHP
process are used, such as root and index. The application-specific
attributes are focused on the entry point of the application, such as
the directory of the project, or main executable file.

You will learn how to apply application objects to the Unit configu‐
ration in the section “Applying Configuration” on page 20.

Additional Resources
Applications Object

Listener Object
Problem
You need to understand the NGINX Unit listener object in order for
your application to listen for requests.

14 | Chapter 3: Configuration

http://bit.ly/2IImvbG

Solution
Define a listener object to instruct Unit to listen for incoming
requests on a provided IP and port:

{
 "listeners": {
 "*:8080": {
 "pass": "applications/my-app"
 }
 }
}

Discussion
To instruct NGINX Unit to listen on an IP and port, a listener object
must be defined. The listener object defines the application to which
Unit will direct incoming requests. The listener object is the value,
specified to a key that defines the IP and port. In the example, the *
is used for the IP address, thus instructing Unit to listen on all IP
addresses. The listener object has two attributes: pass and option‐
ally tls. The pass attribute takes a string value that specifies the
application or route to which requests will be directed. The example
sends requests directly to an application named my-app. The pass
attribute replaced the application attribute of the listener object in
version 1.8.0.

You will learn how to apply listener objects to the Unit configuration
in the section “Applying Configuration” on page 20.

Additional Resources
Listeners Object

Route Object
Problem
You want to understand the NGINX Unit route objects to enable
internal routing between listeners and applications.

Solution
The routes attribute of the Unit configuration can be configured as
an array of route objects, or an object of named route arrays. The

Route Object | 15

http://bit.ly/2DzbB3w

difference of configuration alters the usage of the listener object
pass attribute.

When an array of route objects is used as the value of the routes
attribute, the value provided to the pass attribute is simply routes,
as in the following example:

{
 "listeners": {
 "*:8080": {
 "pass": "routes"
 }
 },
 "routes": [
 {
 "match": {
 "host": "blog.example.com"
 },
 "action": {
 "pass": "applications/blog"
 }
 },
 {
 "action": {
 "pass": "applications/my_app"
 }
 }
]
}

When an object of named route arrays is used as the value of the
routes attribute, the value provided to the pass attribute must be
routes/ followed by the named route, as in the following example:

{
 "listeners": {
 "*:8080": {
 "pass": "routes/main"
 }
 },
 "routes": {
 "main": [
 {
 "match": {
 "host": ["example.com", "www.example.com"]
 },
 "action": {
 "pass": "applications/website"
 }
 },

16 | Chapter 3: Configuration

 {
 "match": {
 "uri": "/admin/*"
 },
 "action": {
 "pass": "applications/admin"
 }
 }
]
 }
}

Discussion
This recipe demonstrates a couple of basic route objects. The route
object has two attributes: match and action. The match condition
object takes three options: host, method, and uri. When specifying
multiple options together, the match is evaluated as a logical AND.
All of the match options accept either a string or an array of strings.
When an array of strings is used for one of these options, the match
at the option level is evaluated as a logical OR. Wildcards (*) and
negations (!) are also supported. The patterns must be an exact
match to the request. The route objects are evaluated in order, and
the first match takes action. If no route is matched, an HTTP 404 is
served.

The action attribute accepts an object value. Currently the only
attribute of the action object is pass. The pass attribute defines the
application to which the request should be directed. If only the
action attribute, but no match condition, is specified in a route,
requests are unconditionally directed to the pass value.

Additional Resources
Route Object

Route Object | 17

http://bit.ly/2Dx0dpc

CHAPTER 4

Usage and Operations

Introduction
Understanding how to start and stop the NGINX Unit server, and
the applications it runs, is essential. In this chapter you will learn
how to start and stop the Unit service on init.d and systemd service
managers, as well as how to start the Unit server in the foreground.
This chapter also details how to submit the configuration objects to
the Unit control API in order to start serving the application.

Startup and Shutdown
Problem
You need to start or stop the NGINX Unit server.

Solution
When Unit is installed through a repository, a startup file for a ser‐
vice manager such as, init.d or systemd is also installed and config‐
ured. These service managers will start Unit as a daemon.

Start Unit on an init.d system:

sudo /etc/init.d/unit start

Stop Unit on an init.d system:

sudo /etc/init.d/unit stop

19

Start Unit on a systemd system:

sudo systemclt start unit

Stop Unit on a systemd system:

sudo systemclt stop unit

Start Unit in the foreground. The following assumes that the Unit
binary is installed into a directory defined in your PATH:

sudo unitd --no-daemon

Discussion
The service manager used to start the Unit daemon depends on the
type of system it’s running on. Each service manager has its own
syntax for starting and stopping services. The service managers will
start Unit as a daemon. An example of starting Unit in the fore‐
ground is also shown. This can be useful for testing, or when run‐
ning Unit in a Docker container.

Applying Configuration
Problem
You need to start an application within NGINX Unit.

Solution
For this section, it’s important to understand that the Unit configu‐
ration is represented as a single JSON object. Portions of the object
can be interacted with in a RESTful manner. The following will be
examples of working with specific application and listener objects,
and then with the Unit config as a whole.

Locate the Unit control socket; example output is provided. The
default value found in this example, /var/run/control.unit.sock,
will be used throughout the book. As the control socket is owned by
root by default, all curl commands will be run with sudo.

unitd -h

unit options:

 --version print unit version and configure options

20 | Chapter 4: Usage and Operations

 --no-daemon run unit in non-daemon mode

 --control ADDRESS set address of control API socket
 default: "unix:/var/run/control.unit.sock"
 ...
 ...

Create an application by submitting an application object to the
control socket:

sudo curl -X PUT -d @/path/to/application-object.json \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/config/applications/app-name

Configure a listener and direct it to the application:

This command removes all other listeners that might
have been defined prior.

sudo curl -X PUT \
 -d '{"*:8080":{"pass":"applications/app-name"}}' \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/config/listeners

You alternatively can create both objects at once by defining both
the application and the listener object in one configuration file. Cre‐
ate a file named php-app.json:

{
 "listeners": {
 "*:8080": {
 "pass": "applications/app-name"
 }
 },
 "applications": {
 "app-name": {
 "type": "php",
 "processes": 20,
 "root": "/var/www/app/",
 "index": "index.php"
 }
 }
}

Submit the php-app.json configuration to the NGINX Unit control
socket:

Applying Configuration | 21

This command removes all other listeners, apps, and
routes, that might have been defined prior.

sudo curl -X PUT -d @php-app.json \
 --unix-socket /var/run/control.unit.sock \
 http://localhost/config/

Test your application:

curl localhost:8080

Discussion
All interactions with Unit are done through the control interface.
The API is RESTful; applications and configurations are created,
altered, or deleted through the API. In the examples for this solu‐
tion, we build on the examples from Chapter 3 by submitting them
to the Unit control interface. The alternate approach is to define all
applications, routes, and listener objects in one JSON file and sub‐
mit them together to the Unit configuration.

22 | Chapter 4: Usage and Operations

CHAPTER 5

Security

Introduction
Security is everyone’s job. With NGINX Unit, security is at the fore‐
front of the server’s design. Unit naturally separates applications by
spawning separate processes for each one, enabling isolation at the
process and memory layer. Each application process can be owned
by separate users, enabling security at the file permission layer as
well. Finally, NGINX Unit has full SSL/TLS support, which enables
Unit to serve applications through encrypted HTTPS communica‐
tion. All of these security attributes are demonstrated in this chapter.

Application Isolation
Problem
You need to serve multiple applications and would like them to be
fully isolated.

Solution
Configure the applications separately in NGINX Unit. Unit creates
separate processes for each application, enabling isolation.

{
 "applications": {
 "auth-service": {
 "type": "php",
 "processes": 10,

23

 "root": "/var/www/auth/",
 "index": "index.php"
 },
 "key-service": {
 "type": "external",
 "processes": 2,
 "executable": "/var/key-service"
 }
 }
}

Discussion
NGINX Unit comprises two main processes and the application
processes. The controller process serves the API interface used to
configure Unit. The router process handles incoming requests and
queues them for the application defined by the listener configura‐
tion. Each application is run as a separate process or group of pro‐
cesses.

Unix User Permissions
Problem
You need to further isolate your applications by using user permis‐
sions.

Solution
Use a different system user for each application so that Unit spawns
the processes as separate users with their own permissions.

{
 "applications": {
 "auth-service": {
 "type": "php",
 ...
 "user": "auth-app"
 },
 "key-service": {
 "type": "external",
 ...
 "user": "key-app"
 }
 }
}

24 | Chapter 5: Security

Discussion
Unit runs each application as a separate process or group of pro‐
cesses, enabling it to run these processes as separate system users.
When configuring an application in Unit, there is an attribute for
user and group. Using separate system users for each application will
provide your applications with further isolation.

API Security through Encryption
Problem
You need to secure your application’s communication with SSL/TLS
certificates.

Solution
Create a .pem file that includes your certificate chain and private
key:

cat cert.pem ca.pem key.pem | sudo tee bundle.pem > /dev/null

Upload the bundle.pem file created in the last step to Unit’s certifi‐
cate storage under a suitable name:

sudo curl -X PUT --data-binary @bundle.pem \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/certificates/certificate-name

Configure a listener object to use the certificate. In this example, a
file with the object will be written to a file named tls-listener.json for
clarity:

{
 "*:8443": {
 "pass": "applications/app-name",
 "tls": {
 "certificate": "certificate-name"
 }
 }
}

Submit the tls-listener.json configuration to the Unit API:

API Security through Encryption | 25

This command removes all other listeners that might
have been defined prior.

sudo curl -X PUT -d @tls-listener.json \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/config/listeners

Validate that your application is communicating over TLS:

curl -v https://localhost:8443

Discussion
This recipe concatenates the certificate, certificate authority chain,
and key into a bundle that can be used by NGINX Unit. After the
certificate is uploaded to Unit’s certificate store, it can be referenced
by listeners. A listener object is constructed that references the IP
and port on which to accept requests and that references the appli‐
cation via the pass attribute, as well as the certificate bundle object.
The listener object is then submitted to the Unit control interface.

Validating that the TLS certificate is configured properly can be
done by making a request to the listener. Using the verbose flag, -v,
when issuing the curl command will print the TLS handshake oper‐
ations if the certificate is configured properly.

Additional Resources
TLS Object

26 | Chapter 5: Security

http://bit.ly/2UBy1an

CHAPTER 6

Application Integration

Introduction
To provide examples of serving real-world applications with NGINX
Unit, this chapter will demonstrate step-by-step setups of some
common application frameworks. In this chapter you will learn how
to serve WordPress, a common PHP content management system.
You will also learn how to serve applications based in common
frameworks such as Django (a Python framework) and Express (a
Node.js framework). This chapter will demonstrate how to install
applications onto a system and ensure that they have the correct file
permissions and the configuration of NGINX Unit needed to serve
them.

WordPress
Problem
You need to run WordPress with NGINX Unit.

Solution
To install WordPress, if you haven’t already done so, check prerequi‐
sites to ensure that you have the necessary requirements. Next, con‐
figure the WordPress database. Then download and extract the
WordPress files:

sudo mkdir /var/app/
sudo cd /var/app/

27

http://bit.ly/2IGsBt4
http://bit.ly/2UAzHkq/
http://bit.ly/2UAzHkq/
http://bit.ly/2UCiJBZ

sudo wget https://wordpress.org/latest.tar.gz
sudo tar xzvf latest.tar.gz

In this example, the WordPress files will be stored in /var/app/
wordpress/.

Update the wp-config.php file with your database settings and other
customizations.

Set the user file permissions for WordPress to ensure that the user
that owns the PHP processes and the NGINX web server is able to
access the files:

sudo chown -R wpuser:www-data /var/app/wordpress/
sudo find /var/app/wordpress/ -type d -exec chmod g+s {} \;
sudo chmod g+w /var/app/wordpress/wp-content
sudo chmod -R g+w /var/app/wordpress/wp-content/themes
sudo chmod -R g+w /var/app/wordpress/wp-content/plugins

Configure a PHP application object, as well as a listener object, and
submit both objects to the NGINX Unit control interface. This
example will configure two applications and listeners in order to iso‐
late the main WordPress entry point, index.php, from the rest of the
PHP files that can be run, such as wp-admin.php. Name the follow‐
ing JSON file wordpress-unit.json:

{
 "listeners": {
 "127.0.0.1:8090": {
 "pass": "applications/wp_index"
 },

 "127.0.0.1:8091": {
 "pass": "applications/wp_direct"
 }
 },

 "applications": {
 "wp_index": {
 "type": "php",
 "user": "wpuser",
 "group": "www-data",
 "root": "/var/app/wordpress/",
 "script": "index.php"
 },

 "wp_direct": {
 "type": "php",
 "user": "wpuser",
 "group": "www-data",

28 | Chapter 6: Application Integration

http://bit.ly/2ILlxLI
http://bit.ly/2GFqzFY

 "root": "/var/app/wordpress/",
 "index": "index.php"
 }
 }
}

Submit the wordpress-unit.json file to the Unit control interface:

sudo curl -X PUT -d @wordpress-unit.json \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/config

Configure NGINX to serve static content and proxy requests to the
applications that were just configured in NGINX Unit with the fol‐
lowing basic upstream and server configuration:

upstream unit_wp_index {
 server 127.0.0.1:8090;
}

upstream unit_wp_direct {
 server 127.0.0.1:8091;
}

server {
 listen 80;
 server_name localhost;
 root /var/app/wordpress/;

 location / {
 try_files $uri @index_php;
 }

 location @index_php {
 proxy_pass http://unit_wp_index;
 proxy_set_header Host $host;
 }

 location /wp-admin {
 index index.php;
 }

 location ~* \.php$ {
 try_files $uri =404;
 proxy_pass http://unit_wp_direct;
 proxy_set_header Host $host;
 }
}

Use a browser to make a request to the NGINX server on port 80,
and finish the installation process.

WordPress | 29

http://bit.ly/2vnCNOt

Discussion
In this recipe, WordPress is installed from scratch. The system and
database first need to be prepared to the WordPress specifications.
After the system is prepared, the code base is downloaded and
unpacked to a location on the filesystem.

Once the application code is on the filesystem, WordPress needs to
be informed how to connect to the database. This is done by altering
a configuration file that is included in the code base. For the sake of
brevity, this is statically configured. In a production system, envi‐
ronment variables would be used and set when configuring the Unit
application.

After the database connection has been configured, the file permis‐
sions are changed so that the system user that will own the Unit pro‐
cesses will be able to read the files. Permissions are also set for the
system group, which will be used by the NGINX process to serve the
static content.

When configuring Unit to serve the application, security precau‐
tions are taken to isolate the main WordPress entry point from
direct PHP files. The main difference between the two configured
applications is the script and index settings. When the script
application attribute is used, Unit will run any URL it receives, such
as /wp-login.php. When the index attribute is used, only the file pro‐
vided as the value will be executed. This separation allows for appli‐
cation settings that vary based on the intended usage. A useful
example would be restricting access, or allowing for a longer request
time-out for the administration section of WordPress.

Unit does not serve static content, of which WordPress has a lot. To
serve this content, the NGINX web server is needed. In order to
provide a single endpoint for both the static and dynamic content,
NGINX is also configured to proxy to the applications. The pro‐
vided configuration hosts a web server on port 80. When a request is
made to the web server, NGINX will check the filesystem for a static
file matching the URL. If the file is not found, the request is proxied
to the wp-index Unit listener (unless the URL ends with .php, in
which case the request will be proxied to the wp-direct Unit lis‐
tener).

30 | Chapter 6: Application Integration

Additional Resources
WordPress How To

Django
Problem
You have a Python Django application you want to serve with
NGINX Unit.

Solution
Prepare your existing project or create a new one. In this example,
the source code will be placed in /var/project/. Start by ensuring that
the correct file permissions are set:

sudo chown -R app-user:app-user /var/project/

Detailing the directory structure of the example is important,
because Unit needs to know how to import the WSGI module in
order to run the application. Thus the Unit application object values
depend on the directory structure:

/var/project/
├── manage.py
├── app1/
│ └── ...
├── app2/
│ └── ...
└── project/
 ├── ...
 └── wsgi.py

Construct an NGINX Unit Python application object and associated
listener. Name this file django-unit.json:

{
 "listeners": {
 "127.0.0.1:8080": {
 "pass": "applications/django_project"
 }
 },

 "applications": {
 "django_project": {
 "type": "python",
 "path": "/var/project/",
 "home": "/path/to/virtual-env/if/used/",

Django | 31

http://bit.ly/2IICgz7
http://bit.ly/2Dxresg

 "module": "project.wsgi",
 "user": "app-user"
 }
 }
}

Submit the django-unit.json file to the Unit control interface:

sudo curl -X PUT -d @django-unit.json \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/config

Validate that the application is running by making a request to the
server on port 8080:

curl http://localhost:8080

Discussion
In this recipe, a Django project is served with NGINX Unit. For
Unit to be permitted to read the files, the correct file permissions
need to be set. In the example, the files are owned by the system user
that will be running the application.

This recipe shows the directory structure, not because it needs to be
followed but because it shows how the module attribute of the Unit
application object for Python applications is configured. The value
of the module attribute is used to import the WSGI module, with
standard Python import syntax, from the directory specified by the
path attribute.

The Unit configuration specifies that this application is of type
python. As the version of Python is not specified, the latest version
is used. The path attribute specifies the path to the base directory of
the application. If a virtual environment is being used, the optional
home attribute can be set to the base directory of the virtual environ‐
ment. Unit imports the WSGI object by use of the module attribute
and runs the application as specified by the system user. The config‐
uration then defines a listener object that instructs Unit to send
incoming requests on the 127.0.0.1:8080 interface, to be directed
to the django_project application.

Additional Resources
Django How To

32 | Chapter 6: Application Integration

http://bit.ly/2UHg8Xq

Express
Problem
You have a Node.js application that utilizes the Express framework.

Solution
Set up your project and ensure that Node is installed.

To run Node applications in NGINX Unit, an NPM package is
required. The version of the NPM package unit-http must match
the version of NGINX Unit being used. It’s wise to version-lock the
Unit server and NPM package to avoid version conflicts. To build
and install the NPM package, you will also need the development
Unit package, which includes necessary header files. The develop‐
ment package was included in the installation process in Chapter 2:

npm install unit-http

Unit will call the Node application’s entry point as an executable.
Add the following line to the beginning of the entry point file:

#!/usr/bin/env node

Make the entry point executable, and ensure that it’s owned by the
system user that will run the application. In the example, the entry
point file is index.js, and the project directory is /var/app/:

chown -R app-user /var/app/
chmod u+x index.js

To serve an Express application with Unit, the code needs to be
slightly modified. The default Express HTTP server,
ServerResponse, and IncomingMessage objects need to be replaced
with objects from the default http package to the unit-http pack‐
age. The following “Hello World!” example shows how to rewire the
application:

#!/usr/bin/env node

const {
 createServer,
 IncomingMessage,
 ServerResponse,
} = require('unit-http')

require('http').ServerResponse = ServerResponse

Express | 33

http://bit.ly/2vnJa4i

require('http').IncomingMessage = IncomingMessage

const express = require('express')

const app = express()

app.get('/', (req, res) => {
 res.set('X-Header-Example', 'Value')
 res.send('Hello, Unit!')
})

createServer(app).listen()

Construct the NGINX Unit application and listener objects for this
project and name the file express-unit.json:

{
 "listeners": {
 "127.0.0.1:8080": {
 "pass": "applications/express_project"
 }
 },

 "applications": {
 "express_project": {
 "type": "external",
 "executable": "/var/app/index.js",
 "user": "app-user"
 }
 }
}

Submit the express-unit.json file to the Unit control interface:

sudo curl -X PUT -d @express-unit.json \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/config

Validate that the application is running by making a request to the
server on port 8080.

Discussion
In this recipe, the unit-http package is installed to the project, and
its objects are used rather than the default http server objects. The
entry point file is made executable and the correct file permissions
are set on the project, so that Unit is able to read the modules and
run the entry point. Lastly, the Unit application and listener objects
are constructed and submitted to the Unit control API. The exe
cutable attribute specifies the location of the entry point file. An

34 | Chapter 6: Application Integration

optional application object attribute for external application types,
named arguments, can be used if there are arguments that need to
be passed to the executable.

Additional Resources
Express How To

Express | 35

http://bit.ly/2VriBd9

CHAPTER 7

Ecosystem Integration

Introduction
Throughout this chapter you will learn about operational integra‐
tion as it pertains to NGINX Unit. Unit applications may need to be
served via an NGINX proxy or load balancer, to which the configu‐
ration will be detailed. Also included are recipes that enable you to
securely expose the Unit control interface through NGINX. Other
topics include running Unit within a container and deploying appli‐
cation version upgrades through the control API.

Reverse Proxying to Unit Applications through
NGINX
Problem
You need to serve an application running in NGINX Unit through a
NGINX server acting as a reverse proxy or load balancer.

Solution
Configure an upstream block in the NGINX configuration made up
of Unit servers:

upstream unit_backend {
 server 127.0.0.1:8080; # Local Reverse Proxy
 server 10.0.0.12:8080; # Remote Server Load Balance
 server 10.0.1.12:8080; # Remote Server Load Balance
}

37

Configure a server block within the NGINX configuration to proxy
requests to the upstream server set:

server {
 # Typical NGINX server setup and security directives

 location / {
 # NGINX Proxy Settings
 proxy_pass http://unit_backend;
 }
}

Discussion
The NGINX web server and reverse proxy load balancer is a fully
dynamic application gateway. It can be used as a web server, reverse
proxy, load balancer, and more. For brevity, this recipe assumes that
the NGINX server block has been configured with the necessary
required and security-concerned directives.

In a reverse proxy situation, the NGINX server would be configured
on the same physical or virtual machine as NGINX Unit. The
upstream block would be configured with a server directive with a
parameter specifying the same interface configured for the Unit lis‐
tener object. In this example, the localhost 127.0.0.1 is used, in
conjunction with the port 8080.

In a load balancing situation, the NGINX server would be config‐
ured with an upstream block that contains multiple remote server
directives. The example provides two server directives specifying
different remote NGINX Unit servers at IP addresses 10.0.0.12 and
10.0.1.12. Both of these Unit servers would be configured with lis‐
tener objects on port 8080 for the same application.

This example further demonstrates how a properly configured
server block can receive connections and direct the request to the
application defined by the upstream block. This is done by defining
a location block and using the proxy_pass directive with a param‐
eter that specifies the protocol and destination. In this example, the
destination is the upstream server block, named unit_backend.

Incoming connections to the NGINX server will be processed, and
requests matching the configured server definition will be directed
to the configuration within this server block. In this example, all
configuration requests will be sent to the NGINX Unit server for

38 | Chapter 7: Ecosystem Integration

processing. The NGINX Unit server will return the request to the
NGINX server, which will return the request to the client.

Additional Resources
NGINX Integration

Securely Serving the NGINX Unit Control API
Problem
You would like to remotely and securely configure the Unit applica‐
tion server.

Solution
Configure a NGINX reverse proxy to the control interface Unix
socket. Ensure that it is only available internally and that client-
server encryption is enforced.

server {

 # Configure SSL encryption
 server 443 ssl;
 ssl_certificate /path/to/ssl/cert.pem;
 ssl_certificate_key /path/to/ssl/cert.key;

 # Configure SSL client certificate validation
 ssl_client_certificate /path/to/ca.pem;
 ssl_verify_client on;

 # Configure network ACLs
 #allow 1.2.3.4; # Uncomment and update with the IP addresses
 # and networks of your administrative systems.
 deny all;

 # Configure HTTP Basic authentication
 auth_basic on;
 auth_basic_user_file /path/to/htpasswd;

 location / {
 proxy_pass http://unix:/var/run/control.unit.sock;
 }
}

Securely Serving the NGINX Unit Control API | 39

http://bit.ly/2XDCYkA

Discussion
This recipe configures the NGINX reverse proxy server to serve the
NGINX Unit control interface through an HTTPS connection. The
NGINX server is configured to serve only on port 443 and to only
accept encrypted connections. The SSL/TLS directives of the
NGINX server must be configured to specify a given certificate and
key for encryption. This configuration also requires the client to
provide a certificate signed by the specified certificate authority as a
means of authentication. For further security, the configuration
denies all requests from any client IP that is not specified by the
allow directive. The allow directive must be uncommented and
configured to your internal IP or CIDR. Finally, a username and
password must be specified via HTTP basic auth. The
auth_basic_user_file directive defines a file that contains user‐
names and hashed passwords of authorized users.

Once all security measures are met, NGINX will proxy the request
to the NGINX Unit control interface. By default, the Unit control
interface listens on a Unix socket. The system user running NGINX
must have permission to read and write to this Unix socket file.

Additional Resources
NGINX Integration

Containerized Environment
Problem
You would like to use NGINX Unit as a middleware server in a con‐
tainerized environment.

Solution
Build a unit configuration file at the base of the project. Name the
file unit-conf.json:

{
 "listeners": {
 "*:8080": {
 "pass": "applications/php_project"
 }
 },
 "applications": {

40 | Chapter 7: Ecosystem Integration

http://bit.ly/2XDCYkA

 "php_project": {
 "type": "php",
 "processes": 1,
 "root": "/var/app",
 "index": "index.php"
 }
 }
}

Use the Official NGINX Unit Docker Image as the base. Create a
Dockerfile with the following:

FROM nginx/unit

ADD / /var/app/

ADD /unit-conf.json /var/lib/unit/conf.json

Build the Dockerfile into an image:

docker build -t unit-example .

Run the Docker image and expose the listener through the Docker
proxy for testing. The following example uses the Docker -p flag to
configure a proxy, exposing port 8080 proxied to port 8080. As a
reminder, the port number before the : is the port exposed on the
local machine:

docker run -p 8080:8080 unit-example

Make a request to the exposed Docker proxy to validate:

curl localhost:8080

Discussion
This recipe demonstrates the basics of using NGINX Unit as a mid‐
dleware server for dockerized applications. A Unit configuration file
is created for the application. A Dockerfile is then crafted, based on
the Official NGINX Unit Docker Image. Within the Dockerfile, the
application code is added to the image. The configuration file is then
added to the image in the location of the Unit state file. This ensures
that Unit will start with the application and listener objects config‐
ured.

The Dockerfile is then built, rendering an image tagged unit-
example. The Docker image is then run with the proxy flag to
expose the listener to the host. Once running, the Docker container
is validated.

Containerized Environment | 41

Furthermore, with Docker you are able to mount volumes with the
-v flag. By doing so you are able to expose the host’s filesystem. If
the control interface is overridden via the CMD directive in the Dock‐
erfile, and exposed by the Docker proxy, remote reconfiguration of
the Unit container is enabled. In this configuration it is possible to
add applications that exist on the host’s filesystem and to reconfig‐
ure Unit listeners to serve these applications remotely through the
control API. This technique may be helpful for local development
environments.

Additional Resources
Unit in Docker

Deployments
Problem
You need to deploy a new version of an application without down‐
time.

Solution
Utilize NGINX Unit’s API to switch between application versions
through an API call. This recipe will use a directory structure laid
out in the following way:

/var/app/
├── version-1
│ ├── index.php
│ └── ...
└── version-2
 ├── index.php
 └── ...

The current state of the Unit configuration is as such:

{
 "listeners": {
 "*:8080": {
 "pass": "applications/php_project_version_1"
 }
 },
 "applications": {
 "php_project_version_1": {
 "type": "php",
 "processes": 2,

42 | Chapter 7: Ecosystem Integration

http://bit.ly/2UGUrXw

 "root": "/var/app/version-1",
 "index": "index.php"
 }
 }
}

Create another file named php-v2.json file with the following JSON:

{
 "type": "php",
 "processes": 2,
 "root": "/var/app/version-2",
 "index": "index.php"
}

Make an API call to the control interface. Provide the php-v2.json as
the JSON body. Use the RESTful syntax to name the Unit application
php_project_version_2:

sudo curl -X PUT -d @php-v2.json \
 --unix-socket /var/run/control.unit.sock \
 http://localhost/config/applications/php_project_version_2

Make the following request to the Unit control interface to validate
that both applications are configured:

sudo curl --unix-socket /var/run/control.unit.sock \
 http://localhost/config
{
 "listeners": {
 "*:8080": {
 "pass": "applications/php_project_version_1"
 }
 },

 "applications": {
 "php_project_version_1": {
 "type": "php",
 "processes": 2,
 "root": "/var/app/version-1",
 "index": "index.php"
 },

 "php_project_version_2": {
 "type": "php",
 "processes": 2,
 "root": "/var/app/version-2",
 "index": "index.php"
 }
 }
}

Deployments | 43

Make a request to the control interface with the following com‐
mand, instructing Unit to switch the listener *:8080 to point to the
php_project_version_2 application:

sudo curl -X PUT -d '"php_project_version_2"' \
 --unix-socket /var/run/control.unit.sock \
 'http://localhost/config/listeners/*:8080/application'

Make the following request to the Unit control interface to validate
that the listener has been reconfigured to direct requests to the
php_project_version_2 application:

sudo curl --unix-socket /var/run/control.unit.sock \
 http://localhost/config
{
 "listeners": {
 "*:8080": {
 "pass": "applications/php_project_version_2"
 }
 },

 "applications": {
 "php_project_version_1": {
 "type": "php",
 "processes": 2,
 "root": "/var/app/version-1",
 "index": "index.php"
 },

 "php_project_version_2": {
 "type": "php",
 "processes": 2,
 "root": "/var/app/version-2",
 "index": "index.php"
 }
 }
}

Make a request to the control interface to remove the
php_project_version_1 application:

sudo curl -X DELETE \
 --unix-socket /var/run/control.unit.sock \
 http://localhost/config/applications/php_project_version_1

Discussion
This recipe demonstrates the deployment of a new version of an
application. The example starts from a pre-configured state, with a
single application version being served on port 8080. NGINX Unit is

44 | Chapter 7: Ecosystem Integration

then configured to start another application of a new version. Both
versions run in parallel as separate process sets. Unit is then instruc‐
ted to route incoming requests to the new application version.
Finally, the older application version is removed, and the processes
that served that application are removed.

Deployments | 45

About the Author
Derek DeJonghe has had a lifelong passion for technology. His
background and experience in web development, system adminis‐
tration, and networking give him a well-rounded understanding of
modern web architecture. Derek currently manages a cloud consult‐
ing firm specializing in cloud native application development, as
well as Infrastructure, configuration, and CI/CD pipelines as code.
A focus of Derek’s work has been on moving the pets versus cattle
analogy from single servers to entire environments, enabling teams
to build and destroy environments at will for integration testing.
With a proven track record for resilient cloud architecture, Derek
helps RightBrain Networks be one of the strongest cloud consulting
agencies and managed service providers in partnership with AWS
today.

	Copyright
	Table of Contents
	Chapter 1. Unit Introduction and Features
	Introduction
	Application Landscape and Unit Project History
	Dynamic Application Server
	Polyglotism
	API-Driven Configuration and Server Management

	Chapter 2. Installation
	Introduction
	Red Hat–Based Systems (.rpm)
	Problem
	Solution
	Discussion
	Additional Resources

	Debian-Based Systems (.deb)
	Problem
	Solution
	Discussion
	Additional Resources

	Third-Party Repositories
	Problem
	Solution
	Discussion
	Additional Resources

	Installing from Source
	Problem
	Solution
	Discussion
	Additional Resources

	Chapter 3. Configuration
	Introduction
	Application Object
	Problem
	Solution
	Discussion
	Additional Resources

	Listener Object
	Problem
	Solution
	Discussion
	Additional Resources

	Route Object
	Problem
	Solution
	Discussion
	Additional Resources

	Chapter 4. Usage and Operations
	Introduction
	Startup and Shutdown
	Problem
	Solution
	Discussion

	Applying Configuration
	Problem
	Solution
	Discussion

	Chapter 5. Security
	Introduction
	Application Isolation
	Problem
	Solution
	Discussion

	Unix User Permissions
	Problem
	Solution
	Discussion

	API Security through Encryption
	Problem
	Solution
	Discussion
	Additional Resources

	Chapter 6. Application Integration
	Introduction
	WordPress
	Problem
	Solution
	Discussion
	Additional Resources

	Django
	Problem
	Solution
	Discussion
	Additional Resources

	Express
	Problem
	Solution
	Discussion
	Additional Resources

	Chapter 7. Ecosystem Integration
	Introduction
	Reverse Proxying to Unit Applications through NGINX
	Problem
	Solution
	Discussion
	Additional Resources

	Securely Serving the NGINX Unit Control API
	Problem
	Solution
	Discussion
	Additional Resources

	Containerized Environment
	Problem
	Solution
	Discussion
	Additional Resources

	Deployments
	Problem
	Solution
	Discussion

	About the Author

